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Portfolio construction is perhaps the 
most recurrent f inancial problem. 
On a daily basis, investment man-
agers must build portfolios that 

incorporate their views and forecasts on risks 
and returns. Before Markowitz earned his 
Ph.D. in 1954, he left academia to work for 
the RAND Corporation, where he devel-
oped the Critical Line Algorithm (CLA), a 
quadratic optimization procedure specif i-
cally designed for inequality-constrained 
portfolio optimization problems. This algo-
rithm is notable in that it guarantees finding 
the exact solution after a known number of 
iterations—and it ingeniously circumvents 
the Karush-Kuhn-Tucker conditions (Kuhn 
and Tucker [1952]). A description and open-
source implementation of this algorithm 
can be found in Bailey and López de Prado 
[2013]. Surprisingly, most financial practi-
tioners still seem unaware of CLA, as they 
often rely on generic-purpose quadratic pro-
gramming methods that do not guarantee the 
correct solution or a stopping time.

Despite of the brilliance of Markowitz’s 
theory, CLA solutions are somewhat unreli-
able because of a number of practical problems. 
A major caveat is that small deviations in the 
forecasted returns cause CLA to produce very 
different portfolios (Michaud [1998]). Given 
that returns can rarely be forecasted with suf-
ficient accuracy, many authors have opted to 
drop them altogether and focus on the cova-

riance matrix. This has led to risk-based 
asset allocation approaches, of which “risk 
parity” is a prominent example ( Jurczenko 
[2015]). Dropping the forecasts on returns 
improves the instability issues; however, it 
does not prevent them, because quadratic 
programming methods require the inversion 
of a positive-definite covariance matrix (all 
eigenvalues must be positive). This inversion 
is prone to large errors when the covariance 
matrix is numerically ill-conditioned—that 
is, it has a high condition number (Bailey and 
López de Prado [2012]).

MARKOWITZ’S CURSE

The condition number of a covari-
ance, correlation (or normal, thus diago-
nalizable) matrix is the absolute value of 
the ratio between its maximal and minimal 
(by moduli) eigenvalues. Exhibit 1 plots the 
sorted eigenvalues of several correlation 
matrices, where the condition number is 
the ratio between the f irst and last values 
of each line. This number is lowest for a 
diagonal correlation matrix, which is its 
own inverse. As we add correlated (mul-
ticol linear) investments, the condition 
number grows. At some point, the condi-
tion number is so high that numerical errors 
make the inverse matrix too unstable: A 
small change on any entry will lead to a 
very different inverse. This is Markowitz’s 

IT IS
 IL

LEGAL TO R
EPRODUCE THIS A

RTIC
LE IN

 A
NY FORMAT



60      Building Diversified Portfolios that Outperform Out of Sample	S ummer 2016

curse: The more correlated the investments, the greater 
the need for diversif ication—and yet the more likely 
we will receive unstable solutions. The benef its of 
diversif ication often are more than offset by estima-
tion errors.

Increasing the size of the covariance matrix will 
only make matters worse, because each covariance 
coefficient is estimated with fewer degrees of freedom. 
In general, we need at least ( 1)1

2 N N +  independent and 
identically distributed (IID) observations to estimate 
a covariance matrix of size N that is not singular. For 
example, estimating an invertible covariance matrix 
of size 50 requires at the very least f ive years of daily 
IID data. As most investors know, correlation struc-
tures do not remain invariant over such long periods 
by any reasonable conf idence level. The severity of 
these challenges is epitomized by the fact that even 
naïve (equally weighted) portfolios have been shown 
to beat mean–variance and risk-based optimization out 
of sample (De Miguel, Garlappi, and Uppal [2009]).

FROM GEOMETRIC TO HIERARCHICAL 
RELATIONSHIPS

These instability concerns have received substan-
tial attention in recent years, which has been carefully 
documented by Kolm, Tutuncu, and Fabozzi [2010]. 
Most alternatives attempt to achieve robustness by incor-
porating additional constraints (Clarke, De Silva, and 
Thorley [2002])—introducing Bayesian priors (Black and 
Litterman[1992]) or improving the numerical stability of 
the covariance matrix’s inverse (Ledoit and Wolf [2003]).

Although all the methods discussed so far were pub-
lished in recent years, they are derived from (very) clas-
sical areas of mathematics: geometry, linear algebra, and 
calculus. A correlation matrix is a linear algebra object 
that measures the cosines of the angles between any two 
vectors in the vector space formed by the returns series (see 
Calkin and López de Prado [2014a, 2014b]). One reason 
for the instability of quadratic optimizers is that the vector 
space is modelled as a complete (fully connected) graph, 

E x h i b i t  1
Visualization of Markowitz’s Curse

Notes: A diagonal correlation matrix has the lowest condition number. As we add correlated investments, the maximum eigenvalue is greater and the min-
imum eigenvalue is lower. The condition number rises quickly, leading to unstable inverse correlation matrices. At some point, the benefits of diversification 
are more than offset by estimation errors.
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in which every node is a potential candidate 
to substitute for another. In algorithmic terms, 
inverting the matrix means evaluating the partial 
correlations across the complete graph. The top 
figure of Exhibit 2 visualizes the relationships 
implied by a covariance matrix of 50x50—that 
is, 50 nodes and 1225 edges. Small estimation 
errors are magnified, leading to incorrect solu-
tions. Intuitively, it would be desirable to drop 
unnecessary edges.

Let’s consider for a moment the prac-
tical implications of such topological struc-
ture. Suppose that an investor wishes to build 
a diversif ied portfolio of securities, including 
hundreds of stocks, bonds, hedge funds, real 
estate, private placements, etc. Some invest-
ments seem to be closer substitutes of one 
another, and other investments seem to be 
complementary to one another. For example, 
stocks could be grouped in terms of liquidity, 
size, industry, and region, in which stocks 
within a given group compete for allocations. 
In determining the allocation to a large pub-
licly traded U.S. f inancial stock such as J.P. 
Morgan, we will consider adding or reducing 
the allocation to another large publicly traded 
U.S. bank such as Goldman Sachs, rather than 
a small community bank in Switzerland or a 
real estate holding in the Caribbean. And yet, 
in a correlation matrix, all investments are 
potential substitutes to each other; in other 
words, correlation matrices lack the notion 
of hierarchy.

The lack of hierarchical structure in a cor-
relation matrix allows weights to vary freely in 
unintended ways, which is a root cause of CLA’s 
instability. The bottom figure of Exhibit 2 visu-
alizes a hierarchical structure known as a tree. A 
tree structure introduces two desirable features: 
1) It has only N − 1 edges to connect N nodes, 
so the weights only rebalance among peers at 
various hierarchical levels; and 2) the weights 
are distributed top down, consistent with the 
way many asset managers build their portfolios 
(e.g., from asset class to sectors to individual 
securities). For these reasons, hierarchical struc-
tures are designed to give not only stable but 
also intuitive results.

E x h i b i t  2
The Complete-Graph (top) and the Tree-Graph (bottom) 
Structures

Notes: Correlation matrices can be represented as complete graphs, which lack the notion 
of hierarchy: Each investment is substitutable with another. In contrast, tree structures 
incorporate hierarchical relationships.
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THE ALGORITHM

In this article, we study a new portfolio construc-
tion method that addresses CLA’s pitfalls using modern 
mathematics: graph theory and machine learning. 
This Hierarchical Risk Parity (HRP) method uses 
the information contained in the covariance matrix 
without requiring its inversion or positive definitive-
ness. In fact, HRP can compute a portfolio based on 
a singular covariance matrix—an impossible feat for 
quadratic optimizers. The algorithm operates in three 
stages:

1.	� Tree clustering: This stage combines investments into 
a hierarchical structure of clusters, so that alloca-
tions can f low downstream through a tree graph. 
In practical terms, think how MSCI classifies stocks 
at multiple levels (10 sectors, 24 industry groups, 
67 industries, 156 subindustries) using a combi-
nation of quantitative and qualitative heuristics. 

Tree clustering achieves the same objective in a 
mathematically rigorous way.

2.	Quasi-diagonalization: This stage reorganizes the 
rows and columns of the covariance matrix, so that 
the largest values lie along the diagonal. This quasi-
diagonalization of the covariance matrix (without 
requiring a change of basis) renders a useful prop-
erty: Similar investments are placed together, and 
dissimilar investments are placed far apart (see 
Exhibits 4 and 5 for an example).

3.	Recursive bisection: The inverse-variance allocation 
is optimal for a diagonal covariance matrix. We 
can take advantage of this fact by allocating funds 
top down through the tree structure, in which 
riskier clusters are given less funding.

The interested reader can find technical details and 
code in the online supplementary materials available at 
http://ssrn.com/abstract=2708678.

E x h i b i t  3
Heatmap of Original Covariance Matrix

Notes: This correlation matrix was computed on random series X = {X
i
}

i=1,…,10
 and drawn as follows. First, we drew five random vectors from a standard 

normal distribution, {X
j
 = z}

j=1,…,5
. Second, we drew five random integer numbers from a uniform distribution, with replacement,  = {

k
}

k=1,…,5
. Third, 

we computed , 1,5
1
4X X z kk k

= + ∀ = …, 5+ ϑ . This forced the last five columns to be partially correlated to some of the first five series.
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(full investment). Incidentally, the condition number for 
the covariance matrix in this example is only 150.9324, 
which is not particularly high and, therefore, not unfa-
vorable to CLA.

From the allocations in Exhibit 6, we can appre-
ciate a few stylized features: First, CLA concentrates 
92.66% of the allocation on the top f ive holdings, 
whereas HRP concentrates only 62.57%. Second, CLA 
assigns zero weight to three investments (without the 0 ≤ 
w

i
 constraint, the allocation would have been negative). 

Third, HRP seems to find a compromise between CLA’s 
concentrated solution and traditional risk parity’s IVP 
allocation. The reader can use the code in Appendix A.3 
of the online supplementary materials to verify that these 
findings generally hold for alternative random covari-
ance matrices.

What drives CLA’s extreme concentration is its 
goal of minimizing the portfolio’s risk—and yet both 
portfolios have a very similar standard deviation (σ

HRP
 

= 0.4640, σ
CLA

 = 0.4486). CLA discarded half of the 
investment universe in favor of a minor risk reduction. 
But the reality, of course, is that CLA’s apparent diversi-

A NUMERICAL EXAMPLE

We begin by simulating a matrix of observations 
X, of order (10000x10). The correlation matrix is visu-
alized in Exhibit 3 as a heatmap. Exhibit 4 displays the 
dendogram of the resulting clusters (stage 1). Exhibit 5 
shows the same correlation matrix, reorganized in blocks 
according to the identified clusters (stage 2). The online 
supplementary materials provide the code used to gen-
erate this numerical example.

Using this random data, we compute HRP’s allo-
cations (stage 3), and compare them to the allocations 
from two competing methodologies: 1) quadratic opti-
mization, as represented by CLA’s minimum-variance 
portfolio (the only portfolio of the efficient frontier that 
does not depend on returns’ means); and 2) traditional 
risk parity, exemplified by the Inverse-Variance Port-
folio (IVP). (See Bailey and López de Prado [2013] for a 
comprehensive implementation of CLA, and Appendix 
A.2 of the online supplementary materials for a deri-
vation of IVP.) We apply the standard constraints: 
0 1wi≤ ≤  (non-negativity), ∀i = 1,…,N, and 11 wi

N
i∑ ==  

E x h i b i t  4
Dendogram of Cluster Formation

Notes: The clustering procedure has correctly identified that series 9 and 10 were perturbations of series 2, and hence (9,2,10) are clustered together.  
Similarly, 7 is a perturbation of 1, 6 is a perturbation of 3, and 8 is a perturbation of 5. The only original item that was not perturbated is 4, and that is 
the one item for which the clustering algorithm found no similarity.
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fication is deceptive: Any distress situation affecting the 
top five allocations will have a much greater negative 
impact on CLA’s portfolio than on HRP’s.

OUT-OF-SAMPLE MONTE CARLO 
SIMULATIONS

In our numerical example, CLA’s portfolio has 
lower risk than HRP’s in-sample portfolio. However, the 
portfolio with minimum variance in sample is not neces-
sarily the one with minimum variance out of sample. It 
would be all too easy for us to pick a particular historical 
dataset in which HRP outperforms CLA and IVP (for 
a discussion on overfitting and selection bias, see Bailey 
and López de Prado [2014]). Instead, in this section we 
evaluate, via Monte Carlo, the performance out of sample 
of HRP against CLA’s minimum-variance and traditional 
risk parity’s IVP allocations. This will also help us under-
stand what features make a method preferable to the rest, 
regardless of anecdotal counter-examples.

E x h i b i t  5
Clustered Covariance Matrix

Notes: Stage 2 quasi-diagonalizes the correlation matrix, in the sense that the largest values lie along the diagonal. However, unlike principal component 
analysis (PCA) or similar procedures, HRP does not require a change of basis. HRP solves the allocation problem robustly, while working with the original 
investments.

E x h i b i t  6
A Comparison of Three Allocations

Notes: This outcome is characteristic of the three methods studied: CLA 
concentrates weights on a few investments, hence becoming exposed to 
idiosyncratic shocks. IVP spreads weights evenly through all investments 
while ignoring the correlation structure, which makes it vulnerable to 
systemic shocks. HRP finds a compromise between diversifying across all 
investments and diversifying across clusters, which makes it more resilient 
against both types of shocks.
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First, we generate 10 series of random Gaussian 
returns (520 observations, equivalent to two years of 
daily history), with 0 mean and an arbitrary standard 
deviation of 10%. Real prices exhibit frequent jumps 
(Merton [1976]) and returns are not cross-sectionally 
independent, so we must add random shocks and a 
random correlation structure to our generated data. 
Second, we compute HRP, CLA, and IVP portfolios by 
looking back at 260 observations (a year of daily history). 
These portfolios are re-estimated and rebalanced every 
22 observations (equivalent to a monthly frequency). 
Third, we compute the out-of-sample returns associated 
with those three portfolios. This procedure is repeated 
10,000 times.

All mean portfolio returns out of sample are  
essentially zero, as expected. The critical difference 
comes from the variance of the out-of-sample port-
folio returns: 0.1157, 0.0928, and2 2 2

CLA IVP HRPσ = σ = σ =  
0.0671. Although CLA’s goal is to deliver the lowest vari-
ance (that is, the objective of its optimization program), 
its performance happens to exhibit the highest variance 
out of sample, and a 72.47% greater variance than HRP’s. 

E x h i b i t  7

Notes: Between the first and second rebalancing, one investment receives an idiosyncratic shock, which increases its variance. IVP’s response is to reduce the 
allocation to that investment and spread that former exposure across all other investments. Between the fifth and sixth rebalancing, two investments are affected 
by a common shock; IVP’s response is the same. As a result, allocations among the seven unaffected investments grow over time, regardless of their correlation.

In other words, HRP would improve the out-of-sample 
Sharpe ratio of a CLA strategy by about 31.3%, a rather 
significant boost. Assuming that the covariance matrix 
is diagonal brings some stability to the IVP; however, its 
variance is still 38.24% greater than HRP’s. This vari-
ance reduction out of sample is critically important to risk 
parity investors, given their use of substantial leverage. 
See Bailey et al. [2014] for a broader discussion of in-
sample versus out-of-sample performance.

The mathematical proof for HRP’s outperformance 
over Markowitz’s CLA and traditional risk parity’s IVP is 
somewhat involved and beyond the scope of this intro-
ductory article. Intuitively, we can understand the above 
empirical results as follows: Shocks affecting a specific 
investment penalize CLA’s concentration. Shocks involving 
several correlated investments penalize IVP’s ignorance of 
the correlation structure. HRP provides better protection 
against both common and idiosyncratic shocks by finding 
a compromise between diversification across all invest-
ments and diversification across clusters of investments at 
multiple hierarchical levels. Exhibit 7 plots the time series 
of allocations for the first of the 10,000 runs.
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E x h i b i t  7  (Continued)

Note: HRP’s response to the idiosyncratic shock is to reduce the allocation to the affected investment, and use that reduced amount to increase the allocation 
to a correlated investment that was unaffected. As a response to the common shock, HRP reduces allocation to affected investments and increases allocation 
to uncorrelated ones (with lower variances).

Note: CLA allocations respond erratically to idiosyncratic and common shocks. If we had taken into account rebalancing costs, CLA’s performance would 
have been very negative.

IT IS
 IL

LEGAL TO R
EPRODUCE THIS A

RTIC
LE IN

 A
NY FORMAT



The Journal of Portfolio Management      67Summer 2016

Appendix A.4 of the online supplemen-
tary materials provides the python code that 
implements the above study. The reader can 
experiment with different parameter con-
figurations and reach similar conclusions. In 
particular, HRP’s out-of-sample outperfor-
mance becomes even more substantial for larger 
investment universes, or when more shocks 
are added, or a stronger correlation structure 
is considered, or rebalancing costs are taken 
into account.

FURTHER RESEARCH

The methodology introduced in this article 
is f lexible, scalable, and admits multiple varia-
tions of the same ideas. Using the code provided 
in the online supplementary materials, readers 
can research and evaluate what HRP configura-
tions work best for their particular problem. For 
example, at stage 1, one can apply alternative 
definitions of d

i,j
, ,
di j, and ,

di u, or clustering algo-
rithms; at stage 3, one can use different func-
tions for 

wm and α, or alternative allocation 
constraints. Instead of carrying out a recursive 
bisection, stage 3 could also split allocations top 
down using the clusters from stage 1.

In the future, we will show that it is rela-
tively straightforward to incorporate forecasted 
returns and Black–Litterman-style views to 
this hierarchical approach. In fact, the inquisi-
tive reader may have realized that, at its core, 
HRP is essentially a robust procedure to avoid 
matrix inversions, and the same ideas under-
lying HRP can be used to replace many econo-
metric regression methods, notorious for their 
unstable outputs (such as vectorautoregressive 
[VAR] or a vector error correction model 
[VECM]). Exhibit 8 displays a large correla-
tion matrix of fixed income securities before 
and after clustering, with over 2.1 million 
entries. Traditional optimization or econo-
metric methods fail to recognize the hierar-
chical structure of financial big data—where 
the numerical instabilities defeat the benefits 
of the analysis, resulting in unreliable and det-
rimental outcomes.

E x h i b i t  8
Correlation Matrix Before and After Clustering

Notes: The methodology described in this article can be applied to problems beyond  
optimization. For example, a PCA analysis of a large fixed income universe suffers the 
same drawbacks we described for CLA. Small-data techniques developed decades and 
centuries ago ( factor models, regression analysis, econometrics) fail to recognize the hierar-
chical nature of financial big data.
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CONCLUSIONS

Although mathematically correct, quadratic opti-
mizers in general, and Markowitz’s CLA in particular, 
are known to deliver generally unreliable solutions due to 
their instability, concentration, and underperformance. 
The root cause of these issues is that quadratic optimizers 
require the inversion of a covariance matrix. Markow-
itz’s curse is that the more correlated investments are, the 
greater is the need for a diversified portfolio—and yet 
the greater are that portfolio’s estimation errors.

In this article, we have exposed a major source 
of quadratic optimizers’ instability: a matrix of size N 
is associated with a complete graph with ( 1)1

2 N N −  
edges. With so many edges connecting the nodes of 
the graph, weights are allowed to rebalance with com-
plete freedom. This lack of hierarchical structure means 
that small estimation errors will lead to entirely dif-
ferent solutions. HRP replaces the covariance structure 
with a tree structure, which accomplishes three goals: 
a) unlike traditional risk parity methods, it fully utilizes 
the information contained in the covariance matrix, b) it 
recovers the stability of the weights, and c) the solution 
is intuitive by construction. The algorithm converges in 
deterministic logarithmic time.

HRP is robust, visual, and f lexible, allowing the user 
to introduce constraints or manipulate the tree structure 
without compromising the algorithm’s search. These prop-
erties are derived from the fact that HRP does not require 
covariance invertibility. Indeed, HRP can compute a port-
folio on an ill-degenerated or even a singular covariance 
matrix—an impossible feat for quadratic optimizers.

This article focuses on a portfolio construction 
application, but the reader will find other practical uses 
for making decisions under uncertainty, particularly 
in the presence of a nearly-singular covariance matrix: 
capital allocation to portfolio managers, allocations 
across algorithmic strategies, bagging and boosting of 
machine-learning signals, forecasts from random for-
ests, replacement to unstable econometric models (VAR, 
VECM), etc.

Of course, quadratic optimizers like CLA produce 
the minimum-variance portfolio in sample (that is, its 
objective function). Monte Carlo experiments show 
that HRP delivers lower out-of-sample variance than 
CLA or traditional risk parity methods (IVP). Since 
Bridgewater pioneered risk parity in the 1990s, some 
of the largest asset managers have launched funds that 

follow this approach for combined assets in excess of 
$500 billion. Given their extensive use of leverage, these 
funds should benefit from adopting a more stable risk 
parity allocation method—thus achieving superior risk-
adjusted returns and lower rebalancing costs.

ENDNOTE

The statements made in this communication are strictly 
those of the author and do not represent the views of Guggen-
heim Partners or its affiliates. No investment advice or partic-
ular course of action is recommended. All rights reserved.
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