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1 Introduction 

 

Many of the theoretical models we now commonly work with are designed to explain 

or replicate cyclical features of actual data.  Indeed, understanding macroeconomic 

fluctuations entails the study of an economy’s output relative to its trend or potential output, 

where the difference of the two is referred to as the output gap.  Starting with Lucas (1977), 

macroeconomists have obtained cyclical information by eliminating the permanent 

component (the ‘trend’) of the data.  The latter is typically thought to be unrelated with those 

features that the theoretical models are interested in explaining, including the cycle.  

This throws up a quandary as most economic time series display trends or marked 

growth patterns that make it difficult to discern what the cyclical properties of the data are.  

Added to this is the fact that dynamic economic theory is silent on both the type of trend a 

series may display and the exact relationship between the trend and the cyclical component.  

As such, theoretical models have been proposed where the long-run component may be either 

stochastic or deterministic and may or may not be related to the cyclical component.   

Another problem arises in practice since trends and cycles are usually unobservable, 

meaning that assumptions are needed to split observable series into these two components.  

Different assumptions give rise to different possible models, and it is frequently extremely 

difficult to formally choose among alternatives with a finite set of data.  This also means that 

it will be impossible to use formal statistical criteria to assess the optimality of one or more of 

the many approaches to extracting cyclical information.  

This practical guide is all about the removal of trends, the isolation of cycles and 

therefore the process of obtaining cyclical information from actual data.  It should be obvious 

that the isolation of cycles is closely related to the removal of trends.  As such, for a time 

series exhibiting cyclical deviations about a trend, the identification of the trend 

automatically serves to identify the cyclical deviations as well.  But it may be the case that 

even after the separation of trend from cycle is accomplished, additional steps may be 

necessary to isolate cycles according to the frequency of their recurrence.  For example, 

patterns of fluctuations in the data can recur at business-cycle frequencies, generally thought 

to lie between six and 24-32 quarters, as well as at seasonal frequencies.
2
  In other words, 

unless additional steps are taken, the removal of a trend will leave seasonal fluctuations 

intact, and their presence can have a detrimental impact on inferences involving business-

cycle behaviour.
3
  

 

2 The output gap 

 

Potential output – and hence the output gap – is arguably the most important 

unobservable variable that central banks use regularly.  Not only does the growth rate of 

potential output shed light on the prospects for the domestic economy’s economic growth, but 

the output gap is a key measure of inflationary pressures.  In fact, Stock and Watson (1999b) 

argue that, if we could only choose one variable to best represent the state of the economy, 

                                                           
2
 Many of the business cycles reported by either the National Bureau of Economic Research (NBER) in the US 

or the Centre for Economic Policy Research (CEPR) in Europe have a periodicity which falls, at least 

approximately, in this range.  In fact, the taxonomy employed by the NBER to officially date business cycles in 

the US describes fluctuations with periodicity between 2 and 6 years as such.  In addition, conventional wisdom 

has it that no complete cycle (in the US) has exceeded 8 years in length.  This makes variability at frequencies 

corresponding to cycles of 6 to 24-32 quarters of crucial economic importance.  
3
 This is the reason why the literature prefers to work with seasonally-adjusted data. 
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that variable would be GDP.  They go on to claim that ‘…fluctuations in aggregate output are 

at the core of the business cycle so that the cyclical component of real GDP is a useful proxy 

for the overall business cycle… (p. 15)’. 

Quite generally, the output gap, yt
g
, is defined as the deviation of actual output, yt, from 

its potential level, yt
p
: 

 

 yt = yt
p
 + yt

g
 (1) 

 

The literature has proposed different definitions of potential output, including the 

maximum output that can be produced under full employment (Okun (1962)), the maximum 

amount of output that can be produced without causing inflationary pressures and the 

equilibrium level of output that would prevail in DSGE models when all prices are flexible 

(Congdon (2008)).   

The different definitions of yt
p
 demand different methods of estimating yt

g
., and any one 

method of estimating potential output depends on numerous assumptions that are subject to 

uncertainty and error.  Still, the estimated output gap measure should capture a number of 

stylised facts in line with traditional descriptions of economic activity in the country.  

Moreover, for any economy, a good output gap measure should have good end-point 

properties (to be defined below) and be stable, that is, it should adequately characterise the 

current state of the economy.  Furthermore, the assessment should not change substantially as 

new data becomes available.  

In cases where one or more sectors dominate the economy, such as natural resources 

(mining, agriculture and fishing), additional constraints apply.  In economies dependent on 

primary commodities, variations in commodity production are usually outside policymakers’ 

control and are best thought of as structural changes that affect potential GDP.  In this case, it 

is worth measuring the output gap for overall GDP and GDP with the dominant sectors 

excluded.  As movements in sectoral GDP should appropriately be captured in the trend and 

not the cyclical component, a good output gap measure should yield similar results for both 

overall GDP and the sectoral measures of GDP.
4
  In other words, a proper output gap 

measure should be similar for the different data series since the output gap should exclude 

structural movements.  Indeed, this can be used as an additional criterion in evaluating output 

gap measures for the economy under investigation.  

For reasons outlined further below, the empirical and policy-oriented literature in 

emerging market and low-income economies either resorts to the Hodrick-Prescott filter or a 

battery of output gap measures for robustness.  At the same time, Billmeier (2004) concludes 

that an output gap rarely provides useful information on domestic inflationary pressures for 

inflation forecasting and that there is no single best output gap measure across (five 

European) countries.  This finding of no model being optimal holds more generally and there 

is no general consensus on which method is best.  Even the passage of time and increasing 

econometric sophistication is no help in this, as Chiu and Wieladek (2012) document that the 

accuracy of real-time estimates of the output gap produced by the OECD for its member 

countries has not improved over time.  

                                                           
4
 Magud and Medina (2011) analyse the differences in potential output in the natural-resource and non-natural-

resource sectors in Chile and the non-linear contributions to potential growth of the different sectors.  

http://cowles.econ.yale.edu/P/cp/p01b/p0190.pdf
http://www.imf.org/external/pubs/ft/wp/2004/wp04146.pdf
http://www.bankofengland.co.uk/research/Documents/externalmpcpapers/extmpcpaper0036.pdf
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The aim of this practical guide is to highlight potential output and output gap estimates 

for Sri Lanka using a variety of different techniques.
5
   

We assume that an economic time series yt, where lowercase letters denote the natural 

logarithm of the series in levels, can be conveniently represented by the following trend-cycle 

decomposition: 

 

 yt = τt + ct (2) 

 

where τt represents the trend, which can be either deterministic or stochastic; ct represents a 

possibly stochastic cyclical component, εt represents an irregular (error) component and τt and 

ct are independent (‘orthogonal’).  Even when there is no major structural break in the 

economy, estimation of the output gap involves some margin of error due to measurement 

issues and difficulty in identifying temporary demand factors, meaning that we occasionally 

add an irregular (error) component, εt, to (1): 

 

 yt = τt + ct + εt (3) 

 

3 The data 

 

The underlying data throughout this practical guide are the natural logarithm of 

(seasonally-adjusted) annual real GDP for Sri Lanka over the period from 1959 to 2012, a 

graph of which is shown in Figure 1.  For parts of the illustrations, the data are augmented by 

real GDP forecasts over the period from 2013 to 2018, which were taken from the IMF’s 

October 2013 World Economic Outlook database.  

 

Figure 1: Log of real (seasonally-adjusted) GDP in 2000 prices for Sri Lanka, 1959-2012 
 

 
 

                                                           
5
 The IMF (2010) suggests that if ‘…different approaches point to divergent assessments, a risk management 

approach could be given greater emphasis, with attention paid not just to the central forecast, but also to the 

error band around it (p. 4)’.  
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Working with annual data has advantages as well as disadvantages.  To begin with, we 

should be aware of the fact that annual data may obscure a substantial amount of the cyclical 

variation in economic activity.  On the other hand, annual observations minimise the impact 

of data revisions.   

 

4 Extracting a cycle from macroeconomic time series 

 

Canova (2007) differentiates between three different approaches to cycle extraction: 

statistical methods, economic methods and hybrid methods.  The first approach includes 

procedures that have a statistical or a probabilistic justification.  They generally use time-

series assumptions on the observables or the trend to measure the cycle.  The second 

approach relies on economic theory to extract the cycle.  As such, the cycles we obtain using 

these methods have relevance only to the extent that the theoretical model used is a valid 

approximation to the true underlying data-generating process (DGP).  The final approach 

uses procedures that are statistical in nature, but that have an economic justification of some 

sort.  

The rest of the practical guide will be concerned with cycle extraction using selected 

methods from all three approaches. 

 

4.1 An interlude on detrending versus filtering 

 

Before we look at the different approaches to cycle extraction in more detail, it is worth 

highlighting a subtle, yet important, difference between detrending and filtering.  The former 

involves eliminating the trend from the series, while the latter extracts the cyclical component 

of the series.  In other words, detrending is an intermediate (or indirect) step in cycle 

extraction.  As such, they are operationally different.  

 

4.1.1 Detrending 

 

The sustained upward trend in real GDP in Figure 1 might be captured by a simple 

linear trend.  In fact, the trend was traditionally taken to be deterministic and the cyclical 

component was extracted as the residual of a regression of the series under observation, yt, on 

a function of time.  Since the trend is deterministic, the growth rate of yt needs to be time-

invariant, although the latter problem can be partially eliminated if we allow for structural 

breaks at pre-selected points.  The latter gives rise to a segmented trend specification.  

But the deterministic trend assumption is controversial, since it implies a deterministic 

long-run growth rate of the real economy.  Adherents to the real business cycle school argue 

that technological advancements have permanent effects on the trend displayed by the 

macroeconomy.  Since these technological innovations are thought to be stochastic, the trend 

inherent in real GDP should reflect this underlying randomness.  

 

4.1.2 Filtering 

 

The problem with mechanical detrending is that the trend may not be deterministic, as 

we have assumed above.   
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But in addition to detrending, time series can also be filtered to extract or eliminate 

special features or components.
6
  In general, a filter is a function of a time series that 

transforms it into another series.  In practice many filters are linear functions.  As such, linear 

filters take a possibly two-sided moving average of an original set of observations, yt = (y1, y2, 

… , yT) to create a new time series, xt: 

 

 



l

ki

itit yωx  (4) 

 

where the filter is defined by the two positive integers k and l and the weights (ω-k, … , ω0, 

… , ωl).  The weights ωi are frequently chosen to add up to one to ensure that the level of the 

series is maintained.  The many filters employed in the empirical literature differ in their 

choice of k and l and their particular specification of the ωi’s.  The ideal filter has a two-sided 

infinite moving-average representation such that i goes from -∞ (k) to ∞ (l) and where 

symmetry is imposed (ωi = ω-i) to avoid the filter inducing a phase shift.  Such an ideal filter 

is clearly not feasible with a limited set of data and we will return to this point below. 

 

4.2 Statistical decompositions 

 

The statistical approach relies solely on output data and seeks to decompose output into 

potential output and a residual series, the output gap.  This can be done either by simple 

detrending or by applying filtering techniques on the output data. 

 

4.2.1 Removing trends (‘detrending’) 

 

In the past, the representation, and thus extraction, of the cyclical component was 

handled in a very simple way.  The trend was represented by a deterministic polynomial 

function of time, assumed to be independent of the cyclical component, and extracted using 

simple regression methods.
7
 

As a first statistical method to measure the output gap, therefore, we estimate the output 

gap as the deviations of the output series from a simple linear trend.  This is the simplest (and 

oldest) approach.  It assumes that the trend and cycle of the series are uncorrelated and that τt 

is a deterministic process that can be approximated by (low-order) polynomial functions of 

time.   

The appropriate way to transform a model in linear detrending is to estimate the 

following regression equation: 

 

 yt = τt + ct 

 

 = β0 + β1t + εt (5) 

 

                                                           
6
 A trend-cycle decomposition would be an example of extraction, while seasonal adjustment would be an 

example of elimination.  
7
 If there is clear evidence of a structural break in the series, we need to extend the model to include a segmented 

linear trend.  
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Assuming that the series consists of trend and cycle only, subtracting the estimated 

values of yt from the observed series yields estimated values of the εt series, which is the 

proxy for deviations from trend, i.e., the cycle.  In other words, τt = β0 + β1t and ct = εt.  

More generally, a time series may have a polynomial trend: 

 

 yt = β0 + β1t + β2t
2
 + β3t

3
 + … + βpt

p
 + εt (6) 

 

where εt is again a stationary process.  In this case, detrending is achieved by regressing yt on 

a polynomial time trend.  The appropriate degree of the polynomial, p, is usually taken to be 

small and can be determined by standard t- and F-tests as well as the use of the information 

criteria like the Akaike information criterion (AIC), the Schwarz (Bayesian) information 

criterion (SBC) and the Hannan-Quinn information criterion (HQ).  Common practice is to 

estimate the regression equation using the largest value of p deemed reasonable and then 

following a general-to-specific testing procedure (some authors specify specific-to-general 

instead, which I would strongly discourage based on the analysis in Lütkepohl (2007)). 

In particular, if the t-statistic for βp is zero, consider a polynomial trend of order (p – 1).  

We continue to pare down the order of the polynomial trend until a non-zero coefficient is 

found.  In addition, we can use F-tests to determine whether group coefficients – βp-i through 

βp – are statistically significant.  The information criteria can be used to (re)confirm the 

appropriate degree of the polynomial.  Remember that we want to minimise these criteria. 

Estimating equation (6) with p = 1, 2, 3 results in the information criteria set out in 

Table 1.   

 

Table 1: Information criteria of various polynomial  

time-trend models for real Sri Lankan GDP, 1959-2012 
 

 p = 1 p = 1, 2 p = 1, 2, 3 p = 1, 3 

Akaike information criterion -3.51743 -4.16319 -4.21437 -4.23615 

Schwarz information criterion -3.44377 -4.0527 -4.06704 -4.12565 

Hannan-Quinn information criterion -3.48902 -4.12058 -4.15755 -4.19353 

 

Amongst the three polynomial models, the model with p = 3 (t, t
2
, t

3
) minimises the 

information criteria.  But we find that the estimated coefficient on @trend^2 in the 

estimation output is not statistically significant (Table 2).  Eliminating @trend^2 from the 

regression equation results in a new model with information criteria given in the final column 

of Table 1.  Of the four models considered, the trend polynomial involving first- and third-

order polynomials only minimises all of the information criteria and will be the one that is 

chosen.  

 

Table 2: Third-order trend polynomial model for real Sri Lankan GDP, 1959-2012 
 

Dependent Variable: LRGDP   

Method: Least Squares   

Sample: 1959 2012   

Included observations: 54   
     

Variable Coefficient Std. Error t-Statistic Prob.   
     

C 5.559006 0.014440 384.9830 0.0000 

@TREND 0.042787 0.002382 17.96517 0.0000 

@TREND^2 -9.21E-05 0.000105 -0.876875 0.3847 
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@TREND^3 2.79E-06 1.30E-06 2.147324 0.0366 
     

R-squared 0.998489     Mean dependent var 6.711816 

Adjusted R-squared 0.998398     S.D. dependent var 0.709364 

S.E. of regression 0.028390     Akaike info criterion -4.214369 

Sum squared resid 0.040300     Schwarz criterion -4.067037 

Log likelihood 117.7880     Hannan-Quinn criter. -4.157549 

F-statistic 11012.95     Durbin-Watson stat 0.434341 

Prob(F-statistic) 0.000000    
     

 

The different output gaps arising from the two models, i.e., the linear trend model and 

the first- and third-order polynomial trend model, are shown in Figure 2.   

 

Figure 2: Output gaps using different polynomial trend functions 
 

 
 

Linear detrending shows much larger positive output gaps at the beginning and the end 

of the sample than the other polynomial trend model.  In particular, note the very large 

positive output gap in 2014, which is especially apparent with linear detrending 

(gap_trend1).
8
  

An equally well-established procedure is first-order differencing, which relies on the 

assumptions that the long-run component of a series is described by a random walk without 

drift, that the cyclical component is stationary and that the two components are uncorrelated.  

In addition, we assume that yt has a unit root which is entirely due to the long-run component 

of the series.  In other words, the non-stationarity (or growth) in economic activity should be 

removed by first-differencing rather than linear detrending, making the trend a random walk 

without drift rather than a straight line.  As a result, yt can be represented as: 

 

 yt = τt + ct 

                                                           
8
 It is difficult to ascertain this with certainty without further analysis, but this may be an illustration of 

Watson’s (2007) remark that low-order polynomials in time yield ‘…unrealistic estimates of estimation errors at 

the end of the sample (p. 144)’.  
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 = yt-1 + εt (7) 

 

and the trend is defined as τt = yt-1 and an estimate of ct is obtained as ct = εt = yt – τt = yt – yt-1 

= Δyt.  These manipulations require no estimation, so I have simply generated the first 

difference of lrgdp, denoted dlrgdp, using either dlrdgp = dlog(rgdp) or 

dlrgdp = d(lrgdp) or dlrgdp = lrgdp – lrgdp(-1).  In addition, I have also 

created a series called lrgdp1, which is the first lag of lrgdp.  The output gaps for linear 

detrending as well as first-differencing are shown in Figure 3.  

 

Figure 3: Output gaps – detrending versus first-differencing 
 

 
 

In Figure 3, the cyclical component has been scaled to have a zero mean.  This is 

achieved by including a drift (constant) term in equation (7) for estimation.  In the random 

walk without drift specification, which is usually followed in the literature, a zero mean for 

the cyclical component will not necessarily be the case.  While the output gap estimates using 

first-differencing (the blue line) have become ‘noisier’, the general movement in the output 

gap mirrors that of the estimates derived from (non-linear) detrending (the red line).  At the 

same time, the blue line does not necessarily visually conform to our prevailing notion of 

(smooth) cyclical fluctuations.   

As we have seen, the goal of approaches to remove trends from macroeconomic time 

series is to transform the data into mean-zero covariance-stationary stochastic processes.  The 

definition of covariance stationarity is that a time-series process has a constant mean and 

variance.  Under the assumption of time-invariant second moments, sample averages may be 

used to estimate population averages of these moments as well as functions thereof.  But we 

should keep in mind that trend removal is not sufficient to induce covariance stationary in 

integrated economic time series.  

I note in concluding that there are many examples in the empirical literature of 

ARIMA-based detrending filters, which approximately eliminate the random-walk 

component of the data and whose residuals are taken as an estimate of the cyclical 

components.  For example, Chapter 1 of the influential (but now somewhat dated) textbook 

by Blanchard and Fischer (1989) clearly interprets the residuals of univariate ARIMA 
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processes as the cyclical component.  Another prominent application of such an approach is 

due to Beveridge and Nelson (1981).  

 

4.2.2 The Beveridge-Nelson (BN) decomposition 

 

Nelson and Plosser’s (1982) seminal findings suggest that many economic time series 

contain a unit root and an irregular component.  Having observed a series, but not the 

individual underlying components, is there any way to decompose the series into its 

constituent parts?  

The answer is yes, and the approach that is widely used in this context is due to 

Beveridge and Nelson (1981).  In fact, Beveridge and Nelson (1981) show how to decompose 

any ARIMA(p,1,q) model into the sum of a (pure) random walk plus drift and stationary 

component (i.e., the general trend plus irregular model, yt = τt + εt), and the so-called 

Beveridge-Nelson (BN) decomposition calculates a non-stationary (trend) and stationary 

(cycle) component for an integrated time series.
9
  

The underlying logic of the BN filter is that the permanent value of a series yt, Pt, is 

given by:  

 

 Pt = Et(y∞) (8) 

 

                          = 















1

Δ
j

jttt yyE  (9) 

 

                           = 







 







1

Δ
j

jttt yEy  (10) 

 

such that the transitory component, which is equal to the output gap if yt is seasonally-

adjusted real GDP, is given by yt – Pt =  


 
1
Δ

j jtt yE .  In order to compute the transitory 

component of yt, we need to specify a model for Δyt.  When Δyt is an AR(p), say, 

 


 1
Δ

j jtt yE  will be a linear function of Δyt, Δyt-1, … , Δyt-p+1.  In other words, the BN 

measure of the output gap is given by the negative of an average growth rate.  This means 

that one will see a negative relation between the output gap and growth, such that a 

regression of inflation against output growth should result in a negative coefficient on the 

latter.  

Following on from above, the BN decomposition is implemented by postulating an 

unrestricted ARIMA(p,1,q) model for yt.  This is based on the empirical observation that most 

time series can be approximated by an ARIMA(p,1,q) model.  The BN decomposition thus 

focuses on the derivation of the trend component of the ARIMA(p,1,q) model.  Once we have 

identified the appropriate ARMA(p,q) model for Δyt, or, equivalently, the appropriate 

                                                           
9
 Morley (2011) points out that there are two ways to interpret the results from this decomposition: in one 

(emphasised by Watson (1986) and Morley et al. (2003)), the BN trend corresponds to an estimate of the 

unobserved permanent component; in the other (emphasised in the original paper by Beveridge and Nelson 

(1981)), the BN trend provides a definition of the observable permanent component.  Morley concludes that the 

BN decomposition provides estimates of trend and cycle, making it a highly general and practical method for 

trend/cycle decomposition.  
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ARIMA(p,1,q) model for yt, straightforward calculations result in the permanent component 

of the decomposition, also referred to as the BN trend.  Given that the trend is postulated to 

be a pure random walk, the BN decomposition holds less relevance to applied economists 

who do not believe that the trend is a pure random walk.
10

  The cyclical component is then 

calculated as the actual data series in levels minus the series for the BN trend (Zivot (2005)). 

For example, using real US GDP data over the period from 1947 Q2 to 1985 Q4, Stock 

and Watson (1988) fitted the following ARMA(0,1) model to the growth rate of the natural 

log of real GDP: 

 

 Δyt = 0.008 + εt + 0.3εt-1     εt ~ iid(0, σ2)     σ̂  = 0.0106 (11) 

 

while Morley et al. (2003) fitted an ARMA(2,2) model to the same data over the period from 

1947 Q1 to 1998 Q2: 

 

 Δyt = 0.816 + 1.342Δyt-1 – 0.706Δyt-2 + εt – 1.054εt-1 + 0.519εt-2 (12) 

 

In many cases, we can also derive algebraic results for the shape of the BN trend.  As 

shown in Morley (2002), if Δyt follows the simple AR(1) process: 

 

 Δyt = μ + ϕ(Δyt – μ) + εt (13) 

 

where |ϕ| < 1 and εt ~ iid N(0, σ
2
), then the BN trend and cycle are given by: 

 

 )( μy
φ

φ
yτ ttt 


 Δ

1
 (14) 

 

and: 

 

 )( μy
φ

φ
c tt 


 Δ

1
 (15) 

 

One advantage of the BN decomposition over traditional approaches is that it produces 

a decomposition without any assumptions on either the structure of the components or on 

their correlation.  At the same time, we should note some interesting features of the BN 

decomposition.  To begin with, since the two components are driven by the same shock, trend 

and cycle are perfectly correlated.  Second, since estimates and forecasts are typically 

obtained from ARIMA(p,1,q) models, we need to be aware of the standard identification 

problems associated with ARIMA specifications.  Third, since long-run forecasts of Δyt are 

based on past values of yt only, trend estimates may be very imprecise.
11

  Finally, given the 

definition of innovations in the trend, the variability of the innovations in the trend may be 

                                                           
10

 Note that the canonical decomposition of Hillmer and Tiao (1982) as well as the general permanent-transitory 

decomposition of Quah (1992) make the assumption that the permanent component is an integrated series but 

not a pure random walk.  
11

 Another possible implication is that the ratio of the variability of the cycle to the variability in the trend 

becomes arbitrarily small.   

http://faculty.washington.edu/ezivot/econ584/notes/trendcycle.pdf
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larger than the variability of the innovations in the original series.  We will return to some of 

these points below.  

At the same time, the BN filter is also not without its drawbacks.  One criticism is that 

the output gap estimate resulting from the BN filter is not as smooth as the HP-filtered 

estimate (Park (1996)).  In addition, while the Beveridge and Nelson (1981) decomposition 

provides a straightforward method to decompose any ARIMA(p,1,q) process into a 

temporary and permanent component, it is important to note that the BN decomposition is 

not unique.  This is because the decomposition forces the innovation in the trend and 

stationary components to be perfectly correlated.  This is important as economic theory does 

not always prescribe such a relationship between the two innovations.  In fact, without a 

priori knowledge of the relationship between innovations in the trend and the stationary 

components, the decomposition of a series into a permanent and transitory component is not 

unique.  What if we incorrectly used a BN decomposition to obtain the temporary and 

permanent components?  Well, to begin with, there is no way for us to determine that the 

assumption of perfectly correlated innovations is incorrect.  In other words, there is no way to 

identify the ‘true’ model – i.e., a correlation between the two innovations lying somewhere 

between -1 and 1 – using sample data.  We will come across an equivalent representation of 

the BN decomposition using the state-space approach in section 4.2.3 that does away with 

this shortcoming.
12

 

Some of these criticisms notwithstanding, we can use EView’s ARIMASel add-in for 

performing an ARIMA selection routine, where the order of differencing is chosen via unit 

root tests and the AR (seasonal AR) and MA (seasonal MA) terms are chosen according to an 

information criterion.  This EViews add-in is available from: 

 

http://www.eviews.com/cgi/ai_download.cgi?ID=ARIMASel.aipz 

 

The add-in is run from a series object, which means that we will have to double-

click on lrgdp to open it.  This series is then used as the dependent variable for the ARIMA 

selection process.  The add-in dialog is opened by going to Proc/Add-ins/Automatic 

ARIMA selection.  The selection routine requires us to specify a list of independent 

variables (other than the ARMA terms), a maximum order for both the AR(p) and the MA(q) 

terms, a maximum order of differencing for the unit-root test and which information criterion 

you would like to use for the selection process (Akaike, Schwarz or Hannan-Quinn).  We set 

the maximum order for both the AR and the MA terms to 3 and the maximum difference to 1, 

as we think that the log of real GDP is at most I(1).  The results of the ARIMA selection 

routine using the Schwarz information criterion are shown in Table 3.
13

  

 

 

 

 

                                                           
12

 Jumping ahead, Watson (1986) estimates the trend and irregular terms as unobserved components, thereby 

avoiding the estimation of a constrained ARIMA model.  The constraints come from the fact that the assumption 

that the two innovations are uncorrelated places restrictions on the autoregressive and moving average 

coefficients of Δyt.   
13

 The mechanics of the automatic ARIMA selection routine are as follows.  The procedure first detects the level 

of differencing to apply to the original data series by performing a KPSS unit root test on each subsequent level 

of differencing until the unit root test is insignificant (at the 5 per cent level).  Following the selection of the 

order of differencing, the ARMA(p.q) terms are selected by comparing the information criteria.   

http://www.eviews.com/cgi/ai_download.cgi?ID=ARIMASel.aipz


 

ole.rummel@bankofengland.co.uk 14  ©Bank of England 

 

The Bank of England does not accept any liability for misleading or  

inaccurate information or omissions in the information provided. 

 

Table 3: Information criteria from the automatic ARIMA selection process 
 

AR /  MA  0.000000  1.000000  2.000000  3.000000 

 0.000000 -5.018011 -5.005336 -4.947904 -4.871889 

 1.000000 -5.016087 -4.940770 -5.001356 -4.852014 

 2.000000 -4.945772 -5.024003 -4.950616 -4.906158 

 3.000000 -4.858890 -4.926010 -4.897808 -4.784285 

 

The selected model – which in this case is an ARMA(2,1) for the first-difference of 

lrgdp – appears in red in Table 3.  Note that the preferred model once again minimises the 

information criterion.  The Akaike information criterion also selects the ARMA(2,1) model, 

while the Hannan-Quinn information criterion selects an ARMA(1,2) model.  This is a 

common occurrence in applied work, as these information criteria frequently indicate 

different lag orders, meaning that the ‘correct’ lag order can depend on the criteria or measure 

we use.  This is typical of these tests and researchers often use the criterion most convenient 

for their needs.   

After selecting the ARIMA(2,1) model for Sri Lankan real GDP growth data, we can 

use EView’s BNDecom add-in to estimate the Beveridge-Nelson decomposition of lrgdp.  

The EViews add-in is available from: 

 

http://www.eviews.com/cgi/ai_download.cgi?ID=bndecom.aipz 

 

We again double-click on the lrgdp series in the workfile window to open it and follow the 

same step as before.  Go to Proc/Add-ins, but this time select Beveridge-Nelson 

Decomposition.  This opens a dialog box.  For the problem at hand, the options should be set 

as shown in the following screenshot: the ARMA specification is for an ARMA(2,1) model 

so we set p = 2 for the AR specification and q = 1 for the MA specification.  The BN 

decomposition automatically assumes that the series under observation is I(1).  We follow 

Beveridge and Nelson (1981) and set s = 100.  I have called the resulting trend output 

bn_trend and the cycle output bn_cycle.  After the decomposition is completed, these 

two new series will appear in the workfile.  

 

http://www.eviews.com/cgi/ai_download.cgi?ID=bndecom.aipz
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Figure 4 shows the output from the BN decomposition (bn_cycle) together with the 

two output gaps obtained from linear detrending.  Note that we lose three observation points 

at the beginning of the sample using the BN decomposition: one on account of first 

differencing and another two because of the two autoregressive terms.  In general, 

bn_cycle is much smaller than the detrended series.  In addition, it is much more volatile 

than the others.  Again, the blue line does not necessarily visually conform to our prevailing 

notion of (smooth) cyclical fluctuations.   

 

Figure 4: Output gap estimates from detrending and the  

Beveridge-Nelson decomposition using an ARIMA(2,1,1) model 
 

 
 

This result is well-known in the literature as determining the most appropriate 

ARIMA(p,1,q) model for real GDP growth to compute the BN decomposition is a difficult 

task (Campbell and Mankiw (1987)).  Typically, model selection procedures favour low-

order ARMA models for growth rates of real economic activity and the resulting BN cycles 
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tend to be noisy and lack business cycle features.  Oh et al. (2008) therefore recommend the 

ARIMA(2,1,2) model to compute the benchmark BN decomposition.
14

  As can be seen from 

Figure X, though, this does not make much a difference in the case of Sri Lankan real GDP.  

 

Figure 5: Output gap estimates from the Beveridge-Nelson decomposition using an 

ARIMA(2,1,1) and an ARIMA(2,1,2) model 
 

 
 

4.2.3 Structural time-series models: the unobserved components (UC) decompositions 

 

More recently, state-space models and Kalman filter techniques have become more 

widely employed in trend-cycle decompositions.  These approaches treat the output gap as a 

latent variable and use the unobserved components (UC) model due to Harvey (1989).
15

   

A basic model for representing a time series, yt, is the additive model, also known as 

the classical decomposition: 

 

 yt = τt + γt + ct + vt + εt (16) 

 

which – in its most general form – models the dependent time-series variable, yt, as consisting 

of a slowly-changing unobserved component, τt (trend), a periodic unobserved component, γt 

(seasonal), a periodically-recurring unobserved component, ct (cycle), an unobserved 

autoregressive component, νt, and an unobserved irregular component, εt (disturbance).  It is, 

of course, the case that not all components need to be included at the same time.  In a 

structural time-series (STS) or unobserved components (UC) model, the right-hand side 

components are modelled explicitly as stochastic processes that have a direct (semi-

economic, at least) interpretation.  As such, components can be deterministic functions of 

time (e.g., polynomials) or stochastic processes.  Note the absence of any ‘economic’ 

variables on the right-hand side of equation (16).  Each component of the UC model given by 

equation (16) is modelled in state-space form and estimated using the Kalman filter. 

For example, the trend component, τt, can be modelled either deterministically as  

yt = μ + εt, with εt ~ iid N(0, σε
2
), or stochastically by a random walk plus noise, giving rise to 

the so-called local level or random walk with noise model:
16

 

                                                           
14

 Note that this model has an equivalent UC representation with an ARMA(2,1) model for ∆yt. 
15

 By latent we understand a variable that can be estimated but not observed.  
16

 The model would be incomplete without a specification for the initial value: τ0 ~ N(α, P). 
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 yt = τt + εt         εt ~ iid N(0, σε
2
) 17) 

 

 τt = τt-1 + ηt         ηt ~ iid N(0, ση
2
) (18) 

 

where E(εtηt) = 0.
17

 

In the local level model, only the level, τt, and the irregular component, εt, are 

unobserved.  If the variable represents the observed log of real GDP, yt is the sum of two 

unobserved components, τt and εt.  The component τt is the state variable representing the 

signal of the log of real GDP in equation (17), while the transition equation (18) shows that 

the values of τt, and hence yt, evolve according to a random walk.   

The parameters to be estimated are σε
2
 and ση

2
.  Depending on these two parameters, the 

local level model nests some special trivial cases.  Setting ση
2
 = 0 results in the white-noise 

model with a constant level, yt ~ iid N(τ1, σε
2
), while setting σε

2
 = 0 leads to a pure random-

walk model, so that yt = yt-1 + ηt.  The cycle is then equal to ct = εt = yt – τt. 

The local linear trend model extends the local level model with a slope: 

 

 yt = τt + εt             εt ~ iid N(0, σε
2
) (19) 

 

 τt = τt-1 + βt-1 + ηt         ηt ~ iid N(0, ση
2
) (20) 

 

 βt = βt-1 + ζt                   ζt ~ iid N(0, σζ
2
) (21) 

 

where we again have to specify the initial distributions for β1 and μ1 and the irregular, level 

and slope disturbances, εt, ηt and ζt respectively, are mutually independent.  In this model, βt 

is the local trend rate and τt is the local trend itself, which is the local mean value for the 

observable yt.  In other words, τt and βt are the level and slope of the trend respectively.  The 

stochastic slope parameter, βt, allows the trend to change smoothly over time.  In the local 

linear trend model, ηt and ζt, account for the permanent shocks to the level of output, 

providing an explanation for movements in that variable.  The cycle is again given by ct = yt – 

τt.  What is interesting about this model is that the change in the trend is a random walk plus 

noise; that is, Δτt is equal to the random walk term, βt, plus the noise term, ζt.   

The local linear trend model, which allows the trend level and slope to vary over time, 

is the standard state-space representation for handling strongly trending series and has been 

widely used for the purpose of trend-cycle decomposition.  In essence, the trend is modelled 

as a random walk with drift.  This model may be useful in cases where a single linear trend 

does not fit the data well.  Smoother trends are obtained by formulating higher-order random 

walks, e.g., ∆
d
τt = ηt.  

Another advantage of this model is that it encompasses a range of other useful models.  

Just as in the case of the local level model, this will depend upon the values of the shock 

variances and initial values for β1: 

 

 if σζ
2
 = 0, the trend is a random walk with constant drift β1 – the model reduces to 

a local linear model if β1 = 0; 

                                                           
17

 The assumption of independence between the innovations in the trend and cycle components is vital, but 

clearly not tenable in the real world.  But the model given by equations (17) and (18) may not be identified 

without some specification of the correlation between innovations in trend and cycle.   
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 if additionally ση
2
 = 0, the trend is a straight line with slope β1 and intercept τ1; 

and 

 if σζ
2
 > 0 but ση

2
 = 0, the trend is a smooth curve, also known as an integrated 

random walk 

 

The cycle component, ct, following Harvey and Jäger (1993), is trigonometric in form 

and consists of one or more cycles defined by the pair of equations: 
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where 0 < ρc < 1 and 0 ≤ λc ≤ π, where λc is the cycle periodicity in radians.  In addition, κt, 

κt* ~ N(0,σκ
2
), i.e., the two processes share the same variance.   

The seasonal component, γt, if present, is modelled trigonometrically in a similar way 

to the cycle.  The number of seasonal frequencies in a period, such as a year, is given by 

integer s.  When s is even, [s/2] = s/2, and when s is odd, [s/2] = (s – 1)/2.  The trigonometric 

seasonal form is given by: 
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where each γjt is generated by: 
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where λj = 2πj/s is the frequency (in radians) and the seasonal disturbances ωt and ωt* are 

two mutually uncorrelated, normally and independently distributed disturbances with zero 

mean and common variance σω
2
.  Note that, according to equation (24), more than one 

seasonal term will enter into the unobserved components model.  In fact, there will be two 

seasonal terms with quarterly data (j = 1, ... , [s/2] = 1, ... , [4/2] = 1, 2) and six seasonal 

terms with monthly data.  For s even, the final component at j = s/2, equivalent to λ(s/2) = 

2π(s/2)/s = π, collapses to: 

 

 γjt = γj,t-1cos(λj) + ωjt 

 

The autoregressive component, vt, has the following straightforward representation: 

 

 vt = ρvvt-1 + ξt             ξt ~ iid N(0, σξ
2
) (25) 

 

where 0 < ρv < 1, while the irregular component, εt, with variance-covariance matrix, Σε, is 

not explained in the model.   

As already mentioned, the basic idea behind the unobserved components model is to 

provide structural equations for the components of the trend-cycle decomposition given by 

equation (16) that have a direct interpretation.  As shown by Harvey (1989), cycles estimates 
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obtained by UC decompositions enjoy certain optimality properties.  As a result, this 

approach has become quite popular in the time-series literature.  In fact, UC specifications to 

extract cyclical components are generally preferred to ARIMA representations for two 

reasons: 

 

 there is no guarantee that an ARIMA(p,d,q) model identified by standard methods 

will have those features that the underlying series is thought the exhibit; and 

 many of the ARIMA models favoured by applied researchers for the purpose of 

cycle extraction, such as the ARIMA(0,1,1) model, fail to forecast certain long-

run components 

 

The UC decomposition is characterised by two basic features.  First, a researcher 

specifies a flexible structure for the trend, cycle and other features of the data, such as 

seasonals or irregulars.
18

  Second, given the hypothesised structure, the data is allowed to 

select the characteristics of the components.  Subsequent diagnostic testing and inference can 

be used to examine what is left unexplained.  

Unobserved component models have a long history in trend-cycle decompositions, 

going back to Harvey (1985), Watson (1986) and Clark (1987), who used both the local level 

as well as the local linear trend model for estimating potential output and the output gap. 

Watson’s (1986) variant of the local level model is made up of two unobserved 

components, which are a stochastic trend, τt, and a stochastic cycle, ct, which has been 

specified to follow an AR(2) process: 

 

 yt = τt + ct (26) 

 

 τt = β + τt-1 + ηt     ηt ~ iid N(0,ση
2
) (27) 

 

 ct = ϕ1ct-1 + ϕ2ct-2 + ζt     ζt ~ iid N(0, σζ
2
) (28) 

 

Following the definition above, the trend will be an integrated random walk trend which, 

when estimated, tends to be relatively smooth.  Having been specified as an stationary AR(2) 

process, the cycle is now clearly defined and will not be given by ct = yt – τt.   

In contrast, Harvey (1985) and Clark (1987) considered the local linear trend model 

with the stochastic cycle following an ARIMA(2,0,0) model:  

 

 yt = τt + ct (29) 

 

 τt = τt-1 + βt-1 + ηt     ηt ~ iid N(0, ση
2
) (30) 

 

 βt = βt-1 + ωt     ωt ~ iid N(0, σω
2
) (31) 

 

 ct = ϕ1ct-1 + ϕ2ct-2 + ζt     ζt ~ iid N(0, σζ
2
) (32) 

 

                                                           
18

 These structures or unobserved components in turn imply an ARIMA representation for yt which is more 

complicated than the one typically selected with standard (Box-Jenkins) methods.  The reduced form of the local 

local linear trend model, for example, is an ARIMA(0,2,2) model. 
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where ηt, ωt and ζt are independent white-noise processes.  The original specification in Clark 

(1987) was broader in the sense that it allowed the cycle to have a finite polynomial in the lag 

operator, L, such that equation (32) becomes Φ(L)ct = ζt.  Equation (32) specifies the 

stationary cyclical component as a finite autoregression rather than a more general ARMA 

process with moving-average terms.  This is done for two reasons.  First, the elimination of 

moving average terms facilitates estimation.  Second, in many empirical applications, a 

simple AR(2) model fits ct fairly well, obviating the need to include additional moving-

average terms.   

Equation (29) represents a decomposition of economic activity, yt, into two additive 

components, the trend, τt and the cycle, ct.  Note that an irregular or white-noise term, εt, 

where εt ~ iid N(0, σε
2
) could be added to equation (29).  In so doing, we can test for the 

importance of the irregular term (measurement error) by testing the statistical significance of 

its variance.  If the estimated variance, 2

εσ̂ , is not statistically different from zero, the 

irregular term can be dropped.
19

   

The non-stationary trend component in equation (29) is modelled as a local 

approximation to a linear trend (the local linear trend model).  Innovations in the level of τt 

are given by ηt, while innovations in its first difference or growth rate are given by ωt.  

Allowing a variable growth rate (σω > 0) for the trend component is another testable 

hypothesis.  

Estimation of the parameters ση
2
, σζ

2
, σκ

2
, ρ, λc and σε

2
 is done by maximum likelihood 

using the Kalman filter, using the prediction error decomposition of the latter.  Once this has 

been accomplished, estimates of the trend, cyclical and irregular components are obtained 

from a smoothing algorithm which revises recursive estimates.  As such, the smoothed 

estimates of the cycle can serve as a measure of the output gap.  

We note in passing that the UC model is able to deal with structural breaks in the 

underlying series.  Assuming the trend component in the economic time series to be modelled 

was segmented, i.e., it contained a break at one or more points, the smooth trend of the local 

linear trend model would adapt to it. 

Univariate Kalman filter estimations can be improved upon by adding macroeconomic 

information.  An early application was provided by Clark (1989), where the cyclical 

movement in output is measured using a bivariate UC model, where output and 

unemployment (or alternatively inflation) each have their own trend component, but the 

cyclical component is common to the two series.
20

  Assume that the log of real GDP, yt, 

contains a stochastic trend, τyt, and a stationary cyclical component, cyt.   The unemployment 

rate, ut, similarly has a trend component, τut, and a stationary cyclical component, cut.  The 

model is then: 

 

 yt = τyt + cyt (33) 

 

 τyt = δ + τy,t-1 + vt     vt ~ iid N(0, σv
2
) (34) 

 

 cyt = ϕ1cy,t-1 + ϕ2cy,t-2 + εt     εt ~ iid N(0, σε
2
) (35) 

                                                           
19

 In essence, this means that short-run irregularities in real GDP are apparently filtered out when the data are 

constructed.  
20

 One advantage of using the inflation rate over unemployment is its closer linkage to the derived estimate of 

the output gap, whose definition is based on stable inflation.  Cyclically high inflation rates would be correlated 

with the cyclical component of output through cyt.  
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 ut = τut + cut (36) 

 

 τut = τu,t-1 + ηt     ηt ~ iid N(0, ση
2
) (37) 

 

 cut = β0cyt + β1cy,t-1 + β2cy,t-2 + ζt     ζt ~ iid N(0, σζ
2
) (38) 

 

where all errors are white noise and the cyclical component of unemployment, cut, is assumed 

to be a function of current and past transitory components of output.  

In fact, papers such as Kuttner (1994), Planas and Rossi (2004), Domenech and Gomez 

(2006), Planas et al. (2008) and Harvey (2011) use UC in models linking inflation with the 

output gap.  Popular macroeconomic relations that are added to univariate state-space models 

are a Phillips curve, an IS curve and a relationship representing Okun’s law.  The main 

motivation in these papers is to use the information in inflation to obtain better estimates of 

the output gap.   

 

4.2.4 Regime-shifting decompositions: the Markov-switching model 

 

Of particular interest to economists is the apparent tendency of many economic 

variables to behave quite differently during economic downturns, when underutilisation of 

factors of production rather than their long-run tendency to grow governs economic 

dynamics.  In fact, Mitchell (1927) described asymmetry as a regularity of the business cycle.  

This is the idea that expansions are fundamentally different from recessions in their duration 

and in the abruptness of changes in growth.  

This empirical observation underscores the appeal of the Markov-switching model, 

which is a non-linear model given by: 

 

 


 
p

i

titsist εyβcy
tt

1

,  (39) 

 

where εt ~ iid(0, 
2

tsσ ) and st is a Markov-chain taking values in the set {1, … , m} with 

transition matrix P.  The model essentially implies that there are m different regimes in the 

economy regulated by an unobserved Markov chain.  Equation (39) has the appearance of a 

linear AR(p) model but for the subscript st on the intercept, the autoregressive coefficients 

and the residual variance.  Individually, the model of the economy in each regime is given by 

an AR(p) process with regime-specific intercept, autoregressive coefficients and residual 

variance.  Taken together, though, the combination of the different linear models results in a 

non-linear model.  In order to estimate and calibrate a switching regime model to associate 

growth and growth volatility for different unobserved states of the economy, we have to 

decide on the number of regimes existing in the economy.  In the case of potential output and 

the output gap, it seems natural to set the number of regimes equal to three: recession, 

sustainable growth and overheating economy.  The definition of sustainable growth will 

define the pattern for potential growth and the output gap since, under sustainable growth, 

macroeconomic policy should aim to be neutral and, if this is the case, the economy should 

be growing at potential.   
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The model can be estimated by maximum likelihood using the filter suggested by 

Hamilton (1989) and an empirical application of this approach can be found in Johnson 

(2013).  

 

4.3 Hybrid decompositions 

 

As discussed above, filtering is different from detrending, as filters are operators that 

carve out particular frequencies of the spectrum of data.
21

  For that reason, one of the 

preferred methods for detrending data involves the use of filters designed to separate the 

cycle from the trend, whilst allowing for a slowly evolving trend.  A number of these filters 

employ economic theory to justify the particular frequencies of the data that the filters use for 

extracting a cycle from the data.  

 

 

 

4.3.2 The Hodrick-Prescott filter  

 

Suppose you observe the values y1 through yT and want to decompose the series into a 

trend, τt, and stationary component ct = yt – τt.  Probably the most widely-used method to 

decompose a GDP series into trend and cycle is the Hodrick-Prescott (1997) (HP) filter, 

which allows for time variation in the trend estimate.
22

  Its main strength lies in its 

simplicity.
23

   

It is a two-sided linear filter (to be defined below) that computes the smoothed series τt 

of yt by minimising the variance of yt around τt subject to a penalty that constrains the second 

difference of τt.  The idea underlying this approach is that because of self-equilibrating forces, 

actual output fluctuates around potential output over time.  The HP decomposition is 

characterised by two basic features, which are that the trend and the cycle are assumed to be 

uncorrelated, and that the trend is assumed to be stochastic while moving ‘smoothly’ over 

time.  The latter is understood to mean that the trend can change over time as long as the 

changes are not abrupt.  By penalising variations in the second difference (i.e., the 

acceleration) of the trend, Hodrick and Prescott (1997) operationalize the concept of 

‘smoothness’.  In order to apply a statistical filter, it is typically necessary to specify specific 

parameters in advance, such as the desired degree of smoothness of the extracted trend, in 

this case denoted by λ.  With yt representing the raw series at time t and τt representing the 

(time-varying) trend of the series, the HP filter (indirectly) extracts a trend which minimises 

the following loss function (with respect to τt): 
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21

 Still, this has not prevented the empirical literature from using the terms detrending and filtering 

interchangeably for the process of extracting cycles, even though the two processes are quite distinct.  
22

 Canova (1998, p. 485) also argues that ‘The popularity of the HP filter among applied macroeconomists 

results from…[the fact that the] implied trend line resembles what an analyst would draw by hand through the 

plot of the data’.  In addition, Canova (1999) points out that the HP-extracted business-cycle movements for the 

US resemble the NBER-backed recession definitions.  
23

 Mise et al. (2005) show that the HP filter is optimal for a wide class of time series. 

http://www.imf.org/external/pubs/ft/wp/2013/wp13145.pdf
http://www.imf.org/external/pubs/ft/wp/2013/wp13145.pdf
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where T is the sample size.  The first term of equation (40) represents the sum of the squared 

deviations of the trend from the actual data, and captures how close the extracted trend is to 

the underlying data series.  The second term of equation (40) represents the extent to which 

the slope of the trend changes between successive observations in such a way that the lower 

this value, the ‘smoother’ the trend.  Equation (40) is meant to capture the trade-off between 

the extent to which a trend matches the data and the smoothness of the trend.
24

   

The weight that is placed on the smoothness of the trend relative to deviations from 

the actual data is captured by the smoothing parameter, λ.  The parameter λ determines the 

importance of having a smoothly evolving growth component: with λ = 0, no weight is placed 

on the smoothness of the trend and all variation in yt will be assigned to the trend component, 

meaning that the extracted trend will simply be equal to the original series; as λ → ∞, the 

trend is assigned to be maximally smooth, that is, the HP trend converges to a simple linear 

trend.  In general, λ is specified to strike a compromise between these two extremes. 

The standard values of λ are λ = 100 for annual data, λ = 1600 for quarterly data and λ = 

14400 for monthly data.  The typical value of λ for quarterly data, equal to λ = 1600, implies 

that the standard error of the cycle is 40 times larger than the standard error of the second 

difference of the trend.  This standard value for λ retains cycles with an average duration of 4 

to 6 years in the data.  In practical terms this means that cycles longer than 6-7 years are 

attributed to the trend.  We should note that the choice of λ is not innocuous.  In fact, implicit 

estimates of λ obtained using BN or UC decompositions are only in the range [2,8].
25

  

The unobservable output gap (denoted hp_cycle) is computed using the natural 

logarithm of real GDP (lrgdp), which has been de-trended using the Hodrick-Prescott (HP) 

filter.  To smooth the series lrgdp using the HP filter, double-click on it to open the series 

and choose Proc/Hodrick-Prescott Filter…, which opens up the Hodrick-Prescott Filter 

dialog box.  We can provide a name for both the smoothed and the cycle series.  EViews will 

suggest a name for the smoothed series, but I have chosen to call them hp_trend and 

hp_cycle respectively.  EViews has recognised the fact that the data are annual, so has 

specified a value of 100 for the smoothing parameter, λ, automatically.  You may specify any 

other value for λ directly or use the frequency power rule of Ravn and Uhlig (2002) – we will 

do so a bit later on to assess the robustness of the results to the choice of λ.  Upon clicking 

OK, EViews will display a graph of the filtered series together with the original series 

(Figure X).  We also note that the workfile now contains the additional two series that we 

have created.  

Alternatively, the EViews command when using the command line is either: 

 
lrgdp.hpf(100) hp_trend @ hp_cycle 

                                                           
24

 The trade-off is that a very smooth trend will only loosely match the original data series, while a trend that 

matches the original data series very closely will display a much greater degree of volatility.  
25

 It has been argued that if the shocks to the economy are primarily demand-driven, then potential output does 

not move closely with actual output data and a higher degree of smoothing should be used in the filter.  The 

opposite applies in the case of supply shocks, when a lower degree of smoothing is appropriate.  
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when you want to extract both the smoothed and the cycle series (which will be given the 

name of hp_trend and hp_cycle in the workfile respectively ) or simply: 

 
lrgdp.hpf(100) hp_trend 

 

when you only want the smoothed series, after which you obviously need to define the output 

gap as the difference between the two series: 

 
hp_cycle = lrgdp – hp_trend 

 

Figure 6: Sri Lankan output gap (calculated using the Hodrick-Prescott filter  

and the Beveridge-Nelson decomposition), 1959 - 2012 
 

 
 

Figure 6 shows that the output gap measure has been quite volatile, fluctuating in a 

band from roughly -4 to 4 per cent since 1959.  At the same time, the estimates are smoother 

than those derived from a BN decomposition, underscoring the earlier argument that BN-

derived output gap estimates are more volatile than the HP-derived counterparts.  We can see 

that the output gap is relatively large and positive at the end of the sample period in 2012.  

We will return to this point below.  

In essence, the value of λ is set a priori to isolate those cyclical fluctuations which 

belong to the specific frequency band the researcher wants to investigate.  The standard value 

for λ for quarterly data is 1600, which has been calibrated on US GDP data.
26

  As such, it 

might not be an appropriate parameter value for emerging market and developing economies 

where the trend might be a lot less smooth.  Canova (1998) investigated this issue and 

                                                           
26

 The value of 100 (14400) for annual (monthly) data is due to Backus and Kehoe (1992), who suggested an 

adjustment of the value of λ by multiplying the standard (quarterly) value of 1600 with the square of the 

frequency of observations relative to quarterly data.  For example, the relative frequency is 3 for monthly data 

and 1/4 for annual data, which makes the corresponding values of the smoothing parameter equal to λ = 1600/4
2
 

= 100 and λ = 1600 × 3
2
 = 14400 for annual and monthly data respectively.  
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recommended assessing the robustness of the results by using three different values for λ for 

quarterly data, which are 8, 40 and 1600.
27

   

Alternatively, we can use the data-dependent method due to Ravn and Uhlig (2002), who 

suggested using the fourth power of the change in observation frequency for data observed at 

a different frequency.
28

  Their frequency power rule uses the number of periods per year 

divided by 4, raised to a power and multiplied by 1600.  On the basis of their analysis in both 

the frequency- and the time-domain, Ravn and Uhlig (2002) recommend a power value of 4.  

For example, yearly data are observed only one-fourth as often as quarterly data.  Hence, for 

yearly data λ = 1600/4
4
 = 6.25 is recommended.  Note that a power rule of 2 recovers the 

original Hodrick Prescott values for λ.
29

  Overall, rather than the value of λ = 100 traditionally 

used for annual data, Ravn and Uhlig (2002, p. 371) cite values of λ = 6.25 and λ = 10 

(suggested by Hassler et al. (1992) and Baxter and King (1999)) as potentially being more 

appropriate for that particular sampling frequency.  Figure 7 shows the estimated output gaps 

for different values of λ.  

 

Figure 7: Sri Lankan output gap (calculated using the Hodrick-Prescott filter  

with λ = 6.25, 10 and 100), 1959 - 2012 
 

 
 

The estimated output gaps show the sensitivity of the results to different values of λ.  Using 

the smaller values of λ = 6.25 or λ = 10 shows that the output gap at the end of the period is 

not only much smaller, but also in the process of closing. 

                                                           
27

 As we will see later on, the HP filter is equivalent to the smoothed trend from an unobserved components 

model with a stochastic trend component and a random irregular term.  The signal-to-noise ratio, that is, the 

ratio of the variance of the trend shock over the variance of the irregular shock, is equal to the inverse of the HP 

smoothing constant (Harvey and Jäger (1993), Harvey and Trimbur (2008)).  This means that a smaller λ is 

associated with a higher signal-to-noise ratio.  
28

 For completeness sake, I should also mention the method of optimal filtering due to Pedersen (2001), which is 

meant to provide optimal values for λ.  Ross and Ubide (2001) also discuss alternative approaches for 

determining the parameter λ endogenously.  
29

 For yearly data and a power rule of 2, λ = 1600/4
2
 = 100.   
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But its sensitivity to the value of the smoothing parameter, it is also worth pointing out 

that the Hodrick-Prescott filter in EViews is generally – and erroneously – employed as a 

one-sided filter, meaning that it is used with historical data up to time t (today).  It is, 

however, the case that the HP-filter uses observations at time t + i, i > 0 to construct the 

current time point t.  Stopping the sample at the current date means that only current and past 

states, rather than past, current and future states influence the current observation.   

This is quite difficult to infer from the equation (40).  It might be easier to see from 

differentiating the final line of equation (40) with respect to τt and re-arranging the first-order 

conditions for minimisation.  This operation yields the Euler equations for each time period: 

 

 (y1 – τ1) = λ(τ3 – 2τ2 + τ1)     for t = 1 

 

 (y2 – τ2) = λ(τ4 – 4τ3 + 5τ2 – 2τ1)     for t = 2 

 

… 

 

 (yt – τt) = λ(τt+2 – 4τt+1 + 6τt – 4τt-1 + τt-2)     for t = 3, … , T-2 (41) 

 

… 

 

 (yT-1 – τT-1) = λ(-2τT + 5τT-1 – 4τT-1 + τT-3)     for t = T-1 

 

 (yT – τT) = λ(τT – 2τT-1 + τT-2)    for t = T 

 

Writing the first-order conditions this way illustrates the end-point problem extremely 

clearly.  Note that the first-order conditions for t = 1, 2 as well as t = T-1, T are different from 

the first-order conditions for the remaining observations.  Let us consider the issue at the end 

of the sample.  From equation (41) we can see that the observations for t = 3, … , T-2 involve 

terms in τt+2 and τt+1.  Towards the end of the sample, these observations fall outside the 

sample range, which means that the final two first-order conditions have been adjusted and 

only contain contemporaneous as well as two lagged observations.
30

   

As a result, the assessment of the difference between the trend and the actual data might 

change substantially when new data is added.  This makes the HP filtered series a 

problematic output gap measure as it fails to correctly measure the current state of the 

economy relative to potential and hence lead to inappropriate policy decisions.
31

  As 

suggested in Mise et al. (2005), the end-point problem with the HP-filter can be avoided if a 

sufficient number of GDP forecasts are available that can be included in the underlying data 

series.
32

  Sufficient in this context generally refers to 28 quarters or seven years.  We 

therefore augment the real GDP data for Sri Lanka, which end in 2012, with forecast values 

from the IMF October 2013 World Economic Outlook database, which take the total sample 

of the data out to 2018.  By having data beyond the end of the sample period of actual data, 

the endpoint problems associated with the HP-filter are avoided (Mise et al. (2005)).  Note 

                                                           
30

 Note that the same is true, in ‘reverse, so to speak, for the first two observations in the sample. 
31

 An apocryphal description of just such a policy error on account of a misleading potential output estimate is 

given in Orphanides (2002).  He argues that the Fed believed the output gap in the 1970’s to be much more 

negative than it really was, which led policymakers to take action that overheated the economy and contributed 

to an inflationary surge. 
32

 Watson (2007) finds similar results when estimating the trend with a band-pass filter. 

https://www.richmondfed.org/publications/research/economic_quarterly/2007/spring/pdf/watson.pdf
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that the end-point problem can be serious.  The main source of revisions in output gap 

estimates is due to the pervasive unreliability of end-of-sample estimates, be it using the HP 

filter or the BP filters (Orphanides and van Norden (2002)).  The question of whether end-

point problems are serious or not has been partially addressed in Watson (2007), who 

concluded that future values were critical to accurately separate the trend from the 

fluctuations for series showing serially correlated fluctuations around a slowly evolving 

trend.   

Figure 8 shows the results of the standard HP filter using data up to and including 2012 

(the red line) and the standard HP filter using data up to and including 2018.  The current, 

i.e., 2012, estimate of the output gap is much smaller than the naïve HP filtered series.  

 

Figure 8: Sri Lankan output gap (calculated using the Hodrick-Prescott filter with 

augmented real GDP data up to 2018), 1959 - 2012 
 

 
 

This finding highlights some of the advantages and disadvantages of the HP filter.  Let us 

start with the disadvantages first. 

As is obvious from the definition of the HP filter above, the method lacks a close link 

to economic theory, such that the HP filter abstracts from any potential relevant economic 

information other than the output series itself.  In other words, the filter does not exploit the 

interactions between unemployment, output and inflation.  As a purely statistical technique 

designed to smooth actual GDP data in order to estimate potential output, it may be slow in 

‘discovering’ structural breaks.  As a result, this entails the risk of overestimating potential 

GDP if the sample period ends with a sudden and large loss of output.  Harvey and Jäger 

(1993), amongst others, report that the uncritical use of mechanical detrending with the HP 

filter can lead investigators to report spurious cyclical behaviour and show how particular 

quantitative features of the business cycle are not robust to the choice of detrending.
33

  

Finally, the reliability of estimates of the output gap in real time is studied in Orphanides and 

                                                           
33

 This is particularly the case for series that are either integrated or driven by deterministic trends.  In particular, 

applying the standard HP filter to a random walk produces detrended observations which have the characteristic 

of a business cycle for quarterly data (Harvey and Jäger (1993, p. 234).  
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van Norden (2002), who find highly volatile estimation errors for real-time estimates of the 

same magnitude as the output gap itself.  Attribution of the error to various causes indicates 

that the end-of-sample problem is the most important reason for the estimation error.  

The advantages of the HP-filter are that it implicitly allows potential output growth to 

vary over time and that it can extract the same trend from a set of variables.  This will not be 

the case for the BN decomposition, which will not yield the same trend when applied to each 

series individually.   

In summary, the HP filter is a mechanical device which defines the extracted cycles via 

the choice of λ.  The standard values of λ (λ = 100 for annual data, λ = 1600 for quarterly data 

and λ = 14400 for monthly data) have all been calibrated to the mean length of domestic US 

cycle data, which makes it unlikely that they will correspond exactly to typical business-cycle 

frequencies in other countries.  For example, if a country has cycles with an average length of 

9 years, the mechanical application of the HP filter will move these cycles to the trend.  

 

4.3.3 The exponential smoothing (ES) filter 

 

The application of the exponential smoothing filter for (business) cycle extraction has a 

long history, with Lucas (1980) being an early application.  In contrast to the HP filter, which 

penalises the acceleration of the trend (equation (40)), the ES filter penalises only the change 

in the trend.  The rest of the penalty function remains unchanged, even though the first-oder 

conditions for minimisation will obviously also be different: 
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The ES and the HP filters are broadly similar (Figure X).  The main difference is that the ES 

filter picks up trends with longer periodicity.   

To perform exponential smoothing, double-click on the lrgdp series to open it and 

select Proc/Exponential Smoothing....  We use the Holt-Winters – No seasonal as this 

method is appropriate for series with a linear time trend and no seasonal variation.  Name the 

smoothed series lrgdp_es and estimate all parameters over the period 1962-2012.  Leave 

the remaining settings at their default values, as shown in the following screenshot. 
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When you click OK, EViews displays the results of the smoothing procedure, 

reproduced in Table 4. 

 

Table 4: Results from exponential smoothing 
 

Sample: 1962 2012   

Included observations: 51   

Method: Holt-Winters No Seasonal  

Original Series: LRGDP   

Forecast Series: LRGDP_ES   
     

Parameters: Alpha  1.0000 

 Beta  0.0700 

Sum of Squared Residuals  0.018468 

Root Mean Squared Error  0.019030 
     

End of Period Levels: Mean 8.022005 

  Trend 0.052750 
     

 

The first part displays the estimated (or specified) parameter values, the sum of squared 

residuals and the root mean squared error of the forecast.  The values for α and β in this 

example mean that the smoothed series is calculated as yt+k = α + βk.  The output gap is then 

calculated as gap_esmooth = lrgdp – lrgdp_es, and displayed in Figure 9 with the 

standard HP filter for comparison.  
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Figure 9: Output gaps from exponentially-smoothed series and HP filter, 1959-2012 
 

 
 

4.3.4 The moving average (MA) filter 

 

But the approach with the longest history in business-cycle analysis, going all the way 

back to the seminal analysis by Burns and Mitchell (1946), is the MA filter.  The latter is 

defined by a polynomial B(L), which is either one- or two-sided.  The former operates on p 

lags of yt while the latter operates on p lags as well as p leads of yt.  We will not discuss MA 

filters in the context of this practical guide, as it has long been known that the mechanical 

application of moving-average filters can create a wide range of undesirable effects in the 

data (Fishman (1969)).  Furthermore, Osborn (1995) looked at the consequences of applying 

moving-average detrending in the context of integrated processes and also found instances of 

spurious cyclicality.  

 

4.3.5 The band-pass (BP) filter 

 

The point of departure for the band-pass (BP) filter is that any time series can be 

thought of as being built up from a set of underlying sub-processes whose individual 

frequency components exhibit cycles of varying frequency.  This approach to modelling 

(economic) time series is called the frequency domain.  The other side of the argument is that 

you can, in principle, take any time series yt and figure out what fraction of its variance is 

generated from those sub-processes that cycle within a given frequency range.  One way to 

classify filters is then according to the frequencies that are allowed to pass through and those 

that are blocked.  A high-pass filter lets through only the high-frequency components, while a 

low-pass filter allows through the trend or growth frequencies.  The business-cycle 

frequency, for example, is generally acknowledged to lie between 6 and 32 quarters, so a 

business-cycle pass filter should allow through frequencies ranging from 6 to 32 quarters.   

The band-pass filter then is designed to shut down all fluctuations outside of a chosen 

frequency band between cycles with periods between PL and PU.  For business-cycle 

applications, PL and PU are generally set equal to 6 and 24-32 respectively.  The appeal of BP 

filters is due to the fact that they make the notion of business cycles operational by selecting 
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fluctuations in a pre-specified range, say 6 to 24-32 quarters.  While it is not feasible to 

implement the ideal band-pass filter, as doing so requires an infinite number of observations 

of the unfiltered series as input, finite-sample approaches have been developed by Baxter and 

King (1999) and Christiano and Fitzgerald (2003) in the time domain and Corbae and 

Ouliaris (2006) in the frequency domain.
34

   

In EViews, the different band-pass filters are available as a series Proc, meaning that 

they are invoked by opening the series under observation and going to Proc/Frequency 

Filter….  EViews makes three band-pass filters available: 

 

 fixed length symmetric (Baxter-King) – this is EView’s default; 

 fixed length symmetric (Christiano-Fitzgerald); and 

 full length asymmetric (Christiano-Fitzgerald) 

 

Let us start with the BK filter.  Double click on lrgdp to open the series, go to 

Proc/Frequency Filter… and the dialog box for the fixed length symmetric Baxter-King 

filter appears.  There are only a few options associated with the Baxter-King band-pass filter.  

As such, we need to select the frequency length (i.e., the lags and leads) for the moving 

average and the low and high values for the cycle period (PL, PU).  By default, EViews will 

fill the required dialog boxes with reasonable default values that are based on the type of the 

workfile.  If need be, they can of course by manually adjusted.  Moreover, we have the option 

of naming the series objects that will contain the saved output for the cyclical and non-

cyclical components.  The Cycle series will be a series object containing the filtered series 

(cyclical component), while the Non-cyclical series is simply the difference between the 

actual and the filtered series.  Note that the options for Cycle periods correspond to a 

frequency filter between 2 and 8 years.  The following screenshot shows the required input 

for applying the BK filter to lrgdp: 

 

 

                                                           
34

 Broadly speaking, band-pass filters are designed to eliminate high and low frequency movements in the data 

using a (weighted) two-sided symmetric moving average of the data, where cycles in a ‘band’, given by a 

specified lower and upper bound, are ‘passed’ through (i.e., extracted) and the remaining cycles outside the band 

are ‘filtered’ out.  In so doing, they isolate the cyclical component of a time series by specifying a range for its 

duration. 
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We then repeat the exercise, but set the number of Lead/lags to 6 to assess the 

sensitivity of the results to the choice of leads and lags. The results for the cycle series using 

lrgdp and both 3 and 6 leads/lags are shown in Figure 10. 

 

Figure 10: Baxter-King band-pass estimates of the Sri Lankan output gap 
 

 
 

It turns out that band-pass filters are also prone to end-point problems.  The fixed-

length versions of the BK and CF filters use the same number of leads and lag terms for every 

weighted moving average.  In other words, if the filtered series is extracted using p leads and 

lags of the observed data, we will lose p observations both at the beginning and the end of the 

original sample.  As a result, Watson (2007) also recommends ‘padding’ the data into the 

future (and past) using forecasts and backcasts of the series, although the error in band-pass 

filter estimates arises from the use of forecasts of future values of yt.  As mentioned in the 

context of the HP filter above, because of the end-point problem, any two-sided symmetric 

filter will not be appropriate for policy analysis, which mainly focuses on assessing the 

current state of the economy.   

The results for the cycle series using both the original data series, lrgdp, as well as 

the augmented data series, lrgdp_weo, are shown in Figure 11. 
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Figure 11: Baxter-King band-pass estimates of the Sri Lankan output gap 
 

 
 

The red line, which is the output gap estimate based on data up to 2012, and the blue 

line, which shows the output gap using data until 2018.  We note two things.  To begin with, 

the red line starts in 1962 and ends in 2009, as we lose three observations On account of the 

lags and leads respectively.  Two, the exact juxtaposition of the red and the blue line shows 

that the symmetric filter is time-invariant since the moving average weights depend only on 

the specified frequency band and do not use the data.  This is why the output gap estimates 

over the historical data period overlap.  The benefit that arises from using an augmented data 

set is that it will allow us to generate output gap estimates at the end of the sample.  This is 

because a filtered series computed using p leads and lags (p = 3 and 6 in our case) will lose p 

observations at both the beginning and the end of the series.
35

  

End-point problems will also affect the symmetric version of the Christiano-Fitzgerald 

band-pass filter.  In addition to the filters we have come across for the Baxter-King band-pass 

filter, the Christiano-Fitzgerald filters provide you with additional options for handling 

trending data.  This is the case for both the symmetric and the asymmetric versions of the CF 

filter.  The first additional setting involves the Stationarity assumption, which requires us to 

specify whether the series under investigation is presumed to be an I(0) covariance stationary 

process or an I(1) unit-root process.   Prior to applying the CF filters, we can choose to either 

demean or detrend the covariance stationary data or to demean, detrend or remove the drift 

using the adjustment suggested by Christiano and Fitzgerald (2003).  For the purposes of this 

analysis, we will assume that lrgdp is a non-stationary series.   

The dialog box for the symmetric CF filter with lrgdp being I(1) is as follows: 
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 On the other hand, the BK filter fulfils the stability condition mentioned in Section 2. 
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The output of the fixed length symmetric Christiano-Fitzgerald band-pass filter for both 

p = 3 (the blue line) and p = 6 (the red line) is displayed in Figure 12.  The obvious end-point 

problems with the use of leads and lags are again quite apparent, as is the sensitivity of the 

estimated output gaps to different values of p.  

 

Figure 12: Symmetric Christiano-Fitzgerald band-pass estimates of the Sri Lankan 

output gap 
 

 
 

Figure 13 shows the estimated output gap using the augmented real GDP data out to 

2018.  Just as in the case of the symmetric Baxter-King band-pass filter, the exact 

juxtaposition of the red and the blue line shows the symmetric CF band-pass filter to be time-

invariant.  Once again, this is because the moving average weights depend only on the 

specified frequency band and do not use the data.  This is why the output gap estimates over 
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the historical data period overlap.  The benefit that arises from using an augmented data set is 

that it will allow us to generate output gap estimates at the end of the sample.   

 

Figure 13: Symmetric Christiano-Fitzgerald band-pass estimates of the Sri Lankan 

output gap 
 

 
 

Even though the resulting BK and CF output gap estimates look the same, they are very 

slightly different, as Figure 14 shows.  The slight differences arise because the fixed-length 

symmetric BK and CF band-pass filters differ in the choice of the objective function used to 

select the moving-average weights.   

 

Figure 14: Symmetric Baxter-King and Christiano-Fitzgerald band-pass  

estimates of the Sri Lankan output gap 
 

 
 

Regardless of the slight differences, both band-pass filters show a declining output gap 

in 2011 and 2012 using the augmented data up to and including 2018 (Figure 15).   
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Figure 15: Symmetric Baxter-King and Christiano-Fitzgerald band-pass  

estimates of the Sri Lankan output gap (augmented data) 
 

 
 

In addition to a symmetric band-pass filter, Christiano and Fitzgerald (2003) (CF) also 

developed a filter that is non-stationary and asymmetric, but still depends on the time-series 

properties of the underlying data.  The asymmetric version of the CF filter is quite general 

and also has the advantage that it solves beginning and end-of-sample problems.  Remember 

that the underlying idea is that the ideal band-pass filter decomposes a time series into 

different frequency components through a linear transformation of the data that leaves the 

components for a specified frequency band intact and eliminates all other components.  In 

theory, the ideal filter requires an infinite data set, so an approximation is required.  In the 

case of the CF filter, the authors construct an approximation to the ideal band-pass filter 

which is optimal when the underlying raw data follow a random walk (hence the non-

stationarity mentioned above).  In practice, the end-point problem is resolved by padding the 

series with random-walk forecasts.  In contrast to the earlier symmetric filters, the 

asymmetric filtered series can therefore be computed to the ends of the original sample. 

But the cost of this generality is that other a priori choices have to be made, in 

particular whether yt is stationary or integrated and what its serial correlation properties are.  

Reassuringly perhaps, Christiano and Fitzgerald (2003) indicate that, in practice, an 

approximation obtained by arbitrarily assuming that yt is a random walk works well for a 

variety of macroeconomic time series. 

The dialog box for the asymmetric CF filter with lrgdp assumed to be I(1) is as 

before, but as this filter is ‘full length’, it uses all of the observations in the sample so that the 

Lead/Lag option is irrelevant (and indeed greyed out).  Part of the output from applying the 

asymmetric CF filter to lrgdp is shown in Figure 16 below.   
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Figure 16: Asymmetric (full length) Christiano-Fitzgerald band-pass estimates of the 

Sri Lankan output gap 
 

 
 

Both the BK and the CF filter operate with the time-domain representation of the filter.  

But it is also possible to work in the frequency domain.  The advantage of the latter approach 

is that no approximation, i.e., arbitrary truncation involving p lags and leads, is needed and no 

loss of data at the beginning or the end of the sample is involved.  But two major drawbacks 

still exist.  One, the definition of the cyclical component now depends on the sample size.
36

  

This means that when new information arrives, the measurement of the cyclical component 

needs to be changed for all t.  Two, since the spectrum of yt is undefined at the zero frequency 

when the series is non-stationary, a stationary transformation is required before the spectrum 

is computed.  A preliminary step is therefore to decide whether a deterministic or a stochastic 

trend should be removed.  

A band-pass filter in the frequency domain that does not suffer from the latter problem 

has been proposed by Corbae and Ouliaris (CO) (2006).  In contrast to other frequency-

domain (band-pass) filters, the CO filter operates on the level of a time series, even if the 

series has unit-root, i.e., non-stationary, components and the variance of the series is 

increasing in the sample size.   

We can use EView’s FDFilter add-in to estimate the business-cycle component of a 

time series, the output gap or the long-run trend implicit in the series.  The EViews add-in is 

available from: 

 

http://www.eviews.com/cgi/ai_download.cgi?ID=FDFilter.aipz 
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 Technically speaking, this is because Fourier frequencies are functions of T. 
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As before, we select lrgdp by double-clicking on it.  If the FDFilter add-in is installed 

correctly, it should now be available in the Add-ins menu.  We open the Corbae-Ouliaris 

FD filter item, which opens the following dialog box:   

 

 
 

As can be seen from the screenshot above, we have to set four different items.  The 

first thing is the name for the output series.  The FDFilter add-in attaches a suffix to the 

original data series.  The default setting is _fd, such that if the original series is called 

lrgdp, the filtered series will appear as lrgdp_fd in the workfile.  I have decided to give 

the filtered series the marginally more informative name of lrgdp_fdfilter.  The next 

two boxes concern the starting and ending periods, which can be either given as periods (or 

the number of observations) or as fractions of π.  In the discussion of the band-pass filters 

above we used PL and PU to set the boundaries for the filter to pass through.  In particular, 6 

periods corresponds to 2/6 = 0.3333 radians, while 32 periods correspond to 2/32 = 0.0625 

radians.
37

  Periodicities and frequencies are obviously inversely related, such that 

periodicities in the range (PL, PU) correspond to frequencies in the range (2π/PU, 2π/PL).   

The default setting for the filter in EViews extracts the classic business-cycle 

frequencies between 6 (PL) and 32 (PU) periods.  If you prefer working with observations (or 

periods), you can set the starting period to 6 and the ending period to 32 directly.  The final 

dialog box allows us to set the sample range for the filter.  We invoke the filter upon pressing 

OK.  The result will should be a time-series object called lrgdp_fdfilter in the 

workfile that contains the business-cycle component of lrgdp – except for the fact that we 

have an insufficient number of observations to carry out the CO filter.  I have therefore re-

done the filter with lrgdp_weo which, if you remember, adds another six annual 

observations at the end.  It appears that 54 observations are too small for the FDFilter add-in 

to work.
38

  Let me stress that I have used the larger sample only to get the FDFilter add-in to 

work and not for any other reasons.  In particular, I have not extended the sample size to deal 

with any end-point problems, as the CO filter is immune to them.   

The EViews instructions accompanying the FDFilter add-in suggest that the output 

gap implicit in lrgdp can be obtained using a setting of (0.025, 1.0), which corresponds to 

                                                           
37

 Remember that 6 periods are deemed to be the lower bound for business-cycle frequencies, while 32 periods 

are deemed to be the upper bound for business-cycle frequencies. 
38

 Note that 52 periods would translate into 13 years of quarterly data. 
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the business cycle (6, 32) plus some irregular variation (32, +∞) in the time series.  I have 

given this series the suffix _ogfilter.  Invoking the filter as above, the results for the 

different procedures are given in Figure 17 below. 

 

Figure 17: Frequency-filtered output gap estimates, 1959 – 2018 
 

 
 

As can be seen from Figure 17 above, the output gap series in green is slightly more 

volatile than the business-cycle component (the red line).  This is to be expected as we have 

allowed the output gap to include some irregular variation.   

The results show a large and falling positive output gap for the first 15 years of the 

sample, followed by a predominantly negative output gap for the next three decades or so.  

The output gap appears have briefly closed in the mid-1980’s.  Since 2010, the output gap is 

positive and increasing.  

 

4.3.6 Filters and the state-space representation 

 

Many of the filters discussed above have an equivalent state-space representation.  

Morley (2002) showed this correspondence for the BN decomposition, Harvey and Jäger 

(1993) for the HP-filter and Harvey and Trimbur (2003) for filters in general.   

Consider the BN decomposition for yt.  It should be obvious from equation (10), say, 

that the calculation of the exact BN trend and cycle is complicated by the presence of an 

infinite sum in the long-run forecast.  But exact calculations become relatively 

straightforward if the BN forecasting model can be cast into state-space form.  The definition 

of the BN trend in equation (10) identifies the permanent component as a pure random walk 

and this result can be used to link the BN decomposition with traditional UC model with 

random-walk trends. 

Assuming a known Gaussian ARMA structure for the first difference, Δyt, the level yt 

can be thought of as made up of a permanent (unobserved) component, denoted τt, and a 

transitory (unobserved) component, denoted ct, in the following UC representation: 

-.10

-.05

.00

.05

.10

.15

.20

5

6

7

8

9

60 65 70 75 80 85 90 95 00 05 10 15

LRGDP_WEO

LRGDP_WEO_FDFILTER

LRGDP_WEO_OGFILTER



 

ole.rummel@bankofengland.co.uk 40  ©Bank of England 

 

The Bank of England does not accept any liability for misleading or  

inaccurate information or omissions in the information provided. 

 

 

 yt = τt + ct (43) 

 

 τt = β + τt-1 + ηt     ηt ~ iid N(0, ση
2
) (44) 

 

 ϕp(L)ct = θq(L)ζt     ζt ~ iid N(0, σζ
2
) (45) 

 

 Cov(ηt, ζt) = ρηζ (46) 

 

where β is the mean growth rate of yt and ϕp(L) and θq(L) are lag polynomials capturing the 

AR(p) and MA(q) structure in the transitory component respectively.
39

  According to 

equations (43) to (46), the permanent component follows a random walk with drift (equation 

(44)), the transitory component follows a stationary ARMA process with a mean of zero and 

the error processes associated with the permanent and transitory components are correlated.  

This set-up constitutes the standard treatment of trend-cycle decomposition in the state-space 

framework (Proietti (2006)).   

The important role of the correlation coefficient, ρηζ, is investigated in Morley (2011), 

who shows that the UC representation of the model only holds if |ρηζ| < 1.  If this is the case, 

the BN trend provides an optimal estimate of the permanent component under the assumption 

that it follows a random walk and that the unconditional expectation of ct is zero.  Using the 

state-space representation, the hypothesis that |ρηζ| = 1 is of course testable.  Clark (1985) as 

well as Harvey and Jäger (1993) suggest specifying p = 2, which allows the cycle process to 

be periodic.   

As shown in Harvey and Jäger (1993), the filter proposed by Hodrick and Prescott 

(1997) is equivalent to the smoothed trend obtained from a particular specification of the 

local linear trend model given by equations (47) to (49).  As such, it may be rationalised as 

the optimal estimator of the trend component in the following structural time-series model: 

 

 yt = τt + εt     εt ~ iid N(0, σε
2
) (47) 

 

 τt = τt-1 + βt-1 (48) 

 

 βt = βt-1 + vt     νt ~ iid N(0, σν
2
) (49) 

 

with the special restriction that σv
2
 = qσε

2
, where q = 1/14400, 1/1600 and 1/100 for monthly, 

quarterly and annual data respectively.  The HP estimate of the cyclical component is then 

simply given by the smoothed irregular component.  

The state-space object ss_hp_filter contains the state-space representation of the 

local linear trend model corresponding to the HP filter.  After estimation, we can recover the 

first smoothed state series from the estimated model, which I have called sv1f_hp.  This 

series corresponds to the smoothed trend.  Figure 18 shows that it is exactly equal to the 

Hodrick-Prescott trend obtained from running the Hodrick-Prescott filter procedure on 

lrgdp in EViews, which we have called hp_trend above.  

 

                                                           
39

 As we saw in Section 4.2.3 above, in more elaborate implementations the rate of drift, β, is itself allowed to 

evolve as a random walk and sometime an additional irregular term is added.  The extent to which results are 

sensitive to changes in model specification are an empirical matter.  
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Figure 18: Smoothed state series from UC model versus HP-filtered trend  

(Sri Lankan real GDP, 1959-2012) 
 

 
 

In this particular case, attempts to estimate the ratio q by applying maximum likelihood 

to equations (47) to (49) produced very small values of q, leading to the cycle effectively 

picking up most of the movement in the stationary part of the series.  This means that unless 

equations (47) to (49) are a reasonable model for the series under investigation, q must be 

fixed in order to obtain sensible results.  This is illustrated in the state-space object called 

ss_hp_filter_est, which leaves q unrestricted.  The estimated state-space object is 

reproduced in Table 5 below.  

 

Table 5: Estimated local linear trend model for Sri Lankan real GDP, 1959-2012 
 

Sspace: SS_HP_FILTER_EST   

Method: Maximum likelihood (Marquardt)  

Sample: 1959 2012   

Included observations: 54   

Convergence achieved after 14 iterations  
     
 Coefficient Std. Error z-Statistic Prob.   
     

C(1) -8.852144 0.430657 -20.55498 0.0000 

C(2) 0.552027 0.415599 1.328269 0.1841 
     
 Final State Root MSE z-Statistic Prob.   
     

SV1 8.092943 0.018991 426.1530 0.0000 

SV2 0.069582 0.018677 3.725637 0.0002 
     

Log likelihood 111.3385      Akaike info criterion -4.049575 

Parameters 2      Schwarz criterion -3.975909 

Diffuse priors 2      Hannan-Quinn criter. -4.021165 
     

 

As can be seen from Table 5, the (insignificant) estimate of c(2) is equal to 0.55, 

meaning that the estimated q = 1/c(2) = 1.81.  

Finally, Harvey and Trimbur (2003) propose an alternative procedure for 

approximating band-pass filters based on the UC model.  An appealing feature of their 

proposal is that the end-of-sample problem is easily handled by the Kalman filter. 
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4.4 Economic decompositions 

 

A third approach to extracting the cyclical component from data is guided by economic 

models.  This methodology is based on the idea of temporary and permanent shocks.  As 

such, economic decompositions generally define the trend as the component of the series that 

is driven by permanent shocks.  The other feature that all economic decompositions have in 

common is that they use vector autoregressions (VARs) for what is in essence a permanent-

temporary decomposition.  In the case of structural VARs (SVARs), the (minimal) use of 

identification restrictions is meant to result in shocks with permanent or transitory features.  

But we should not forget that, as discussed in Canova (1998), ‘…all economic-based 

decompositions are, at best, attempts to approximate unknown features of a series and 

therefore subject to specification errors (p. 477)’.  

 

4.4.1 The Blanchard and Quah (1989) (BQ) decomposition 

 

The statistical filters discussed so far rely exclusively on the information provided in a 

single time series to identify the output gap.  But we can also take recourse to multivariate 

output gap measure.  The most prominent economic trend-cycle decomposition is based on 

the seminal paper on long-run identification restrictions for structural VARs (SVARs) by 

Blanchard and Quah (1989) (BQ).  It is based on the traditional Keynesian and neoclassical 

synthesis, which identifies potential output with the aggregate supply capacity of the 

economy and cyclical fluctuations with changes in aggregate demand.  The appeal of this 

approach lies in its compatibility with a wide range of theoretical models.  In a bivariate 

model, structural supply and demand shocks are identified by assuming that the former have 

a permanent impact on output, while the latter are only allowed to have a temporary effect.  

In particular, two types of – uncorrelated – structural disturbances are postulated, which can 

affect two time series in the original paper: the log of real output and the unemployment rate.  

Two assumptions then identify the structural shocks: 

 

 neither disturbance has long-run effects on the time-series used in the estimation, 

more specifically the first differences of the original series – in other words, 

growth rates are stationary; and 

 disturbances to the growth rate of log real GDP may have long-run effects on the 

level of the series, while disturbances to the unemployment rate are restricted to 

not having long-run effects on the level of output 

 

In light of the likely effects of the two structural disturbances, it seems natural to label 

them as supply and demand shocks.   

Since the long-run is considered, the variables that enter the VAR have to be 

stationary.
40

  Note that if some of the variables are I(1), then it is possible, if other variables 

are I(0), to decompose the I(1) variable into two components: a permanent and a transitory 

component.  Thus, the Blanchard and Quah decomposition is an alternative form of 

conducting Beveridge and Nelson (1981) decompositions.  There are some similarities 

between the BQ and multivariate BN decompositions.  To begin with, the trend is a random 

walk in both cases.  The difference is that while trend and cycle are driven by orthogonal 

                                                           
40

 If a structural break is present in the data, the appropriate transformation is to demean the data before 

applying the BQ decomposition. 
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shocks, they are driven by the same combination of shocks in the BN decomposition.  This 

means that the disturbances in the BQ decomposition have some vague economic 

interpretation, which will not be the case for those of a multivariate BN decomposition. 

The BQ decomposition in EViews proceeds as follows.  A vector autoregression (VAR) 

consists of t = 1, ... , T observations on a set of n endogenous macroeconomic variables yt = 

(y1t, … , ynt)′, such that yt is a (n × 1) vector containing T observations on n time series
 41

   We 

have an underlying structural system of equations of the form:  

 

 Ayt = C(L)yt + But (50) 

 

where the structural shocks ut are normally distributed, i.e., ut  N(0, Σ), where Σ is generally 

assumed to be a diagonal matrix, usually the identity matrix, such that ut ~ N(0, I).  

Unfortunately, we cannot estimate this equation directly due to identification issues.  Instead, 

we estimate an unrestricted VAR of the form: 

 

 yt = A
-1

C(L)yt + A
-1

But  (51) 

 

Rearrangement of this equation yields: 

 

 yt = (I – A
-1

C(L))
-1

A
-1

But (52) 

 

Equation (52) shows how the random (stochastic) shocks affect the long-run levels of 

the variables.  If we define a matrix M = (I – A
-1

C(L))
-1

A
-1

B, the aggregate effect of a shock u 

is given by matrix M.  Hence, if we assume that the (long-run) cumulative effect of a sub-

shock ui on a variable yj is zero, then the column i and row j element of matrix M should be 

zero.  For example, suppose you have a two-variable VAR where you want to restrict the 

long-run response of the second endogenous variable, y2t, to the first structural shock, u1t, to 

be zero, then m21 = 0: 
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 (53) 

 

In other words, knowing the values of the matrix M tells us something about matrices A 

and B.  Due to the number of restrictions required, EViews also imposes the restriction that 

matrix A is the identity matrix.
42

  It then uses matrix M to estimate matrix B.   

Long-run restrictions in EViews can be specified either in matrix form (where the 

matrix M is entered) or in text form.  We will consider a bivariate VAR using the growth rate 

of real GDP and the inflation rate. We then impose the long-run restriction that only supply 

shocks have permanent effects on real GDP and estimate the impulse response function 

associated with this identification scheme.   

                                                           
41

 Note that for the BQ decomposition to be meaningful, at least one of the variables needs to be non-stationary, 

since I(0) variables do not have a permanent component.  If stationarity of the second variable is not given, we 

may need to apply some transformation on the second series to render it stationary.  
42

 The expression for the long-run response in equation (52) involves the inverse of A.  Since EViews requires 

all restrictions to be linear in the elements of A and B, the A matrix must be the identity matrix when you specify 

a long-run restriction.  
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We use inflation rather than the unemployment rate for several reasons.  To begin with, 

it may be the case that unemployment data are not very informative due to high formal 

(un)employment and underemployment.  If this should be the case, the inflation rate can be 

used instead of the unemployment rate as the additional macroeconomic variable to real 

GDP.
43

  Two, in the case of Sri Lanka, unemployment rate data is only available after 1990, 

while inflation rate data goes back to 1959.  Finally, unemployment has been falling steadily 

since 1990, while the inflation has been fluctuating around a mean value of 8.5 per cent since 

1959. 

We estimate a reduced-form VAR with dlrgdp and inflation over the period 

from 1959 to 2012, impose the long-run restriction that only supply shocks have permanent 

effects on real GDP and estimate the impulse response functions of the identification scheme.  

A VAR with one lag using the first difference of real GDP and inflation as well as a constant 

shows no lower-order autocorrelation at conventional significance levels.  The VAR is stable, 

but the residuals are non-normal (this is left as an optional exercise).  The estimation results 

are given in Table 6.  

 

Table 6: VAR(1) estimation results for dlrgdp and inflation, 1959 –2012 
 

 Vector Autoregression Estimates 

 Sample (adjusted): 1961 2012 

 Included observations: 52 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 
   
 DLRGDP INFLATION 
   

DLRGDP(-1)  0.226542  27.51490 

  (0.14030)  (38.1704) 

 [ 1.61473] [ 0.72084] 

   

INFLATION(-1)  0.000151  0.457614 

  (0.00045)  (0.12237) 

 [ 0.33580] [ 3.73948] 

   

C  0.034341  3.618858 

  (0.00746)  (2.02913) 

 [ 4.60443] [ 1.78345] 
   

 R-squared  0.057558  0.244846 

 Adj. R-squared  0.019091  0.214023 

 Sum sq. resids  0.017858  1321.841 

 S.E. equation  0.019090  5.193876 

 F-statistic  1.496298  7.943709 

 Log likelihood  133.6060 -157.9088 

 Akaike AIC -5.023308  6.188799 

 Schwarz SC -4.910736  6.301371 

 Mean dependent  0.046116  8.867481 

 S.D. dependent  0.019275  5.858504 
   

 Determinant resid covariance (dof adj.)  0.009537 

 Determinant resid covariance  0.008468 

 Log likelihood -23.51291 

                                                           
43

 If administered prices account for a large percentage of the CPI basket, it is more appropriate to use a market-

determined inflation measure excluding administered prices.  In many cases, however, these data are not 

available and this avenue cannot be pursued.  
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 Akaike information criterion  1.135112 

 Schwarz criterion  1.360255 
   

 

Using the estimated VAR as well as the long-run restriction that supply shocks have no 

long-run effect on GDP, we can extract a transitory, i.e., cyclical, component of GDP.   

We now have to create the long-run impact matrix, M:   
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Imposing this (long-run) restriction can be done either in text or matrix format.  To 

impose this restriction using the text format type: 

 
@lr1(@u2)=0 

 

To impose the restriction using the matrix format, create the long-run matrix, which I 

have called matrix_lr in the workfile: 
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m
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In other words, the long-run response of the first variable (real output) to the second 

structural shock (a supply shock) is zero.  : To impose the restriction above in text format, we 

select Proc and Estimate Structural Factorisation… from the VAR window menu.  In the 

SVAR options dialog, select Text (or Matrix as appropriate).  The output can be found in 

Table 7.  

 

Table 7: SVAR(1) estimation results for dlrgdp and inflation,  

1959 – 2012 (long-run restrictions) 
 

 Structural VAR Estimates   

 Sample (adjusted): 1961 2012   

 Included observations: 52 after adjustments  

 Estimation method: method of scoring (analytic derivatives) 

 Convergence achieved after 6 iterations  

 Structural VAR is just-identified   
     

Model: Ae = Bu where E[uu']=I   

Restriction Type: long-run text form  

Long-run response pattern:   

C(1) 0    

C(2) C(3)    
     
 Coefficient Std. Error z-Statistic Prob.   
     

C(1)  0.025324  0.002483  10.19804  0.0000 

C(2)  3.629467  1.335808  2.717058  0.0066 

C(3)  9.284470  0.910417  10.19804  0.0000 
     

Log likelihood  -26.60292    
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Estimated A matrix:   

 1.000000  0.000000    

 0.000000  1.000000    

Estimated B matrix:   

 0.019039 -0.001402    

 1.271787  5.035763    
     

 

In terms of impulse response functions, we are now no longer considering EView’s 

default option of a Cholesky decomposition.  In order to tell EViews this, we have to go to 

View/Impulse Responses..., check the box for Accumulated Responses and select the 

Structural Decomposition option on the Impulse Definition tab.  Note that EViews does 

not give a name to the shocks but labels them sequentially.  In our case, the shocks are 

referred to as Shock1 and Shock2.  In addition, it is not possible to get EViews to calculate 

standard error bands around the impulse response functions automatically.  The 

(accumulated) impulse responses associated with this identification are given in Figure 19. 

 

Figure 19: Accumulated impulse response functions 
 

 
 

Shock1 is the demand shock, whereas Shock2 is the supply shock.  Thus, a demand 

shock increases real GDP growth (as expected?) and inflation.  A supply shock leaves output 

unaffected and increases inflation.  

From the estimated structural VAR, how can we generate the fundamental shocks, i.e., 

the ut's in equation (50), using EViews?  To generate the fundamental shocks, we use the 

equation Aεt = But, where εt is the error or residual from the VAR regression which has been 
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generated, and matrices A and B come from the estimated structural VAR.  The fundamental 

shocks are then simply: 
tt ABu 1ˆ  . 

We generate the fundamental (structural) shocks from the long-run SVAR by selecting 

Proc and Make Residuals.  EViews will automatically generate series named resid?? in 

the same ordering as the VAR estimate.  In this case we assume that they are resid01 and 

resid02.  Change the names as appropriate – I have called them lr_shock1 and 

lr_shock2.  Create two matrices, calling them mat_lr_a and mat_lr_b by typing in 

the command window:  

 
matrix(2,2) mat_lr_a 

matrix(2,2) mat_lr_b 

 

and enter the estimated coefficient values from the estimated long-run SVAR, i.e.: 

 










10

01
 

 

for the entries of mat_lr_a (remember that EViews assumes the A matrix to be the identity 

matrix, cf. footnote [18]) and: 

 








 

03576352717871

00140200190390

..

..
 

for mat_lr_b. 

 

Type in the command window (or create a programme and run it): 

 
group resgroup lr_shock1 lr_shock2 

matrix resmatrix=@convert(resgroup) 

matrix resfund=@transpose(@inverse(mat_lr_b) * mat_lr_a * 

@transpose(resmatrix)) 

show resfund 

 

Select View, Graph, Line to see a plot of the fundamental (structural) errors (Figure 

20). 
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Figure 20: Fundamental shocks 
 

 
 

Getting the underlying series out of the matrix called resfund is a bit convoluted.  At the 

moment, the matrix resfund is made up of two columns, the first of which is the demand 

shock (C1 in Figure 20) and the second of which is the supply shock (C2 in Figure 20).  

Using the following five lines in the command window will generate two series, called 

demand_shock and supply_shock that extricate the two structural shocks from the 

matrix resfund: 

 
series demand_shock  

series supply_shock  

group g1 demand_shock supply_shock 

sample s1 1961 2012  

mtos(resfund,g1,s1)  
 

The derivation of the output gap requires setting a starting point at which the gap is 

closed.  Potential output is then associated with cumulated supply shocks 

(supply_shocks), whereas the output gap reflects cyclical swings in aggregate demand.
44

  

Interestingly, we can use the BQ output gap to construct a corresponding measure of potential 

output.  The log of potential output, ln(potential GDP), is defined as: 

 

 ln(potential GDP) = ln(actual GDP) – (ln(gap/100) + 1) (53) 

 

Based on these estimates, we frequently find that potential output for developing 

countries is almost as volatile as the (real) GDP series itself.  Indeed, Aguiar and Gopinath 

(2007) document that shocks to trend growth, rather than transitory fluctuations around a 

stable trend, are the primary source of fluctuations in emerging market economies.   

A ‘larger’ version of the BQ decomposition that uses more information was suggested 

by King et al. (1991) and is known as the King, Plosser, Stock and Watson (KPSW) 

decomposition.  While the procedures are quite similar, more information is used in the 

KPSW decomposition to estimate the trend, including cointegration restrictions and a larger 

                                                           
44

 We can use EView’s @cumsum(supply_shock, s) command for that purpose, which calculates the 

cumulative sum of the values in supply_shock from the start of the workfile/sample.  Writing the command 

as @cumsum(supply_shock, s) allows you to set the cumulative sum over a sample period defined by s, 

such as sample s = first_period last_period.  
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number of variables.  In addition, the KPSW approach easily generalises to larger systems, 

while the BQ decomposition is primarily designed for bivariate models.
45

  But this approach 

is not readily available in EViews and would require a tailor-made EViews program to make 

it operational.  

 

4.4.2 The production-function approach 

 

On the theoretical side, we can use a production function approach, although the data 

requirements often turn out to be unrealistic for emerging market and developing economies.  

The production function approach decomposes GDP using employment and capital stock 

data, assuming a certain technology.  It is standard in the literature to assume that the 

economy is characterised by a Cobb-Douglas production function assuming constant returns 

to scale technology: 

 

 Yt = AtKt
α
Lt

1-α
 (54) 

 

where Yt is output, Kt and Lt are capital and labour services respectively, while At is the 

contribution of technology or total factor productivity (TFP).  The output elasticities, equal to 

α for capital and (1 – α) for labour services, add up to one reflecting constant returns to scale.  

For simplicity, labour input is frequently defined as the number of employees in the 

economy.  

Because capital input is not available, it is usually generated using the perpetual 

inventory model, given by: 

 

 Kt = (1 – δ)Kt-1 + It (55) 

 

where It is investment and the (annual) depreciation rate δ is usually set to either 0.05 or 0.10.  

The initial capital stock is then computed as K0 = I*/(g + δ), where I* is benchmark 

investment, calculated as the average proportion of investment in total GDP, while g is the 

average growth rate of the economy over the sample period.  Hence, based on these 

parameters, the initial capital stock is derived as: 

 

 )/()/( δgYYIK  00  (56) 

 

Since TFP is not directly observable, it is computed by inverting the technological 

process given by equation (54).  In other words, we calculate TFP as the residual determinant 

of output that is not explained by labour and capital using: 

 

 
α

t

α

t

t
t

LK

Y
A




1
 (57) 

 

or: 

 

 at = yt – αkt – (1 – α)lt (58) 

                                                           
45

 Note, however, that BQ decompositions with more than two variables exist, although it becomes more 

difficult to unequivocally impose the necessary long-run restrictions.  
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where lower-case letters indicate variables in logs.  This results in a series for TFP which can 

be combined with the other inputs from equation (54) to decompose GDP growth.  Somewhat 

more elaborate versions of TFP involve the following functional form: 

 

 ln(Yt) = αln(Pt × PRt × (1 – Ut) × Ht) + (1 – α)ln(Kt) + εt (59) 

 

where Yt is output, Pt is the working-age population, PRt is the labour participation rate, Ut is 

the unemployment rate, Ht is the number of hours worked per worker, Kt is the capital stock 

and α is the average labour share over the sample period.  TFP from equation (59) is once 

again derived as the equation’s residual, εt.  

Some authors prefer to purge the effects of a varying capacity utilisation rate on TFP by 

modifying the original production-function approach in equation (59) as: 

 

 ln(Yt) = αln(Pt × PRt × (1 – Ut) × Ht) + (1 – α)ln(CUt × Kt) + tε
~

 (60) 

 

where CUt is the capacity utilisation rate and tε
~

 is adjusted TFP.  It is well known that TFP 

fluctuations account for a considerable part of output fluctuations over the business cycle.  At 

the same time, though, the estimated TFP series is very sensitive to changes in the intensity of 

capital utilisation.
46

   

With these results in hand, we can now compute the output gap using the production 

function approach.  In terms of this approach, output will be at its potential if the rates of 

capacity utilisation are normal, that is, labour input is consistent with the natural rate of 

unemployment and technological progress (as captured by total factor productivity or TFP) is 

at its trend level.  More specifically, we use equation (54) with trends for all the variables.  

The final step in this approach involves removing cyclical factors from adjusted TFP and the 

factor inputs.  This is done by using equilibrium values of the variables in equation (54), 

which are again most simply derived through filtering techniques.  The standard HP filter is 

used to generate those trends assuming a smoothness parameter, λ, of 100 for annual data.  

The assumption of constant returns to scale is maintained and elasticities are calibrated as α = 

0.5.  Starting from the new production function in terms of HP-filtered series, denoted by an 

asterisk, we have: 

 

 Yt
*
 = At

*
(Kt

*
)
α
(Lt

*
)
1-α

 (61) 

 

Potential labour input, L*, could be the level of employment consistent with the (time-

varying) natural rate of unemployment, UR*: 

 

 Lt
*
 = LFt(1 – URt

*
) (62) 

 

where LFt is the labour force.  The natural rate of unemployment can be derived in a number 

of ways, for example, by HP-filtering the observed unemployment rate.  While measured TFP 

tends to be rather volatile, in part reflecting fluctuations in the capacity utilisation rate, it 

usually displays a clear trending behaviour that can be readily extracted using a simple HP 
                                                           
46

 This results from the fact that estimated TFP relies on the total capital stock and not the flow of services 

actually provided by the stock at any point in time, while, in reality, capital utilisation varies considerably over 

the business cycle.  
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filter or a regression of measured TFP on a time trend.  The resulting TFP trend smoothes 

away cyclical fluctuations in capacity utilisation and can therefore be used in the production 

function to estimate a series for potential output.   

The output gap is then calculated as a percentage of potential output as either: 

 

 Gapt = 100(Yt – Yt
*
)/Yt

*
  (63) 

 

or the logarithmic approximation of equation (63): 

 

 gapt = 100(lnYt – lnYt
*
) (64) 

 

Some shortcomings of this approach include the dependence on a number of crucial 

assumptions, such as the (constant) shares of capital and labour, and the function form of the 

production relationship, including the number of input factors and the specification of returns 

to scale.  We should also not forget that we are still using the HP-filter for the purposes of 

calculating trend values of the factor inputs.  Problems in obtaining trend estimates of real 

GDP are thus simply transferred to trend estimates of factor inputs.   

 

4.4.3 The output gap and cointegration analysis 

 

Gradzewicz and Kolasa (2005) present a cointegration approach to estimating the 

output gap for Poland.  The calculation of the output gap proceeds in two ways, both 

involving the concept of cointegration: 

 

 the first method is based on a two-factor production function that is estimated in a 

cointegrated vector error-correction mechanism (VECM) system, in which 

potential GDP is calculated as the product resulting from the maximum level of 

production inputs; while 

 

 the second method employs a permanent-transitory decomposition of real GDP, 

using the long-term restrictions in the VECM that arise endogenously by 

cointegrating relationships – these cointegrating relationships are based both on 

the long-term production function and on the permanent-income hypothesis 

 

As pointed out by the authors, cointegration analysis and the use of the Johansen 

methodology connect the two methods highlighted above.  As such, the two approaches have 

a more solid grounding in economics than the statistical and hybrid decompositions discussed 

so far.  The Johansen methodology is used to calculate a Cobb-Douglas production function, 

assuming that the TFPt variables can be approximated by an exponential trend, i.e., a linear 

trend after taking the logarithm.  This assumption was made in order to employ the standard 

assumptions concerning trends in the Johansen procedure.  Using Polish data, Gradzewicz 

and Kolasa (2005) find one statistically significant cointegrating relationship between Yt, Lt 

and Kt.
47

  The resulting estimated long-term relationship between GDP, labour input and 

capital was found to be: 

                                                           
47

 Labour input (Lt) was assumed to be equal to the number of employed persons according to the Labour Force 

Survey (LFS).  Capital (Kt) was assumed to be equal to the gross value of fixed assets in the domestic economy.  

As outlined in the main text, TFPt was approximated by an exponential trend.  

http://www.bis.org/ifc/publ/ifcb20.pdf
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 t

ttt eKLY 010290430570 ....ˆ   (65) 

 

Note that this estimated relationship of the long-term production function does not 

suffer from the fact that trend values for labour input and capital have been calculated using 

the HP-filter.   

An alternative approach to determining potential output, used both in economic theory 

and empirical research, is to treat it as the long-term GDP trend.  The methodology employed 

by the authors employs the permanent-transitory decomposition described in Yang (1988).  

The dynamic system is composed of three variables: real GDP, the number of employed 

persons and capital.  All three variables are I(1), meaning that economic theory defines a 

cointegrating relationship existing between these three variables as the Cobb-Douglas 

production function described above.  The system was therefore estimated as a VECM and 

the restriction of constant returns to scale successfully imposed on the parameters of the 

cointegration relationship.  Using this approach, the long-run relationship was given by: 

 

 t

ttt eKLY 00090055050704930 ....ˆ   (66) 

 

One advantage of this approach is that the estimated output gap is, by design, 

stationary.  In order to validate some of their findings, the authors also considered a 

permanent-transitory decomposition based on the permanent income hypothesis (PIH).  In 

particular, the PIH imposes different economic assumptions that the Cobb-Douglas 

production function.  In this case, the character of the cointegration restrictions is based on 

consumption theory.  The three variables in the VECM are real GDP, consumption and the 

short-term real interest rate.  This specification may therefore be more readily estimable if 

data on the capital stock or the gross value of fixed assets in the domestic economy are not 

available.  In the system thus defined, the long-term relationship is defined as a stationary 

consumption-to-GDP ratio.   

In summary, the alternative methods of estimating the output gap using cointegration 

analysis differ with regard to the concept and method of calculation.  Potential GDP 

estimated using the production-function approach and the Johansen methodology can be 

regarded as reflecting the supply side of the economy.  This means that the level of GDP 

corresponds to long-term inputs of the factors of production.  On the other hand, methods 

based on a permanent-transitory decomposition of GDP use long-term cointegrating 

relationships between macroeconomic variables and yield potential GDP estimates that are a 

product of accumulated shocks.  

 

4.4.4 Dynamic factor models 

 

The final approach we consider in this and the next Section is an (approximate) 

dynamic factor model.  These models exploit the fact that there may be a source of common 

fluctuations in a vector of economic time series.  In particular, the approach assumes that a 

low-dimensional vector of unobservable variables (the so-called ‘factors’) drives the co-

movements across variables in the vector of economic time series.  These factors can be 

considered as an exhaustive summary of the information contained in a (large) data set, such 

that they may provide a better assessment of ‘real’ or ‘nominal’ conditions in the economy 

than any particular single variable.  Another way to think about the unobserved factors is that 
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they reflect theoretically motivated concepts such as ‘economic activity’, ‘price pressures’ or 

‘credit conditions’ that cannot easily be represented by one or two series but rather are 

reflected in a wide range of economic variables.   

The advantages from this approach is that it uses a lot more information than the other 

methods consider so far and that, in theory, this series should be robust to revisions in the 

sense that these are now due to unbiased measurement errors or idiosyncratic news 

(Giannone et al. (2008)).
48

   

One of the many ways in which dynamic factor models have been used is to provide 

real-time estimates of the output gap.  A recent application of this approach to calculating the 

Norwegian output gap can be found in Aastveit and Trovik (forthcoming).  I will therefore 

highlight both the theoretical as well as the practical aspects of calculating the output gap via 

the common component series.   

This approach extracts a common component in GDP from a large set of related 

macroeconomic indicators.  Suppose we have a ‘large’ set of N informational or background 

(zero-mean stationary) time series, Xt, where K + M « N, which is related to the unobservable 

factors, Ft, and – sometimes, but not always – to some observable variables, Yt:  How large is 

large in this context?  Boivin and Ng (2006) find that factors extracted from as few as 40 

(pre-screened) series often yield satisfactory or even better results than using a much larger 

informational set, Xt.  As argued by Stock and Watson (2009), the factors are still estimated 

consistently by principal components even if there is some time variation in the loading 

parameters. 

We assume that the large set of data, Xt, can be described by an (approximate) dynamic 

factor model.  Let: 

 

 Xt = Λ(Ft, Yt) + et = Λ
f
Ft + Λ

y
Yt + et  (67) 

 

where the Λ
i
 are the factor loadings, Xt is a (T × N) panel data matrix which contains a range 

of macroeconomic and financial variables – the individual Xit need to be stationary and 

standardised.   

As an aside, note that Stock and Watson (2002) refer to equation (68) – without the 

observable variables, Yt – as a dynamic factor model: 

 

 Xt = Λ(Ft) + et = Λ
f
Ft + et  (68) 

 

The number of factors, r, is typically much smaller than the number of variables, n, thus 

ensuring a parsimonious model.  The factors evolve over time according to the following 

VAR: 

 

 Ft = AFt-1 + But (69) 

 

where A is a (r × r) parameter matrix (with all the roots of det(Ir – Az) outside the unit circle), 

B is a (r × q) matrix of full rank q, where q is the number of shocks in the economy, i.e., the 

dimension of ut.  We also assume that the common shocks, ut, follow a white-noise process 

                                                           
48

 Another advantage arises in forecasting applications.  Stock and Watson (1999a) and Bernanke and Boivin 

(2003) have demonstrated how useful factor methods are for forecasting inflation.  Banerjee et al. (2006) show 

that dynamic factor models are a reasonable alternative forecasting tool in the face of short spans of reliable 

time series. 

http://www.eui.eu/Personal/Marcellino/22.pdf
http://www.eui.eu/Personal/Marcellino/22.pdf
http://www.eui.eu/Personal/Marcellino/22.pdf
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and that Q = E(But(But)′).  In this model, r larger than q would capture the lead and lag 

relationships between common factors and common shocks.  Together, equations (67) and 

(69) define a state-space representation of an (approximate) dynamic factor model (Forni et 

al. (2005)).
49

 

The number of factors in factor models is usually exogenously determined, usually on 

the basis of subjective criteria such as a priori knowledge, visual inspection of a scree plot 

and the proportion of variance explained.  At the same time, formal information criteria to 

determine the optimal number of factors also exist (Bai and Ng (2002)). 

Following Giannone et al. (2008), equations (67) and (69) are estimated in a two-step 

procedure.  First, OLS is used to estimate parameters on the principal components from the 

balanced part of the data set (i.e., the data set up to the latest date for which there exist 

observations on all variables).  These parameters and factors are used as initial values in a 

Kalman-filter re-estimation of the now possibly non-orthogonal factors.  Moreover, the 

unbalanced part of the panel data set can now be incorporated through the use of the Kalman 

filter.  Missing observations are interpreted to have an infinitely large noise-to-signal ratio.  

The latter is achieved by parameterising the variance of the idiosyncratic component of the 

missing observations to infinity at the end of the sample.   

Having obtained an estimate of the factors conditional on all available information up 

to time t, GDP growth is estimated as a simple projection, meaning that quarterly GDP 

growth is regressed on the factors using OLS.  This approach implicitly assumes that the 

common factors capture the dynamic interactions among the dependent variables as well as 

the dynamics in GDP.   

In the next step, the estimated GDP growth series is transformed to levels.  Finally, we 

obtain an estimate of the output gap by detrending the estimated GDP series in levels.  

 

4.4.5 Survey data on cyclical indicators 

 

Each of the methodologies discussed so far has relied on a specific economic statistical 

model of potential output and hence spare capacity in the economy.  But additional evidence 

on the output gap is provided by survey-based measures of spare capacity.  Broadly 

speaking, while these surveys frequently vary in scope and design, they all contain specific 

questions on whether or not companies have free capacity to expand production of their 

goods and services.  In addition, some surveys may also include questions on whether or not 

companies are facing difficulty recruiting staff.  The value of these surveys arises only if the 

survey data cover a full economic cycle, so survey time series data that only cover a 

relatively short time period are of limited use.  It should be kept in mind, though, that the 

surveys capture significant parts of the domestic economy, but not necessarily all of it.   

The UK’s Office for Budget Responsibility (OBR) (2011a, 2011b) has added this 

approach to its toolkit for calculating the UK’s output gap.
50

  It uses a wide range of 

contemporaneous indicators of the cyclical position of the economy to inform an estimate of 

the current size of the output gap.  I have been provided with annual data on nine capacity 

utilisation surveys in industry from 1988 to 2008, to which I have added the deviation of the 

annual unemployment rate from its HP-filtered trend over the same period, yielding a full set 

                                                           
49

 It is an approximate dynamic factor model since the idiosyncratic terms in equation (67) are allowed to be 

weakly correlated (Forni et al. (2000), Stock and Watson (2002)).  
50

 Indeed, Goldman Sachs (2013) have recently used the same approach to calculate output gaps for the euro-

area. 

http://budgetresponsibility.org.uk/pubs/briefing+paper+No2+FINAL.pdf
http://budgetresponsibility.org.uk/pubs/WorkingPaperNo1-Estimating-the-UKs-historical-output-gap.pdf
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of ten so called cyclical indicators.
51

  I then followed the methodology as outlined in Chapter 

4 of OBR (2011a), which involves principal components analysis.  In a nutshell, principal 

component analysis specifies a number of different linear combinations of the underlying 

variables (in this case the ten cyclical indicators) which are: 

 

 uncorrelated (orthogonal); and 

 contain the maximum variance 

 

The first principal component is the linear combination which has the greatest variance, 

the second principal component is a different linear combination which has the second-

highest variance and so on.  In the example at hand, the first principal component, i.e., a 

particular linear combination of some underlying cyclical indicator series, is interpreted as a 

proxy for the output gap.  This goes back to an assumption that the output gap is the most 

important common determinant of the cyclical indicators.   

Table 8 sets out the variables used in this illustrative application of principal 

components analysis, along with the derived weights for each indicator variable.  One 

advantage of principal components analysis is that it can be used to combine a variety of 

different types of indicators.  As with any series, survey data may be subject to limitations as 

an indicator of the degree of spare capacity or excess demand.
52

  For that reason, it is helpful 

to complement survey data with non-survey cyclical information.  For that reason, we have 

added the deviation of the unemployment rate from an HP-trend estimate of the non-

accelerating inflation rate of unemployment (NAIRU) to nine indicators of capacity 

utilisation in the Sri Lankan industrial sector.  

 

Table 8: Principal component variable information and weights 
 

Variable Sample period for 

standardisation 

Weights 

Capacity utilisation in industry: food, beverage and tobacco 

products 

1988 – 2008 

0.076 

Capacity utilisation in industry: textile, wearing apparel and leather 1988 – 2008 0.145 

Capacity utilisation in industry: wood and wood products 1988 – 2008 0.257 

Capacity utilisation in industry: paper and paper products 1988 – 2008 0.440 

Capacity utilisation in industry: chemical, petroleum, rubber and 

plastic products 

1988 – 2008 

-0.440 

Capacity utilisation in industry: non-metallic mineral products 1988 – 2008 -0.296 

Capacity utilisation in industry: basic metal products 1988 – 2008 -0.455 

Capacity utilisation in industry: fabricated metal products 1988 – 2008 0.239 

Capacity utilisation in industry: manufactured products 1988 – 2008 0.448 

Deviation of unemployment rate from HP-trend estimate of the 

NAIRU 

1990 – 2008 

-0.029 

Notes: Sample period for standardisation (second column) refers to the sample period used to calculate means 

and standard deviations.  The weights (loadings) in the third column are used to construct the first principal 

component.  The square of the principal component weights add up to one.  

 

                                                           
51

 Ideally, I would have also liked survey measures of recruitment difficulties and average earnings growth. 
52

 Many survey measures report the balance of firms operating above or below capacity, but not the extent of 

spare capacity within firms.  Bank of England (2011) has a discussion of some of the issues in interpreting 

survey measures of spare capacity.  

http://budgetresponsibility.org.uk/pubs/briefing+paper+No2+FINAL.pdf
http://www.bankofengland.co.uk/publications/Documents/inflationreport/ir11aug.pdf
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The EViews workfile prin_comp_sri_lanka.wf1 contains the above ten principal 

component indicator variables, which have been standardised to have a mean of zero and 

standard deviation of one over the sample period in the second column.  Note that it is not 

always necessary to use the entire available time series.  For indicators with a relatively short 

time span it may not be appropriate to use the entire sample if the starting point occurs during 

a period of either elevated or depressed activity, as this may introduce a cyclical bias in the 

long-term average.
53

  

In the next step, we create a group (called gall) out of all the ten variables.  In the 

gall window, we extract the principal components by going to View/Principal 

Components…, which brings up the Principal Components dialog box.  This box has two 

panes.  On the Components pane, we give meaningful names to the vector of eigenvalues 

and the matrix of eigenvectors such that we store them for later use.  I have called them 

eigenvalues and eigenvectors.  On the Calculation pane, we use the ‘Correlation’ 

type when calculating principal components.  This forces EViews to use the correlation 

matrix to extract the principal components and implies that the data does not need to be 

standardised (why?).  The eigenvectors are saved in a matrix called eigenvectors (which will 

be used later on).  We set the sample period to 1990 2008 as the unemployment rate series 

only starts in 1990.  The following two screenshots show the two panes of the Principal 

Components dialog box. 
 

    
 

Pressing OK brings up the results of the principal components analysis in tabular form, 

the top portion of which is reproduced in Table 9 below.  We can see that the first principal 

component explains just about 41 per cent of the variation in the entire dataset.  The 

Proportion column in Table 9 shows that the marginal contribution of additional principal 

components decreases: the second principal component on its own explains 23 per cent of the 

variation in the entire dataset, the third principal component on its own explains another 15 

per cent of the variation in the entire dataset and so on.  We can see that the final three 

principal components all explain less than 1 per cent of the variation in the entire dataset.  

 

 

 

                                                           
53

 On a more technical note, the cyclical indicators should be symmetrically distributed over time. 
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Table 9: Principal components analysis: eigenvalues 
 

Principal Components Analysis    

Sample: 1990 2008     

Included observations: 19    

Computed using: Ordinary correlations   

Extracting 10 of 10 possible components   
      

Eigenvalues: (Sum = 10, Average = 1)   

    Cumulative Cumulative 

Number Value    Difference Proportion Value Proportion 
      

1 4.102241 1.793523 0.4102 4.102241 0.4102 

2 2.308717 0.806791 0.2309 6.410958 0.6411 

3 1.501926 0.729520 0.1502 7.912884 0.7913 

4 0.772407 0.228790 0.0772 8.685291 0.8685 

5 0.543617 0.182658 0.0544 9.228908 0.9229 

6 0.360959 0.126295 0.0361 9.589867 0.9590 

7 0.234664 0.143761 0.0235 9.824531 0.9825 

8 0.090904 0.033391 0.0091 9.915435 0.9915 

9 0.057513 0.030461 0.0058 9.972948 0.9973 

10 0.027052 ---     0.0027 10.00000 1.0000 
      

 

The bottom portion of EView’s principal component output yields the weights for the 

first principal component (PC 1) that are reproduced in Table 10 above.  

 

Table 10: Principal components analysis: eigenvectors 
 

  
Eigenvectors (loadings):  

  

Variable PC 1   
  

BASIC_METAL -0.455296 

CHEMICAL -0.400295 

FABRICATED 0.238581 

FOOD 0.076118 

MANUFACTURED 0.448432 

NON_METALLIC -0.296114 

PAPER 0.439737 

TEXTILE 0.144530 

UNEMPLOYMENT -0.028965 

WOOD 0.256679 
  

 

One attribute of principal components analysis is that it is a purely statistical technique 

that is not easily embedded into an economic framework.  One upshot of this is that some of 

the factor loadings in Table 10 are negative, meaning that some cyclical indicator variables 

are actually subtracted from the linear combination that makes up the first principal 

component.  The output from principal components analysis can be written as: 

 

 



10

1

1
i

itit ZθPC  (70) 
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where Zit (i = 1, …, 10) denotes the (standardised) cyclical indicator and θi the respective 

weight (or factor loading) associated with each indicator, as given in Table 10.  Equation (70) 

underscores the fact that the first principal component represents a linear combination of the 

(ten) underlying cyclical indicators.  A note on the number of required cyclical indicators.  In 

light of the analysis in Boivin and Ng (2006), who find that factors extracted from as few as 

40 (pre-screened) series often yield satisfactory or even better results than using a much 

larger informational set, the ten cyclical indicators used in this practical guide are therefore 

on the small side and should only serve as an illustration of how this approach works.  At the 

same time, the OBR, which pioneered this approach, only uses 24 cyclical indicators.  

At the moment, though, the units of Xt and the output gap estimate are not the same.  To 

make the results of the principal components analysis meaningful, the series PC1t is itself 

standardised using the mean and standard deviation of PC1t from 1990 to 2008.  To translate 

the estimate to a proxy for the output gap, this standardised series is then scaled to the mean 

and standard deviation of the HP-filtered historical output gap series from 1990 to 2008.  In 

particular, if μHP and σHP denote the mean (usually close to zero) and standard deviation of 

the HP-filtered output gap series from 1990 to 2008, the scaled version of PC1t is obtained 

as: 

 

 tHPHPt CPσμCP 11 ˆˆ   (71) 

 

where tCP 1  is the standardised version of PC1t.  It is not uncommon for quarterly versions 

of this output gap estimator to be extremely volatile, in which case (centred) moving averages 

can be applied to the series to adjust for its volatility.  

Figure 21 shows the estimated output gap from the cyclical indicators (the blue line) as 

well as the corresponding HP-filtered estimate of the output gap over the same period (the red 

line).  The left-hand panel shows the two series in standardised format, while the right-hand 

side panel shows the two series scaled to match the mean and standard deviation of the HP-

filtered output gap estimate.  On the basis of the (very small) number of cyclical indicators, as 

summarised in the first principal component, we would conclude that the output gap has seen 

a steady deterioration over the period from 1990 to 2008.  

 

Figure 21: HP-filtered output gap and cyclical indicator output gap, 1990-2008 
 

  
 

 

 

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

PC1_HAT HP_CYCLE_WEO_HAT

-.04

-.03

-.02

-.01

.00

.01

.02

.03

.04

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

PC1_EST HP_CYCLE_WEO



 

ole.rummel@bankofengland.co.uk 59  ©Bank of England 

 

The Bank of England does not accept any liability for misleading or  

inaccurate information or omissions in the information provided. 

 

5 Summary and conclusions 

 

Each of these approaches makes different assumptions regarding the nature of the trend 

and cycle components of the underlying series.  In particular, the HP filter allows control 

over the smoothness of the cycle component, while the BN decomposition and approaches 

using the Kalman filter to do not.  As such, the BN decomposition assumes that the trend is 

dominant and that the cycle is noisy, while Kalman filter approaches assume the opposite.  

Band-pass filters, on the other hand, allow control of the frequency of the cycle, in other 

words, the length of the business cycle.  

We have estimated potential output using a variety of different approaches, none of 

which can lay claim to being ‘the’ correct method.  One aim of using a battery of different 

methods is to obtain a range of values that we can deem reasonable.  
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