

C4GT’s DMP 2024 – Proposal

Name
GAURAV PATIDAR

Email ID Gaurav05082002@gmail.com

Phone Number

7689816680

GitHub ID
https://github.com/Gaurav05082002

Discord ID
Gaurav05082002

Current occupation

(Working Professionals - add current

organization & years of exp)

Student

Education Details

(College Name - Degree Name and branch

of engineering or other

course/specialization)

IIT KHARAGPUR

DUAL DEGREE

AGRICULTURAL ENGINEERING &

COMPUTER SCIENCE ENGINEERING (Minor)

Technical skills with level

(Mention tech skills/languages

known/UI-UX and level -

Novice/Intermediate/Expert)

Expert (ReactsJs , Js ,Html , Css , MERN , Mongodb , Golang, C

,C++ , Node Js , AWS , Python , SQL)

Intermediate (Docker , Php)

Title:

 STATE OF WELFARE MICROSITE

Summary

Our approach to the State of Welfare Microsite project is centered around designing and implementing a

robust digital infrastructure to support the efficient hosting of information and knowledge base that is

gained from surveys . We aim to develop comprehensive data pipelines that seamlessly collect, process,

integrate, and analyze various forms of healthcare-related information, ensuring accuracy, security, and

compliance with regulatory standards. By leveraging modern technologies and best practices, we seek to

create a scalable and adaptable platform that empowers stakeholders to make informed decisions, enhance

welfare services , and drive positive outcomes across the welfare ecosystem.

Project Detail

1. Project Overview:

a. Understanding of the project

The project involves creating a comprehensive microsite that aggregates and shares

insights on welfare services in the country. This initiative, in collaboration with various

stakeholders from community organizations, government, and private sector, aims to

provide a 360-degree view of the current welfare landscape through data from surveys,

participant inputs, and expert analyses. The goal is to make this information publicly

accessible and interactive, allowing citizens to contribute their feedback and engage with

the platform. The microsite will be built with an emphasis on user accessibility, robust

data structures, and interactive features, and will be licensed under Creative Commons to

ensure broad usage and distribution.

To effectively disseminate this information, we plan to develop a microsite. This

microsite will serve as a knowledge base that is accessible to all citizens, enabling them

to view insights, interact with the site (potentially through a chat feature), and share their

own inputs on the welfare ecosystem.

The project goals are:

• Design the microsite in coordination with the SOWR working group.

• Design the underlying data structures.

• Develop the data pipelines for different forms of data and content.

• Build the MVP of the site for demonstration to the SOWR working group.

b. Problems

Data Integration Challenges: Integrating diverse forms of data (structured and

unstructured) from multiple sources may present technical challenges, especially in

ensuring consistency and accuracy.

User Accessibility: Ensuring the microsite is easily accessible and user-friendly for a

wide range of users, including those with limited technical skills or disabilities, can be

challenging.

Scalability: The microsite must be scalable to handle potentially large amounts of data

and user interactions without performance degradation.

Data Privacy and Security: Safeguarding the privacy and security of the data, especially

if it includes sensitive information, is crucial.

c. Solutions

Robust Data Architecture: Design a robust data architecture that can seamlessly

integrate structured and unstructured data. Utilize ETL (Extract, Transform, Load)

processes and data normalization techniques to ensure data consistency and accuracy.

User-Centric Design: Employ a user-centric design approach, involving usability testing

and feedback loops, to ensure the microsite is intuitive and accessible. Implement

accessibility standards (e.g., WCAG) to cater to users with disabilities.

Scalable Infrastructure: Use cloud-based infrastructure (e.g., AWS) and scalable

technologies (e.g., microservices architecture) to ensure the microsite can handle varying

loads efficiently. Implement content delivery networks (CDNs) to optimize performance

and load times.

Data Privacy and Security Measures: Implement robust data privacy and security

measures, including encryption, secure authentication mechanisms, and compliance with

data protection regulations. Conduct regular security audits and vulnerability assessments

to safeguard against potential threats.

Demo Implementation of Product Logic taking example of SOWR working group for

AYUSHMAN BHARAT WELFARE SERVICE (ABWS)

During the development of the microsite, there will be repetition of many components. Hence, we should

go with a template-oriented library. We will use REACTJS. One more feature that makes it feasible for

our case is that we will make a website and will make it responsive via MEDIA QUERIES IN CSS. We

can make the application a mobile app by using the IONIC CAPACITOR LIBRARY.

In case of ABWS, we will have three main stack holders

Samaj (Public , users , who will take the benefits of scheme)

Sarkar (govt authorities who handles the resource , here national health authority)

Bazaar (Hospitals and clinics who connects the resources to Users)

Our homepage will serve as the initial landing page, where users can choose the scheme they wish to

explore for insights or conduct surveys. (The page will be created by react tech stack)

Api needed for this page

const API_ENDPOINTS = {

 welfareSchemes: '/api/welfare-schemes',

 events: '/api/events',

 latestReports: '/api/latest-reports',

 login: '/api/login',

 signup: '/api/signup',

 testimonials: '/api/testimonials',

 termsOfService: '/api/terms-of-service'

};

Once the Scheme/Service is selected there will be three different kind of landing page respective to three

different type of stack holders. (samaj , sarkar , bazar)

First type of landing page (open for all and can be used without login)

This page will help you to see chart analysis , and other insights about scheme .

Making testimonials giving process easy and fast we will give audio recording option through audio,js

library

Here we will use alan.ai to make a chat bot to which user can ask question regarding this scheme .

(REACT , CHART.JS , ALAN.AI , FORM-JS , AUDIO.JS will help to complete this web page)

Required Api Endpoints for this page

// API endpoint URLs

const API_ENDPOINTS = {

 insights: '/api/insights',

 chatbot: 'https://api.alan.ai/chatbot',

 survey: '/api/survey',

 join: '/api/join'

};

Second type of landing page (when authorities login by their own login id) (Admin Dashboard)

From this page authority can publish the surveys for public, also a new survey can be started if any

authority want to get the survey of some individua , also from here authority can publish new articles and

updates in policies ,also here will be dashboard to check state of welfare scheme

The data recorded saved in DB or any csv excel file can be given to feed data to analyzing model and

with help of CHART.JS charts will be made and can be published .

this page will use REACT , PYTHON for data analysis of excel or csv file , FORM-JS for making forms

for taking the survey , CRUD algorithm for updates and publishing of new policies

Api end points for this landing page

// API endpoint URLs

const API_ENDPOINTS = {

 analyzeSurveyData: '/api/analyze/survey-data',

 publishAnalysis: '/api/publish/analysis',

 startSurvey: '/api/start-survey',

 createArticle: '/api/articles/create',

 readArticles: '/api/articles',

 updateArticle: '/api/articles/update',

 deleteArticle: '/api/articles/delete'

};

Third type of landing page (when hospitals and clinics login by their own login id)

Api end points for this landing page

// API endpoint URLs

const API_ENDPOINTS = {

 uploadBills: '/api/upload-bills',

 submitPatientData: '/api/submit-patient-data',

 requestSubsidies: '/api/request-subsidies'

};

Data structure and Data Pipeline

Designing the underlying data structures for the Ayushman Bharat Digital Mission

in MongoDB involves defining collections and documents to store healthcare-

related information efficiently. Here's a proposed outline

const mongoose = require('mongoose');

// Schema for General Users/Public landing page

const UserSchema = new mongoose.Schema({

 username: String,

 email: String,

 // Other user information

}, { timestamps: true });

const SurveyResponseSchema = new mongoose.Schema({

 userId: { type: mongoose.Schema.Types.ObjectId, ref: 'User' },

 surveyData: { type: Object },

 // Other survey response details

}, { timestamps: true });

// Schema for Admin Dashboard landing page

const ArticleSchema = new mongoose.Schema({

 title: String,

 content: String,

 author: String,

 // Other article details

}, { timestamps: true });

const SurveyAnalysisSchema = new mongoose.Schema({

 // Analysis data

 // Other analysis details

}, { timestamps: true });

// Schema for Hospitals and Clinics landing page

const BillSchema = new mongoose.Schema({

 hospitalId: { type: mongoose.Schema.Types.ObjectId, ref: 'Hospital' },

 patientId: { type: mongoose.Schema.Types.ObjectId, ref: 'Patient' },

 medicine: String,

 quantity: Number,

 date: Date

}, { timestamps: true });

const PatientSchema = new mongoose.Schema({

 name: String,

 age: Number,

 gender: String,

 diagnosis: String,

 treatmentDetails: String

}, { timestamps: true });

const SubsidyRequestSchema = new mongoose.Schema({

 hospitalId: { type: mongoose.Schema.Types.ObjectId, ref: 'Hospital' },

 performanceMetrics: { type: Map, of: Number },

 requestedAmount: Number,

 status: { type: String, default: 'pending' } // Status can be 'pending',

'approved', 'rejected', etc.

}, { timestamps: true });

// Define models

const User = mongoose.model('User', UserSchema);

const SurveyResponse = mongoose.model('SurveyResponse', SurveyResponseSchema);

const Article = mongoose.model('Article', ArticleSchema);

const SurveyAnalysis = mongoose.model('SurveyAnalysis', SurveyAnalysisSchema);

const Bill = mongoose.model('Bill', BillSchema);

const Patient = mongoose.model('Patient', PatientSchema);

const SubsidyRequest = mongoose.model('SubsidyRequest', SubsidyRequestSchema);

module.exports = {

 User,

 SurveyResponse,

 Article,

 SurveyAnalysis,

 Bill,

 Patient,

 SubsidyRequest

};

Unit tests (some tests are written for demo purpose)

// Import necessary modules and functions

const { User, Article, SurveyResponse, Bill, Patient, SubsidyRequest } =

require('./models');

const { app } = require('./app');

const request = require('supertest');

// Unit tests for models

describe('Models', () => {

 // User model tests

 describe('User Model', () => {

 test('should create a new user', async () => {

 const userData = { username: 'testuser', email: 'test@example.com' };

 const newUser = await User.create(userData);

 expect(newUser.username).toBe(userData.username);

 expect(newUser.email).toBe(userData.email);

 });

 //more tests for CRUD operations, data validation, etc.

 });

});

// Integration tests for API endpoints

describe('API Endpoints', () => {

 // Test user registration endpoint

 describe('User Registration', () => {

 test('should register a new user', async () => {

 const userData = { username: 'testuser', email: 'test@example.com',

password: 'password123' };

 const res = await request(app).post('/api/register').send(userData);

 expect(res.status).toBe(200);

 });

 });

});

2. Implementation Details with timelines:

Goal 1: Design the Microsite in Coordination with the SOWR Working Group

a. Milestone 1: Initial Meetings and Requirements Gathering (Weeks 1-2)

• Conduct initial meetings with the SOWR working group to understand project objectives

and requirements.

• Gather input on design preferences, features, and functionalities from stakeholders.

• Document the gathered requirements and create a project roadmap.

b. Milestone 2: Wireframing and Mockup Development (Weeks 3-4)

• Develop wireframes and low-fidelity mockups based on the documented requirements.

• Present the initial designs to the SOWR working group for feedback and validation.

• Iterate on the designs based on stakeholder feedback and finalize the layout and structure

of the microsite.

c. Milestone 3: High-Fidelity Design and Prototype Creation (Weeks 5-6)

• Refine the approved wireframes into high-fidelity designs incorporating branding

elements and visual aesthetics.

• Develop a clickable prototype of the microsite to demonstrate the user flow and

interaction design.

• Conduct usability testing with representative users to gather feedback on the prototype

and make necessary refinements.

Goal 2: Design the Underlying Data Structures

a. Milestone 4: Data Architecture Planning (Week 7)

• Collaborate with data architects and stakeholders to define the data requirements and

architecture for the microsite.

• Determine the types of data to be collected, stored, and managed, considering both

structured and unstructured data sources.

b. Milestone 5: Data Model Design (Weeks 8-9)

• Develop data models and schemas based on the defined data requirements and

architecture.

• Ensure that the data models are scalable, efficient, and capable of supporting the desired

functionalities of the microsite.

c. Milestone 6: Integration and Testing (Week 10)

• Implement the designed data structures into the microsite's backend architecture.

• Conduct integration testing to verify the functionality and performance of the data

structures.

• Address any issues or discrepancies identified during testing and optimize the data

structures as needed.

Availability

The duration of the coding period is from June to September. Please share your availability in detail

Number of hours available to dedicate to this project per week 40 hours

Do you have any other engagements during this period ?

(projects/internships)

 NO

Personal Information

About Me:

I am a passionate and driven software developer with four years of experience, currently pursuing my

studies at IIT Kharagpur. As the former tech head of Spring Fest which is one of the biggest college fest

in Asia, I spearheaded the development of a robust web application that efficiently handled over 10,000

registrations. With a stellar problem-solving ability, evidenced by my 1600+ rating on Codeforces, I

thrive on challenges and am dedicated to crafting elegant solutions. When I'm not immersed in code, you

can find me honing my strategic skills on the chessboard, where I apply the same analytical mindset that

drives my development projects.

What is your motivation to apply for this project? Answer briefly in 3-4 lines.

My motivation to apply for this project is deeply rooted in my four years of hands-on experience across

diverse tech stacks such as React, React Native, Django, MongoDB, SQL, Docker, MERN , AWS, and

Go. Through my journey, I've honed my problem-solving skills and gained valuable insights into

optimizing user experiences. Having completed two industry-level internships, I'm eager to channel my

expertise towards this project. Contributing to this transformative initiative aligns with my aspirations to

be part of a digital revolution that improves the nation's digital infrastructure, benefiting countless

individuals and communities.

Previous experience/open source projects (Optional):

In this section you can mention your relevant work experience/projects (not just limited to open-

source). You should mention experiences in this section if any with the relevant tech stack of the

project

Project Name Project Description Links (if any)

DENSITY EXCHNAGE

INTERN

FANTASY GAME APP

(LIKE DREAM 11)

REPO IS

PRIVATED BY

COMPANY

ENGPHILE

INNOVATION LABS

INTERN

AUDIO BASED

EDUCATION APP

https://github.com/G

aurav05082002/phy

eng

SPRING FEST MAIN

WEBSITE

HIGH END 3D WEBSITE Spring Fest 2023

(sf2k23-main-

lilac.vercel.app)

SQL EDITOR ALLOWS TO RUN SQL

QUERY AND PROPER

SEARCH IN TABLE

https://gaurav-sql-

editor.netlify.app/

https://github.com/Gaurav05082002/phyeng
https://github.com/Gaurav05082002/phyeng
https://github.com/Gaurav05082002/phyeng
https://sf2k23-main-lilac.vercel.app/
https://sf2k23-main-lilac.vercel.app/
https://sf2k23-main-lilac.vercel.app/
https://gaurav-sql-editor.netlify.app/
https://gaurav-sql-editor.netlify.app/

GSAP LIBRARY

ASSIGNMENT

ANIMATED WEBSITE https://animated-

web-

eight.vercel.app/

CV BUDDY OPEN SOURCE

CONTRIBUTION

https://github.com/

praneeth-rdy/CV-

Buddy/pull/10

PULL SHARK OPEN SOURCE

CONTRIBUTION

https://github.com/

codemistic/Web-

Development/pull/

291

DASHBOARD USING CHART.JS

GRAPHS AND

ANALYSIS

https://gaurav0508

2002.github.io/Cuv

etteDashboard/

QR READER JS LIBRARY TO MAKE

A QR CODE READER

TO VERIFY ENTRY

https://github.com/

Gaurav05082002/

qr-reader

Contribution in C4GT’s open community:

In this section answer the questions about your participation in C4GT’s open community tickets,

provide the screenshot of the leaderboard with your GitHub ID and DPG points earned (if any).

Have you contributed to tickets in C4GT’s open

community? (Mandatory to answer)

 Yes

Have you successfully completed C4GT’s GitHub

Classroom Assignment? (Mandatory to answer)

 Partial

Enter your DPG points (Mandatory to answer,

Enter 0 if not applicable)

 0

(already had experience of open

source & version control)

https://animated-web-eight.vercel.app/
https://animated-web-eight.vercel.app/
https://animated-web-eight.vercel.app/
https://github.com/praneeth-rdy/CV-Buddy/pull/10
https://github.com/praneeth-rdy/CV-Buddy/pull/10
https://github.com/praneeth-rdy/CV-Buddy/pull/10
https://github.com/codemistic/Web-Development/pull/291
https://github.com/codemistic/Web-Development/pull/291
https://github.com/codemistic/Web-Development/pull/291
https://github.com/codemistic/Web-Development/pull/291
https://gaurav05082002.github.io/CuvetteDashboard/
https://gaurav05082002.github.io/CuvetteDashboard/
https://gaurav05082002.github.io/CuvetteDashboard/
https://github.com/Gaurav05082002/qr-reader
https://github.com/Gaurav05082002/qr-reader
https://github.com/Gaurav05082002/qr-reader

Screenshot of leaderboard with your GitHub ID

(Mandatory to answer, enter 0 if not

applicable)

 0

(already had experience of open

source & version control)

