Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
96 lines (76 sloc) 3.32 KB
__description__ = \
Models subclassed from ITCModel used to model (and fit) ITC data.
__author__ = "Michael J. Harms"
__date__ = "2016-06-22"
import inspect
import numpy as np
import scipy.optimize
from .base import ITCModel
from . import bp_ext
class BindingPolynomial(ITCModel):
Base class for a binding polynomial fit.
def param_definition(fx_competent=1.0):
Define fraction competent. The binding polynomial parameters are built
on the fly using the ._initialize_parameters below.
def __init__(self,
T_cell=0.0, T_syringe=1000e-6,
shot_volumes=[2.5 for i in range(30)]):
num_sites: number of sites in the binding polynomial
S_cell: stationary concentration in cell in M
S_syringe: stationary concentration in syringe in M
T_cell: titrant concentration cell in M
T_syringe: titrant concentration syringe in M
cell_volume: cell volume, in uL
shot_volumes: list of shot volumes, in uL.
self._num_sites = num_sites
def _initialize_param(self):
Populate the names of the arguments for this number of sites and guesses
for each parameter in the model.
# Build polynomial parameters, depending on the number of sites in the model
param_names = ["beta{}".format(i) for i in range(1,self._num_sites + 1)]
param_guesses = [1e6 for i in range(self._num_sites)]
param_names.extend(["dH{}".format(i) for i in range(1,self._num_sites + 1)])
param_guesses.extend([-4000.0 for i in range(self._num_sites)])
# Initialize parameters
# Populate fitting parameter arrays
self._fit_beta_array = np.zeros(self._num_sites,dtype=float)
self._fit_dH_array = np.zeros(self._num_sites,dtype=float)
self._fit_beta_list = ["beta{}".format(i+1) for i in range(self._num_sites)]
self._fit_dH_list = ["dH{}".format(i+1) for i in range(self._num_sites)]
self._T_conc_free = np.zeros(len(self._S_conc),dtype=float)
def dQ(self):
Calculate the heats that would be observed across shots for a given set
of enthalpies and binding constants for each reaction. This will work
for an arbitrary-order binding polynomial.
# Populate fitting parameter arrays
for i in range(self._num_sites):
self._fit_beta_array[i] = self.param_values[self._fit_beta_list[i]]
self._fit_dH_array[i] = self.param_values[self._fit_dH_list[i]]
S_conc_corr = self._S_conc*self.param_values["fx_competent"]
num_shots = len(S_conc_corr)
size_T = self._T_conc.size
final_array = np.zeros((num_shots-1),dtype=float)
bp_ext.dQ(self._cell_volume, num_shots, size_T, self._num_sites, self.dilution_heats,
self._fit_beta_array, self._fit_dH_array, S_conc_corr, self._T_conc, self._T_conc_free,
return final_array
You can’t perform that action at this time.