Skip to content

Commit

Permalink
Add doc and examples
Browse files Browse the repository at this point in the history
  • Loading branch information
srush committed Jan 7, 2019
1 parent bb00592 commit 4fef447
Show file tree
Hide file tree
Showing 4 changed files with 264 additions and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
@@ -1,6 +1,6 @@
# NamedTensor

## Introductiono
## Introduction

A proposal for a named tensor for PyTorch. For now check out the blog post:

Expand Down
147 changes: 147 additions & 0 deletions docs/source/modules.rst
@@ -0,0 +1,147 @@
Named Tensor
=============

.. autoclass:: namedtensor.NamedTensor
:inherited-members:
:members:


Basic Methods
-------------

These methods return a named tensor of the same form as the original.

.. method:: _basic(*args)


.. jinja:: tensor

{% for k in noshift_methods %} :py:meth:`torch.Tensor.{{k}}` {% endfor %}


Reduction Methods
-----------------

These methods return a named tensor with one or more reduced dimensions

.. method:: _reduction(dims, *args)


.. jinja:: tensor

{% for k in reduce_methods %} :py:meth:`torch.Tensor.{{k}}` {% endfor %}


Tupled Reduction Methods
-------------------------

These methods return a tuple of named tensor with one or more reduced dimensions

.. method:: _tuple_reduction(dims, *args)


.. jinja:: tensor

{% for k in multi_reduce_methods %} :py:meth:`torch.Tensor.{{k}}` {% endfor %}



Non-Tensor Methods
-------------------

These methods return non-tensor information.

.. method:: _info(*args)


.. jinja:: tensor

{% for k in info_methods %} :py:meth:`torch.Tensor.{{k}}` {% endfor %}


Broadcast Methods
-----------------

These methods apply broadcasting before operating between two tensors.

.. method:: _operate(other, *args)


.. jinja:: tensor

{% for k in binop_methods %} :py:meth:`torch.Tensor.{{k}}` {% endfor %}



Named Torch
=============

Named torch `ntorch` is a module that wraps the core torch operations
with named variants. It contains named variants of most of the the
core torch functionality.


Dictionary Builders
----------------------

These methods construct a new named tensor where the sizes are specified
through an ordered dict of names.

.. function:: _build(ordereddict, *args)


.. jinja:: ntorch

{% for k in build %} :py:func:`torch.{{k}}` {% endfor %}


Other Builders
----------------

These methods construct a new named tensor where the sizes are specified
through an ordered dict of names.

.. function:: _build(ordereddict, *args)


.. jinja:: ntorch

{% for k in build %} :py:func:`torch.{{k}}` {% endfor %}



Basic Functions
----------------

These functions return a named tensor of the same form as the original.

.. method:: _basic(*args)


.. jinja:: ntorch

{% for k in noshift %} :py:func:`torch.{{k}}` {% endfor %}



Distributions
===============

A wrapping of the torch distributions library to make it more clear
to sample and batch the object.



Builders
----------------------

These methods construct a new named distributinon where the sizes are specified
through an ordered dict of names.


.. function:: _build(ordereddict, *args)


.. jinja:: ndistributions

{% for k in build %} :py:class:`torch.distributions.{{k}}` {% endfor %}
Empty file added examples/README.md
Empty file.
116 changes: 116 additions & 0 deletions examples/mnist.py
@@ -0,0 +1,116 @@
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms


class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)

def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')

parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)


model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)

if (args.save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")

if __name__ == '__main__':
main()

0 comments on commit 4fef447

Please sign in to comment.