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Metastrategy simulated annealing and tabu search 
algorithms for the vehicle routing problem 

Ibrahim Hassan Osman 

Institute of Mathematics and Statistics, The University, 
Canterbury, Kent CT2 7NF, UK 

A b s t r a c t  

The vehicle routing problem (VRP) under capacity and distance restrictions involves 
the design of a set of  minimum cost delivery routes, originating and terminating at a 
central depot, which services a set of  customers. Each customer must be supplied 
exactly once by one vehicle route. The total demand of any vehicle must not exceed 
the vehicle capacity. The total length of any route must not exceed a pre-speeified 
bound. Approximate methods based on descent, hybrid simulated annealing/tabu search, 
and tabu search algorithms are developed and different search strategies are investigated. 
A special data structure for the tabu search algorithm is implemented which has reduced 
notably the computational time by more than 50%. An estimate for the tabu list size 
is statistically derived. Computational results are reported on a sample of seventeen 
bench-mark test problems from the literature and nine randomly generated problems. 
The new methods improve significantly both the number of vehicles used and the total 
distances ~avelled on all results reported in the literature. 

Keywords: Local search, approximate algorithms, heuristics, hybrid algorithms, simulated 
annealing, tabu search, vehicle routing problem. 

1. I n t r o d u c t i o n  

The vehicle routing problem (VRP) under capacity and distance restrictions 
involves the design of  minimum cost delivery routes for a fleet of  vehicles, originating 
and terminating at a central depot, which serves a set of  customers. Each customer 
is supplied by exactly one vehicle route. The total demand of  any vehicle route must 
not exceed the vehicle capacity. The total length of  any route includes the inter- 
customer travel times and service times must not exceed a prespecified bound. 
Figure 1 provides an ilUustration of this type of  problem. 

The following notations are used for representing the problem: 

n 

N = 

qi = 

the number of customers; 

the set of  customers, N =  {1, . . . .  n); 

the demand of  customer i ~ N (i = 0 denotes the depot, qo = 0); 

the service time of  customer i ~ N (8o = 0); 
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I 
Depot 0 Customers 

Fig. 1. The vehicle routing problem. 

cq 

V = 
Q = 

R~ = 

C(Rp) = 

L . , .  

S 

C(S) 

= the travel t ime (distance) between customers i and j,  cij= cjiVi, j ~ N  
(Cu = *% Vi EN);  

the number  o f  vehicles, which is a decision variable in our problem; 

the set o f  vehicles,  V = { I . . . . .  v}; 

the vehicle capacity; 

the set o f  customers  serviced by vehicle p;  

the cost (length) of  the optimal travelling salesman tour n:p over the customers 
in R e u {0}. This  cost includes the travel t imes (cii) and the service t imes 
(8i); 
the prespecified upper bound on the max imum tour length; 

= the feasible solution which is defined as S = {RI . . . . .  Ro}; 

= the total sum of  each individual tour length C(Re) for all p E V. 

Our goal is to find an optimal solution (say S without  loss of  generality) that 
minimizes  the total travel length and satisfies: 

1) 

L) R p = N ,  
p ffi l 

Rp n Rq = fD, Vp # q e V; 

c(ep) = ~ (c~,.O + ,~) <_ L, 
ieRp~{O} 

Xd,_<Q, 
ieRp 

C ( S ) =  ~__.,C(Rt,), 
p E V  

Vp E v; 

vpev; 

(1) 
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where n =  {nl . . . . .  np . . . .  , no} is an optimal TSP tour  that minimizes the tour  

length for each p ~ V. 
The VRP is in an extremely active research area that has seen an exciting 

interplay between theory and practice. It is probably one of the greatest success 
stories of operations research. Numerous practical applications of the VRP are 
reported in the literature which reduced transportation costs for major companies 
from 6% to 15% (see, for instance, Brown and Graves [8], Fisher et al. [16], Bell 
et al. [5], Evans and Norback [15], Golden and Watts [26] for applications in the 
oil, chemical, food and drinks industries). Christofides [9], Bodin [7], and Golden 
and Assad [27] provide surveys of recent applications of the VRP. 

Operational researchers' interest in the VRPs is partly due to their practical 
importance, but also to their intrinsic difficulties: as a generalisation of the travelling 
salesman problem (TSP), the VRP belongs to the class of NP-hard problems (Lenstra 
and Rinnooy Kan [33]), and polynomial time algorithms for finding optimal solutions 
are unlikely to exist. Hence, there have been few attempts to solve it optimally 
among such branch and bound procedures based on: a state space relaxation (Christofides 
et al. [12,13]), a TSP formulation (Laporte et al. [33]), and a set partitioning 
formulation (Agarwal et al. [2]). These approaches address small VRPs adequately 
up to 50 customers with 8 vehicles (Christofides [9]). Laporte and Nobert [32] 
provide a review of exact methods. 

Due to the limited success of exact methods, considerable attention and research 
effort have been devoted to the development of efficient approximate algorithms (or 
heuristics) which can provide near optimal solutions for large-sized problems. These 
heuristics can be classified as follows: Constructive heuristics that gradually build 
up vehicle tours by inserting at each step a customer according to some savings 
measure until all customers are served. The savings algorithm of Clarke and Wright [14], 
which is the most widely used in practice, belongs to the class, many of its algorithmic 
improvements and variants have appeared in the literature (see, for instance, Gaskell 
[19], Mole and Jameson [36], Nelson et al. [37], Paessens [44], and Altinkemer and 
Gavish [3]). Two-step methods that are based on either cluster-first route-second or 
route-first cluster-second approaches. The cluster-first route-second methods identify 
clusters of customers assigned to vehicles and a minimum cost TSP tour for each 
cluster is computed (Gillett et al. [21], Christofides et al. [11], and Fisher et al. [17]). 
The route-first cluster-second methods build an optimal TSP tour and then partition 
it into feasible VRP routes (Beasley [4], Haimovich and Rinnooy Kan [28]). Exact 
but incomplete tree search methods that terminate before reaching optimality at 
feasible solutions (Christofides et al. [11]). Improvement methods, in which a given 
solution is iteratively improved by making local changes. Exchange procedures have 
been suggested for the TSP (Lin and Kemighan [35], Or [38], Johnson [29]) and for 
the VRP by Christofides and Eilon [10], Russell [45]. Stewart and Golden [46] use 
a Lagrangian relaxation to transform the VRP into a modifed m-TSP and then 
applying an are exchange procedure similar to Lin [34]. Bodin et al. [6], Golden and 
Assad [27], Osman [40] provide broad surveys and heuristic classification schemes. 
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This paper proposes simulated annealing (SA) and tabu search (TS) 
metastrategies, and investigates their algorithmic performances for the VRP under 
capacity and distance constraints. Computational results reveal that the proposed 
algorithms generate solutions that are significantly better than previously published 
solutions. Section 2 discusses iterative improvement methods based on First-Improve 
and Best-Improve selection criteria of neighbours which are generated by a new g- 
interchange mechanism. Section 3 applies SA methodology using the cooling schedule 
proposed in Osman and Christofides [42]. Section 4 describes different TS 
implementations using special data structures and different selection strategies. In 
section 5, computational results are reported on seventeen bench-mark test problems 
from the literature and on nine randomly generated problems. Section 6 contains 
a summary and concluding remarks. Finally, the new best solutions obtained by our 
algorithms are provided in an appendix. 

2. Iterative improvement methods 

Most iterative improvement methods invoke the successive application of 
two modules: a construction method that produces an initial feasible solution S with 
a total tour length C(S) as in the Clarke and Wright [14] procedure, and an improvement 
technique that maintains feasibility whilst reducing the tour cost iteratively. The 
latter consists of fundamental concepts: a generation mechanism to alter the initial 
solution; selection strategies of alternate solutions and a stopping criterion. 

2.1. CLARKE AND WRIGHT SAVINGS (CW) PROCEDURE 

The savings procedure of Clarke and Wright [14] is the most widely known 
heuristic for the VRP. The procedure begins with each customer being served by 
a single tour (fig. 2(a)). Cost savings Sii =Coi + Coj- cij can be obtained by satisfying 
the demands of customers i and j using one vehicle from the depot 0 (fig. 2Co)). 
These savings are sorted in decreasing order. The procedure merges customers i and 
j corresponding to the highest saving Sij without violating the capacity restriction 
until no further merges are possible. 

® '@ 

(a) Initial tours supplying i andj. (b) Combining i andj in a single tour. 
Fig. 2. Cost savings. 
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2.2. ~,-INTERCHANGE GENERATION MECHANISM 

The generation mechanism describes how a solution S can be altered to 
generate another neighbouring solution S'. The 2-interchange mechanism has been 
defined in Osman [39], and used in Osman [41] and Osman and Christofides [42]. 
Here, we give an illustration on how this mechanism can be used for the VRP. Given 
a feasible solution for the VRP represented by S = {Rl . . . .  , Rp, . . . .  Rq . . . . .  Rv}, 
where Rp is the set of customers serviced by route p. A 2-interchange between a 
pair of route sets Rp and Rq is a replacement of a subset S~ c_ Rp of size ISll < ~, by 
another subset $2 G Rq of size [$2[ < 2, to get two new route sets R~ = (Rp - S 0  u $2, 

• ' . .  ' , R ~ } .  Rq = (Rq- $2) u Sl and a new neighbouring solution S'  = {Rl . . . . .  Rp, . ,  Rq . . . .  
The neighbourhood Art(S) of a given solution S is the set of all neighbours S • 
generated by the 2-interchange mechanism for a given ~, (say, 2 = 1 or 2). 

The order in which neighbours are searched must be specified. Let the 
permutation crbe the order of vehicle indices in a given solution S = {R~ . . . . .  Rp . . . . .  
Rq . . . . .  R,,} (say, o ' ( p ) = p ,  Vp ~V),  an ordered search selects all possible 
combinations of pairs (Rp, Rq) according to (2) and o" without repetition. A total 
number of  v ( v -  1)/2 different pairs of routes (Rp, Rq) are examined to define a 
cycle of search in the following order: 

(Roo), . . . . .  (Ro<I>, R c2>, Ra 3>) . . . . .  (2) 

Note that, for the descent and tabu search algorithm, the same permutation o" 
is used after each cycle of search is completed. Furthermore, for a given pair (Rp, Rq) 
we must also define the search order for the customers to be exchanged. We consider 
the case of 2 = 1 and a similar analogy can be followed for other values of 2. The 
1-interchange mechanism uses two processes to generate neighbouring solutions: 

(i) A shift process which is represented by the (0, 1), (1, 0) operators. The 
(0, 1) and (1, 0) denote the shift of one customer from one route to another. Figure 3 
shows an example of a (1, 0) shift process in which customer 4 ~ Rp = {4) is removed 
and inserted into the route set Rq = {5, 6, 7, 8}. Note that the (1, 0) shift process 

I 
(a) Before the shift (b) After the shift 

Fig. 3. A (1, 0) shift process. 
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would produce a new solution with an empty R e and Rq = {5, 4, 6, 7, 8}. As a result, 
one vehicle route would be reduced. This is of great importance and is an important 
property of the generation mechanism. 

(ii) An interchange process which is represented by the (1, 1) operator. This 
process exchanges each customer from one route with every other customer in 
another route. In fig. 4, we attempt to exchange systematically each customer in 
Re= {1, 2, 4} with every customer in Rq = {3, 5, 6, 7, 8}. Figure 4 shows an example 
where customer number 4 from route Rp is to be exchanged with customer number 
3 from Rq (fig. 4(a)) to generate a new pair of routes (fig. 4(b)). 

(a) Before the interchange 

I \ / \ _  

(b) After the interchange 

Fig. 4. A (1, 1) interchange process. 

The customers in a given pair of routes are searched sequentially and 
systematically for improved feasible solutions by the shift and interchange processes. 
The order of search we implemented uses the following order of operators (0, 1), 
(1, 0) and (1, 1) on any given pair to generate neighbours. 

2.3. EVALUATION OF THE COST OF A MOVE 

A move, which is a transition from a solution S to a solution S '  ~./qx(S), may 
cause a change in the objective function values measured by A = C(S') - C(S). This 
change requires the evaluation of the length of the optimal TSP tours C(R~) and 
C(R~) generated by the X-interchange mechanism from a given pair (Rp, Rq), with 
p # q ~ V. A 1-interchange move may involve exchanging customer i ~ R  t, with 
another j E Rq, resulting in a change in the objective value of A = Aij , where 
Aij = C(R~,) - C(Rp) + C(R~) - C(Rq). These C(-) values are computationaUy expensive 
to obtain. Therefore, two approximate methods are proposed for C(.) values and 
illustrated for A, = 1. This can similarly be generalised for other values of )1,. 
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(a) Insertion/deletion procedure 

Given ~rp as the tour over Rp u {0} and its tour length C(Rp), let i be the 
customer to be inserted (or deleted) between two consecutive customers r and 
s in n t, and li(r, s) = c,~ + cis - c,, be the cost of inserting i between r, s. If 

li(Rp)= rain {li(r,s)}, 
r,$eX F, 

t then the cost of the new generated tour over Rp u {0} becomes: 

C(R~) = C(Re) + li(Rp) (+ if insertion, - if deletion). 

The worst-case running time bound of this procedure is O(n/v) since there 
are nlv customers on average in each tour. 

(b) 2-opt procedure 

Perhaps the best known heuristic for the TSP is the arc exchange heuristic 
of  Lin et al. [35]. The 2-opt procedure finds an initial random tour over the 
set of customers R~ u {0}. This tour is improved by deleting two arcs, reversing 
one of the resulting two paths and reconnecting them until no additional 
improvement can be made. The worst-case running time of the 2-opt procedure 
is O((n/v)2). 

(c) Combination of procedures (a) and (b) 

Although the insertion/deletion procedure is fast, it may produce crossing of 
arcs in the new tour (see fig. 3(b)), in which case the 2-opt procedure is 
necessary to remove such crossing. A combination of the two procedures (a) 
and (b) provides a fast way to approximate the cost of exchanges. This 
combined procedure starts by evaluating each move by the insertion/deletion 
procedure; if a decision is made to accept a specific move, then the 2-opt 
procedure is invoked. Moves are evaluated thoroughly only if they seem 
worthwhile. 

2.4. SELECTION STRATEGY OF ALTERNATE SOLUTIONS 

In this paper, two selection strategies are used for choosing alternate solutions 
S ' E  ,~(S)  when implementing iterative improvement methods: 

(i) Best-improve (BI) strategy, which examines all solutions S '  E ~, (S)  in the 
neighbourhood of S and accepts the one which yields the best solution according 
to a given acceptance criterion. 

(ii) First-improve (FI) strategy, which immediately accepts the first solution in 
the neighbourhood which satisfies the acceptance criterion. 
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2.5. THE X-INTERCHANGE DESCENT ALGORITHM 

The ~-interchange descent algorithm is an iterative improvement (or local 
search) method. It starts either with a solution S chosen at random or with the 
application of a constructive heuristic to reduce computing time and to generate a 
feasible solution. It then attempts to improve S by local perturbations using the 
interchange mechanism to generate S' ~ .Ex(S), which is selected according to FI 
or BI strategies and an acceptance criterion (A = C(S') - C(S), A < 0). The search 
usually continues until a (local minimum) ~-optimal solution is found. A solution 
S is called locally optimal with respect to Ar~. (or ~-opt for short) if and only if: 
C(S) < C ( S ' ) V S ' ~  JY'x(S). The algorithm steps are summarized below: 

Step 1. Generate an initial heuristic solution S by the savings method. 

Step 2. Choose a solution S'  ~ .N'x(S) in an ordered search and compute A = C(S') 
- C ( S ) .  

Step 3. I f  (A < 0), then S" is accepted, set S = S" and go to step 2. 

Step 4. I f  a complete cycle of  search - the neighbourhood Nx(S) of  S - has been 
searched without any improvements, then stop with a ~-opt solution, 
else go to step 2. 

The above descent algorithm is denoted by 1 + FI if ~ = 1 (2 + FI if ~ = 2), 
which uses an ordered search of the neighbourhood and the FI selection strategy 
of neighbours. Similarly, 1 + BI represents a descent algorithm that uses the 1- 
interchange mechanism and the best-improve selection strategy in step 2. These 
algorithms are flexible and simple to implement. However, they have major limitations 
that the local optimum achieved may be from the global optimum and the quality 
of the final solution depends critically on the initial starting solution. In the next 
section, simulated annealing algorithms are used to overcome local optimality by 
embedding a randomized search and acceptance strategy into local search methods. 

3. Simulated annealing implementation 

The simulated annealing (SA) algorithm imposes different randomized search, 
acceptance and stopping criteria on the local search method in order to escape poor 
quality local minima. Local search descent methods do not accept non-improvement 
moves at any iteration, whereas SA does with certain probabilities. These probabilities 
are determined by a control parameter (T), called temperature, which tends to zero 
according to a deterministic cooling schedule. SA has its origin in statistical mechanics. 
The interest in SA began with the work of Kirkpatrick et al. [30], who proposed 
an SA algorithm based on the analogy between the annealing process of solids and 
the problem of solving combinatorial optimization. SA has been applied successfully 
to a large number of different combinatorial optimization problems, including the 

https://www.researchgate.net/publication/6026283_Optimization_by_Simulated_Annealing?el=1_x_8&enrichId=rgreq-e258844f00f22a4cf53d3b1e54584ad4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1ODM2MjtBUzoxNDQ4ODU0NDk0OTg2MjdAMTQxMTU1NDc5MTkyNg==
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flow-shop scheduling problem (Osman and Potts [43]); Osman and Christofldes [42] 
for the capacitated clustering problem (CCP); Osman [41] for the generalised assignment 
problem (GAP). For more discussions on the theory and practical applications of 
SA, we refer to Aarts and Korst [1], and Osman [39]. 

We adopt for the VRP the non-monotonic SA cooling schedule introduced in 
Osman and Christofides [42], which requires specification of the following: (i) starting 
and final temperatures (Ts and Tf); (ii) decrement rule for updating the temperature 
Tk after each iteration k; (iii) update rule for temperature reset variables T, after the 
system freezes; (iv) stopping criterion R, which is the total number of temperature 
resets to be performed after the best solution was found. This implementation uses 
the 1-interchange mechanism to generate neighbouring solutions. The neighbourhoods 
are searched sequentially in the order indicated in (2) according to different random 
permutations o'of the tour's indices { 1, . . . .  v}. These permutations are generated 
each time a cycle search is completed. This is in constrast to the local search 
descent methods, where o" is fixed to an order of { 1 . . . . .  v}. Furthermore, the 
search for a given pair (R e, Rq) is systematic for all potential customer moves as 
in the descent methods. This cooling schedule and its implementation is in contrast 
to classical SA schemes that have recourse to random neighbourhood search, which 
can lead to pockets that remain unexplored for undesirable lengths of time. The best 
solution found, Sb, during the search is kept rather than the one at which the SA 
algorithm stops. The algorithm performs a single iteration (one attempted feasible 
move) at each temperature. Our experience with similar implementations to the 
CCP and GAP shows that using the non-monotonic cooling schedule with an ordered 
search outperforms other SA in the literature with different cooling schedules and 
random selection of moves. Note that the importance of systematic neighbourhood 
search and a different type of non-monotonic search have been discussed by Glover [22] 
as basic features of TS methods. In this sense, our SA method consists of a hybrid 
of SA and TS ideas. Further details on these relationships can be found in Osman 
and Christofides [42], and Glover [25]. 

The hybrid SA/TS algorithm steps are as follows: 

Step 1. 
Step 2. 

Step 3. 

Step 4. 

Generate an initial heuristic solution S by the savings method. 

Initialisation of the cooling schedule parameters: 
perform a test cycle of search over the neighbourhood A~I(S) of the initial 
solution without performing the exchanges in order to obtain the largest 
and smallest Amax, Ami n change in objective function values, and an estimate 
of the total number of feasible exchanges Nfeas. 
Set T~ = Amax, Tf= Anfm, 7",= Ts, a =  n x Nfeas, ~,= n, R = 3, Sb = S and k = 1. 

Select a solution S' ~Nl(S) in ordered search and compute A= C(S ' ) -C(S)  
according to cost evaluation procedure (a). 

If {(A __. 0) or A > 0 and e (-'/rk) _> 0, where 0is a uniform random parameter 
0 < 0 < 1 }  

https://www.researchgate.net/publication/222721339_Future_Paths_for_Integer_Programming_and_Links_to_Artificial_Intelligence_Computers_Operations_Research_13_533-549?el=1_x_8&enrichId=rgreq-e258844f00f22a4cf53d3b1e54584ad4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1ODM2MjtBUzoxNDQ4ODU0NDk0OTg2MjdAMTQxMTU1NDc5MTkyNg==
https://www.researchgate.net/publication/222629815_Simulated_Annealing_for_Permutation_Flow-Shop_Scheduling?el=1_x_8&enrichId=rgreq-e258844f00f22a4cf53d3b1e54584ad4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1ODM2MjtBUzoxNDQ4ODU0NDk0OTg2MjdAMTQxMTU1NDc5MTkyNg==
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Step 5. 

then accept the new solution S', compute A according to cost procedure (b), 
set S = S', 

if C(S') < C(SD, then St, = S" and Tt, = Tk, the temperature at which the 
best solution is found; 

otherwise retain S. 

Update temperatures according to: 

Normal decrement rule: 

rk - rk w h e r e  = r ,  - r :  
(l ' (a + r 4 )r,r: 

o r  

Occasional increment rule: If a cycle of search is completed without accepting 
any 1-interchange move, update as 

Step 6. 

T r = m a x { ~ , T b }  and set Tk = T~ • 

Set k = k + 1. 

Stop if the stopping criterion is met (R resets were performed since Sb was 
found), report the best solution Sb and computation time. 
Otherwise, go to step 3. 

4. Tabu search implementation 

Tabu search (TS) is a novel technique for solving combinatorial optimization 
problems. It is based on the general tenets of intelligent problem solving (Glover [23]). 
TS shares with SA the ability to guide iterative local search methods to continue 
the search beyond local optimality. The process in which the TS method seeks to 
transcend local optimality is based on an evaluation function which chooses the 
highest evaluation move in terms of objective function and tabu restrictions. This 
function selects a solution S'  E 3¢1(S) which produces the most improvement or the 
least non-improvement in the objective values at each iteration. By accepting non- 
improving moves, it becomes possible to return to solutions already visited, and 
tabu restrictions are to prevent such an occurrence. Further details on "IS implementations 
and applications can be found in Osman [39, 38] and Glover [23,24]. For any TS 
implementation, it is necessary to define the following: 

(i) A forbidding strategy which manages what goes into the tabu list (list of tabu 
solutions). 

(ii) A freeing strategy which manages what goes out of the tabu list. 

(iii) A short-term strategy which manages the interplay between the above strategies 
including: an aspiration strategy which ignores tabu restrictions; a selection 

https://www.researchgate.net/publication/34462038_Traveling_salesman-type_combinatorial_problems_and_their_relation_to_the_logistics_of_regional_blood_banking?el=1_x_8&enrichId=rgreq-e258844f00f22a4cf53d3b1e54584ad4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjM1ODM2MjtBUzoxNDQ4ODU0NDk0OTg2MjdAMTQxMTU1NDc5MTkyNg==
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(iv) 

strategy which chooses trial solutions from .N'I(S) based on the best-admissible 
(BA) or the first-best-admissible (FBA) move selection strategies. 

Stopping criterion. 

In addition, longer term strategies are relevant to a variety of  applications (see, for 
example, refs. [23,24,41]). 

4.1. THE FORBIDDING STRATEGY 

This strategy constrains the search by classifying certain moves as forbidden 
(or tabu) based on tabu conditions which are identified by the attributes of a move. 
To avoid cycling, it is sufficient to check that previously visited solutions are not 
revisited, but this requires a great deal of  memory and computational effort. A data 
structure for the tabu list will be used to store a partial range of  solution attributes 
rather than the complete visited solutions. 

The tabu list data structure, TABL, takes the form of  an (n + 1) x v matrix (n 
rows, one per customer, one for the null customer involved in the shift process 
(0, 1) or (1, 0), and v columns, one for each route set Re)). A move may consist 
of  two pairs (i, Re) and (j, Rq) which identify that a customer i from the set Rp of  
customers on route p has interchanged with a customer j from the set Rq of  
customers on route q, and vice versa. The attributes (i, Rp) and ( j ,  Rq) specify tabu 
restrictions that forbid a move being performed. A move is deemed tabu if i is 
returned to R e andj is returned to Rq. This is an approximation to forbid moves and 
the advantage is that more solutions can be represented and checked faster. TABL(i,p) 
records the iteration number at which a customer i is removed from the route set 
R e. Initially, the matrix TABL is initialised with high negative values to avoid false 
identification of  customers as tabu during the initial iterations. 

4.2. THE FREEING STRATEGY 

This strategy is concerned with the management of  what goes out of  the tabu 
list after I Tsl iterations, where I Tsl is known as the tabu list size. The I Tsl value 
is determined, as explained later, by a function depending on problem characteristics 
and selection of  strategy of  moves. The set of  forbidden moves is recorded in the 
tabu list for a period of  I Tsl iterations. A simple and fast tabu status check is of  
great importance, especially when problem and tabu list sizes increase. At iteration 
k, a move is classified as tabu if neither i should retum to Rp nor j should return 
to Rq during the following I Tsl iterations. That is, 

k - TABL(i, p) < I Tsl 
and (3) 

k -  TABL(j, q) <ITs I. 
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Since TABL stores the iteration numbers, the tabu status of  a potential move 
can be checked using the two simple operations in (3). With TABL, the tabu status 
of  previous moves are updated automatically, as opposed to the classical circular 
tabu list approach which needs more input control from the freeing strategy. 

4_3. THE SHORT-TERM STRATEGY 

The short-term strategy forms the core of the TS algorithm. It is designed to 
permit the evaluation of  the best admissible move in the neighbourhood based on 
tabu restrictions and aspiration criteria. A move is considered admissible if it is a 
non-tabu move, or a tabu move which passed an aspiration level criterion. Tabu 
restrictions and aspiration criteria play a dual role in constraining and guiding the 
search process (Glover [23]). In the tabu list, we store some attributes of  moves to 
represent solutions. Thus, some non-tabu solutions may be prevented by tabu restriction 
due to this approximation and aspiration criteria are tests to correct such prevention. 
The following aspiration function will be used, which allows a new direction of  
search and guarantees no cycling. Let Sb be the current best solution found so far 
during the search. Let S" ~ ~1(S) be a tabu solution. The new solution S '  is admissible 
if C(S') < C(Sb). 

Two selection strategies will select an admissible move from the candidate 
list of moves: the best-admissible selection strategy, BA, and thefirst-best-admissible 
strategy, FBA. The BA strategy selects the best admissible move from the current 
neighbourhood which yields the greatest improvement or the least non-improvement 
in the objective function. The TS algorithm that uses the BA selection strategy is 
denoted by TS + BA. The FBA strategy combines a greedy approach with the BA 
strategy. It selects the first admissible move that provides an improvement in the 
objective value over the current solution; if all moves in the candidate list are tried 
without any improvement, then FBA selects the best recorded non-improving move. 
The TS algorithm that uses the FBA selection strategy is denoted by TS + FBA. The 
candidate list for the TS + FBA algorithm is the whole neighbourhood .b/'l(S) and 
its size is dynamic and determined automatically by the search itself. This dynamic 
sampling is a desirable way to search a large neighbourhood. However, the candidate 
list of moves for the BA strategy is the whole neighbourhood d~l (S) and its size is 
fixed. This list is very expensive to compute for large-sized problems because .h'l(S) 
must be re-evaluated to select the best move after each iteration. Thus, we propose 
a data structure which allows only a small number of re-evaluations in order to 
identify a new best move from one iteration to another. 

4.3.1. The special data structure (DS) for the BA selection strategy 

The candidate list data structure (DS) can be briefly described as follows: 
BSTM and RECM are two matrices with dimensions v ×  v, { v ( v -  1)/2} × 2. The 
top triangular part BSTM(p,  q) (1 < p  < q < v) is used to store the change in the 
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objective value Aq associated with the best move obtained, exchanging customer 
i ~ Rp with j ~ Rq, or an arbitrary high value if such a best move is not allowed. 
The lower triangular part BSTM(q, p) is used to store a positional index I associated 
with the pair R e and R e in the set of possible pair combinations { 1 , . . . ,  v ( v -  1)/2}. 
An index indicates the position where the attributes of the best move are stored, for 
instance, RECM(I, 1) = i, RECM(/, 2) =j .  

DS evaluates all moves in the neighbourhood 3q~(S) only once at the first 
iteration. During the search, the upper matrix of BSTM is scanned for the best A U 
and the corresponding index l of the route sets is identified and used to obtain the 
attributes of the best move from the data matrix RECM. Such an accepted move 
involves R~, and Rq sets, only the other route sets remain intact. As a result, only 
moves in 2 x v pair combinations of route sets  (Rp, Rrn), Vp ~e m, and (Rq, R,,,), 
Vq ~e m, need to be evaluated rather than all moves in v ( v -  1)/2 pair combinations 
without DS. Figure 5 shows the increase in the number of combinations examined 
for problems with 4 < v < 20 with DS and without DS. The advantage of DS is that 
it saves computation time without sacrificing the quality of the solution. 

180 

160 

0,,,,,,~. ~ ~ ;~ h,,,,,~ i'0 fl a'2 I~. ~'4 I~ 1'6 I'7 1's I'9 ~0 
vehicle ntmabers 

I'-~- v(v-Iy2 ~ 2*v I 

Fig. 5. Computational requirements of 2 x v with DS and 
v(v- 1)/2 without DS for each iteration of the BA strategy. 

Note that the 1 + BI descent algorithm can make use of the DS data structure 
and the resulting algorithm is represented by 1 + BI + DS. However, the TS + FBA 
algorithm can not make use of this data structure since the size of the neighbourhood 
between iterations is variable and determined by improving moves. The candidate 
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list size is fixed in the case of the TS + BA algorithm, whereas it is variant in the 
TS + FBA algorithm. The TS + FBA algorithm records and updates the best non- 
improving admissible move during the search for the following reason. If we search 
the whole neighbourhood without finding any improved solution over the current 
one, then the best admissible move is accepted. At this moment,  the TS + FBA is 
similar to the TS + BA algorithm and has the same neighbourhood size. Moreover, 
the TS + FBA algorithm accepts possibly more moves in good regions, updating the 
tabu list more frequently and searching over a larger part of  the solution space. 

4.3.2. The tabu list size functions 

The tabu list size I Tsl depends on problem characteristics (customer number 
n, vehicle number v, problem tightness p, which is the capacity ratio of  the required 
demands to the available vehicle capacities) and the selection strategies (FBA and 
BA). A good estimate ts of I Zsl was obtained using the experimental data in table 
4 as follows: 

Regressing the "Tabu size" values in column 4 of table 4 on problem sizes 
n, vehicle numbers v, and capacity ratio p in table 1, for the case of  the TS + FBA 
algorithm, the ts value can be estimated by: 

ts = 8 + (0.078 - 0.067 x p) × n x v. (4) 

Similarly for the case of  the TS + BA algorithm, regressing the "Tabu size" 
values in column 9 of  table 4 on n and v to obtain an estimate of ts is given by: 

t s= max{7, - 4 0  + 9.6 x ln (n  x v)}. (5) 

Since the I Tsl value is statistically estimated, an error might occur. The ITxl 
value is then varied to take in a systematic order each of the three values 0.9 x ts, 
ts, and 1.1 x ts and retains it for 2 x ITsl iterations before it is assigned another 
value. If all three values are chosen, a random order of  the three values is obtained 
and the assignment is restarted. In similar experiments, Taillard [47] shows that 
varying I Tsl randomly to take a value inside a given interval has an advantage. 

4.4. THE STOPPING CRITERIA 

The stopping criteria used in TS algorithms is based on a maximum number 
of  iterations (MAXI) after the best solution has been found. This has the obvious 
advantage of  relating the stopping criterion to solution changes at the cost of  greater 
computational effort. 

Multiple regression analysis was used to identify the minimum desired number 
of  iterations M needed to obtain good solutions using the best iteration numbers at 
which the best solutions were found. A fitted equation to obtain an approximate 
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value for M is similarly estimated like the ITsl value. This is merely a guidance so 
that extra time can be saved and good solutions can be obtained with a reasonable 
computation time. A good fit was obtained with R 2 = 81.8 regressing the "best iteratioN' 
numbers (column 10 of  table 4) at which the best solutions were obtained on problem 
characteristics for the case of the "IS + BA algorithm. M was then estimated by: 

M = 340 + 0.000353 x p x (n x v) 2. (6) 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

The TS general algorithm steps are as follows: 

Given an initial heuristic solution S by the savings method, perform a cycle 
of  search to initialise the DS matrices BSTM and RECM if the BA strategy 
is used. 
Set a value for tabu list size ITs I, a high value for TABL the initial tabu list, 
a value for MAXI (or a value for M) and Sb = S the best solution so far. 
Set k = 1 and kb = 0. 

Choose a feasible and admissible move S'  ~ Art(S) according to the BA or 
FBA selection strategies. Store the attributes of  the newly accepted move 
in TABL. Update the current solution S = S '  and set k = k + 1. 
I f  C(S') < C(Sb), update the best solution Sb = S '  and set kb = k. 
I f  using the BA strategy, update (DS) the data structure BSTM and RECM 
matrices. 

I f  ( k -  kt, > MAXI), go to step 4. Otherwise,  go to step 2. 

Stop, report the best solution St, with computation time. 

5. Computational experience 

Our aim in this section is to assess the effectiveness of the developed algorithms. 
The algorithms were tested on seventeen standard problems from the literature. 
Problem sizes range from 29 to 199 customers with tight and loose capacities, with 
and without maximum length constraints. Nine randomly generated new problems 
are added to the list with sizes equal to 50, 75 and 100 customers. Coordinates are 
taken from a uniform distribution between U[1,100], while depot coordinates are 
chosen from a U[45, 55]. Customer demands are generated in the interval U[20, 40], 
while vehicle capacity is fixed so that p, the ratio of  the total required demands to 
the total available capacities, is in U[0.90, 0.92]. This information is summarised 
in table 1. 

In the literature, data with customer locations defined by coordinates were 
published and the calculation of Euclidean distances is assumed between the customers. 
This could be done in a real-valued floating point operation or in an integer-valued 
operation, whereby the decimal fraction is rounded or truncated. Different solution 
values were reported without the sequence of  routes; therefore, statements about the 
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Table 1 

Characteristics of test problems. 

Maximum C(S~t) 
Problem Problem Vehicle tour Service Capacity Best new best 
number j size capacity length time ratio published b solution e'd 

G1 [10] 29 4500 240 10 0.70 975•4 [10] 87514 

CL [14] 30 140 ** 0 0.92 1214/7 [45] 120517 

G2 [19] 32 8000 240 10 0.91 810/4 [10] 81014 

C1 [10] 50 160 ** 0 0.97 52415 [17] 52415 

C2 [10] 75 140 ** 0 0.97 855/10 [3] 838110 

C3 [10] 100 200 ** 0 0.91 83318 [17] 82918 

C4 [11] 150 200 ** 0 0.93 1082112 [11] 1044112 

C5 [11] 199 100 -0 0 0.98 1351117 [3] 1334116 

C6 [I0] 50 160 200 10 0.80 5601 [17] 55516 
C7 [10] 75 140 160 10 0.88 916/12 [17] 909/11 

C8 [I0] I00 200 230 i0 0.81 885/9 [17] 866/9 
(29 [11] 150 200 200 10 0.80 1210115 [3] 1164/14 

C10 [101 199 200 200 10 0.88 1464/19 [3] 1417118 

C l l  [11] 120 200 ** 0 0.98 1046/7 [44] 104217 

C12 [11] 100 200 -0 0 0.90 822110 [44] 819/10 

C13 [I11 120 200 720 50 0.62 1551111 [3] 1545111 
C14 [11] 100 200 1040 90 0.82 874/11 [3] 866/11 

N1 New* 50 275 0, 0 0.90 - 70916 

N2 New 50 195 ** 0 0.90 - 81418 

N3 New 50 165 ** 0 0.90 - 994110 

N4 New 75 350 ** 0 0.91 - 925•7 

N5 New 75 265 ** 0 0.90 - 1045/9 

N6 New 75 223 ** 0 0.91 - 1011/11 
N7 New 100 410 ** 0 0.90 - 1035/8 

N8 New 100 330 ** 0 0.91 - 1185/10 

N9 New 100 266 ** 0 0.91 - 1234/12 

i Numbers in brackets represent the reference of problem origin. 
b a/b [. ]: a: solution value; b: number of vehicles; [. ]: reference in which the solution was obtained. 
c a/b: a: real-valued solution, b: number of vehicles, that were obtained in this study. 
d Boldface indicates a better solution value or a smaller number of vehicles were found. 
e New randomly generated problem. 

kind of  calculation of  the Euclidean distances can not be made. Also, the published 
vehicle numbers are assumed to be equal to the previously known in cases where 
neither the vehicle number nor the sequence for every route are given. Our distances 
are calculated in a real-valued operation and the full solutions of  our results are 
provided in an appendix to help other researchers. Our real-valued solutions are 
also provided, which are significantly better in terms of  solution quality and number 
of  vehicles than all the best published real solutions in the literature. 
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The algorithms are programmed in FoR'r~AN 77 and run on a VAX 8600 
computer. The average computation time (ACT) in CPU seconds of the actual 
execution is reported excluding input and output time. The average relative percentage 
deviations (ARPD) of the objective function value C(S)  over the new best solutions 
Sb,a in table 1, i.e. ARPD = (C(S)  - C(Sb,a))/C(Sb,a) x 100 are also reported. 

5.1. DESCENT AI.~OR1THMS 

Sensitivity analysis using various neighbourhood sizes, selection strategies of 
alternate solutions and cost evaluation procedures was performed to examine the 
impact on running time and solution quality. In effect, we tested the effect of 
neighbourhood size as produced by 1-interchange and 2-interchange mechanisms 
using the FI selection strategy in the 1 + FI, 2 + FI descent algorithms with 
the 2-opt cost evaluation procedure (b). The BI selection strategy is only implemented 
using I-interchange in the 1 + BI descent procedure with the same 2-opt cost 
procedure (b). Furthermore, the BI strategy is implemented using the proposed data 
structure (DS) with the combined cost evaluation procedure (c) in the 1 + BI + DS 
descent algorithm, which also used the 1-interchange neighbourhood mechanism. 

Table 2 provides computational results in terms of solutions obtained and in 
CPU seconds. In evaluating the results, we observe that the Clarke and Wright [14] 
(C&W) algorithm produces poor initial solutions with an ARPD of 26.65%, varying 
from 0.87% to 28% for the published data and 28% to 59% for the random data 
using a total of 170 vehicles. The 1 + FI and the 2 + FI algorithms improve significantly 
the initial starting solutions of C&W and the ARPD is reduced to 10.07% and 
4.87% at an increase in ACT from 1.51 to 141.22 and 2941.22 CPU seconds, 
respectively. The 1 + FI algorithm seems to perform better than the 2 + FI algorithm 
with respect to computation time. However, the latter identified the best solutions 
for small-sized problems G1 and G2. The 2 + FI also shows a great variability in 
its computational requirements; it takes 14,886 seconds for C11 of size 120 but only 
4,274 seconds for C5 of size 199, although they have the same capacity ratio of 
0.98%. The reason for this computational variability is partially due to the large 
neighbourhood search needed if at least one improvement has occurred over the 
1 + FI solutions. Furthermore, the 1 + FI algorithm has started from poor C&W 
solutions with ARPDs of 24% and 28% for problem C11 and C5, respectively, thus 
requiring a large number of iterations to find good solutions. Descent algorithms 
are heavily dependent on good initial starting solutions and a good neighbourhood 
search mechanism to save computation time and obtain acceptable solutions. 

In terms of selection strategy, the 1 + FI algorithm performs well: table 2 
shows an ARPD of 10.07%, quite close to the 9.91% for the 1 + BI algorithm 
(without the data structure), although the latter requires an ACT of 582.42 seconds 
(four times more than the ACT of the 1 + FI algorithm). Finally, table 2 reveals that 
the 1 + BI + DS algorithm (with data structure and cost procedure (c)) improves the 
ACT of the 1 + BI algorithm by 2390% and that of the 1 + FI by 504% with an 
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Table 2 

Computational results for the k-interchange descent methods. 

Problem C&W" CPU I + H  e CPU 2 + F I  e CPU I + B I  c CPU I + B I + D S  c CPU Best 
number value time value time value time value time value time published 

GI 1017/5 0.I 953 2.2 875 b 60.6 953 5.6 953 0.5 875 

CL 1258/7 0.I 1255 0.2 1255 0.8 1255 0.2 1255 0.I 1214 

G2 88815 0.I 833 3.1 810 b 36.1 833 5.2 833 0.4 810 

CI 625/5 0.2 588 12.9 588 52.1 588 18.2 592 I.I 524 

C2 1005/10 0.7 864 5.0 859 71.9 871 17.5 871 2.4 855 

C3 982/8 I.I 942 46.3 910 15.0 962 91.2 956 5.6 833 

C4 1299112 3.3 1186 137.2 1127 4028.5 1158 410.0 1165 22.7 1082 

C5 1707/17 7.0 1515 205.4 1421 4274.9 1474 705.4 1519 20.2 1351 

C6 67016 0,3 604 15.2 568 474.6 570 65.9 584 4.8 560 

C7 989112 0.7 964 24.1 953 190.3 953 51.4 947 9.4 916 

C8 1055/10 1.2 980 146.0 923 7620.0 966 795.3 978 27.2 885 

C9 1383/15 3.1 1298 423.0 1282 7094.0 1293 2475.0 1294 149.1 1210 

CI0 1671/20 7.4 1550 786.0 1504 13100.0 1535 54720.0 1542 240.5 1464 

CII 1291/7 2.2 1104 555.4 1053 14886.3 1086 1824.9 1167 10.2 1046 

C12 939110 1.0 834 159.1 834 736,0 877 150.0 887 3.4 822 
C13 1646/11 2.2 1620 292.0 1 5 6 4  9205.0 1 6 1 3  1062.0 1620 43.2 1551 

C14 952/11 1,1 884 91.0 884 558.6 885 203,2 885 12.3 874 

NI 948•6 0.2 754 13.6 729 148.5 765 21.7 811 1.4 709 
N2 1134/8 0.2 897 9.6 876 38.4 966 10.9 932 2.6 814 

N3 1281/I0 0.2 1061 3.7 1010 18.0 1100 8.9 1122 2.3 994 

N4 1476/7 0.7 1072 87.3 991 1075 74.0 1287 3.9 925 
N5 1534/9 0,6 1277 24.8 1143 538.5 1287 50.2 " 1352 4.5 1045 

N6 1532/11 0.7 1169 18.6 1052 207.1 1126 69.9 1306 5.5 1011 

N"/ 157918 1.5 1 1 4 7  483.3 1 1 3 3  4277.1 1174 1056.0 1341 14.4 1035 
N8 1704110 1.6 1412 88.0 1 1 9 6  5010.8 1 3 6 0  290.0 1512 12.0 1185 

N9 1902112 1.6 1480 38.0 1295 842.3 1435 203.7 1658 7.0 1234 

ARPD d 26.65 - 10.07 - 4.87 - 9.91 - 14.36 - - 
ACT - 1.5 - 141.2 - 2941.4 - 582.2 - 23.3 - 

• C&W is the Clarke and Wright [14] algorithm, a/b: a: solution value C(S), b: number of vehicles v. 
b Best published solution value was obtained. 
© 1 + FI: Descent algorithm with l-interchange mechanism, First-Improve selection strategy and move calculation 

procedure Co). 
2 + FI: Descent algorithm with 2-imerchange mechanism, First-Improve selection strategy and move calculation 
procedure (b). 
1 + BI: Descent algorithm with l-interchange mechanism, Best-Improve selection strategy and move calculation 
procedure (b). 
1 + BI + DS: Descent algorithm with 1-interchange mechanism, Best-Improve selection strategy and move cost 
procedure (c) and proposed data structure (DS). 

d ARPD: Average relative percentage deviations over the new best obtained solutions for all test problems. 
ACT: Average computation time in CPU seconds. 

ARPD of 14.36%, which is worse than that of the 1 + BI algorithm by 44%. 
Consequently, the 1 + FI algorithm gives better results than the 1 + BI + DS algorithm, 
but the latter requires less computation time. 
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5.2. METASTRATEGY ALGORITHMS 

In this section, we evaluate the performance of  SA and TS algorithms using 
the same test problems. The SA algorithm and its cooling schedule are superimposed 
on the 1 + FI descent algorithm with the cost evaluation procedure (c). Computational 
results of  SA are listed in table 3. Results show that the SA algorithm finds 10 new 
better solutions and two equal solutions to the previously best published solutions 
identified with b and an asterisk * in table 3, respectively. SA fails to reach the 
previously best known solutions for the rest of  the problems with tight capacities. 
The SA solution quality is not robust and varies with problems, making solutions 
found by the 2 + FI descent algorithm better in some cases; for instance, the 2 + FI 
solution for C14 is 10.5% away from the best known solution compared to 13% for 
that of  the SA algorithm. In addition, the SA solutions were worse than the 2 + FI 
solutions for six out of  nine random problems, although the algorithm that performed 
the best also uses the longest computation time. However, SA solutions can be 
improved by further tuning of its parameters for problems where running time is 
short. Table 3 also provides the CPU time "time to best" to the "best iteration" 
numbers at which the best solutions were found, together with the total CPU seconds 
"time to end" to the end of runs. This extra time was spent to prove that we can 
not improve the best solution obtained so far by the algorithm. The overall ARPD 
for the SA algorithm is 3.27% as compared to 4.87% for the 2 + FI algorithm, but 
at  a c o s t  of an ACT of  3275 seconds as opposed to 2941 seconds, respectively. This 
presents a percentage improvement in solution quality for the SA algorithm of  
48.92% at only an 11.35% percent increase in ACT. Furthermore, the SA algorithm 
generates a reduction in the total number of vehicles used and finds new reduced 
vehicle numbers for four problems, marked with a in table 3. The 2 + FI algorithm 
did not identify any reduction of this kind. 

Next, the performances of  the two TS algorithms, TS + FBA and TS + BA, 
are analyzed, following the implementation discussed earlier in section 4 using the 
cost evaluation procedure (c), a value of 5 x n for the stopping parameter (MAX/), 
and different tabu list sizes ranging from I-n/2], [n/3]  . . . .  to rn/6]. The best 
computational results for the TS + FBA and the TS + BA algorithms are reported 
in table 4. The TS + FBA algorithm provides thirteen better solutions and three 
equal to the previously best published solutions for seventeen test problems, identified 
with t, and an asterisk *, respectively. It also finds the best solutions for six out of  
nine random test problems. The TS + FBA algorithm is robust and its ARPD values 
range from 0 to 1.96%. The TS + BA algorithm finds twelve better solutions and 
three equal to the best published solutions, also identified with b and an asterisk *, 
respectively. It finds the best solutions for only three random problems. The ARPD 
values vary from 0 to 2.67%. 

Both TS algorithms find four new best solutions with reduced vehicle numbers 
identified with * in table 4. An average performance analysis demonstrates the 
superiority of the TS + FBA over the TS + BA algorithm with respect to solution 
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Table 3 

Computational results for the (SA) simulated annealing algorithm. 

Problem Best SA Best CPU CPU 
number published value iteration to best to end 

G1 875•4 875*/4 1817 12.1 107.0 
CL 1214/7 121317 9918 44.7 58.0 
G2 810/4 810"/4 310 2.8 6.0 
C1 524/5 528/5 566 8.7 167.4 
C2 855110 838b/10 26010 3564.3 6434.3 
C3 83318 829b/8 59244 6171.2 9334.0 
C4 1082/12 1058b/12 69609 4293.0 5012.3 
C5 1351117 1378116* 34431 1373.8 2318.1 
C6 56016 555 b/6 10427 697.8 3410.2 
C7 916/12 909b/11 j 17478 311.3 626.5 
C8 885/9 866b/9 9810 364.2 957.2 
C9 1210/15 1164b/14 a 739981 59017.1 84301.2 
CIO 1464/19 1417b/18 a 25648 2417.3 5708.0 
C 11 1 04 6/7 1176/7 2252 266.2 315.8 
C 12 822/10 826/10 1516 48.7 632.0 
C13 1551/11 1545b/11 39162 4569.2 7622.5 
C 14 874111 890/11 6457 300.4 305.2 
N 1 70916 75716 3020 43.8 49.9 
N2 81418 86418 8900 71.3 99.9 
N3 994110 1032/10 399 21.5 29.0 
N4 92517 1014/7 4327 122.7 125.1 
N5 1045/9 1098/9 3074 145.2 150.9 
N6 1011/11 1091/11 10664 102.5 166.0 
N7 1035/8 1135/8 9910 513.9 549.0 
N8 1185110 1264110 3403 319.1 363.9 
N9 1234112 1350112 15052 350.7 353.3 

ARPD d _ 3.37 - 3275.2 ¢ 4969.3 ¢ 

* Best published solution value was obtained. 
• Better number of vehicles was found by the SA algorithm. 
b Better solution value than published was found by the SA algorithm. 
c Average computation time in CPU seconds. 
d ARPD: Average relative percentage deviation over the new best solutions. 

quality with an ARPD of 0.43% and an ACT of 966 seconds, as opposed to 0.66% 
and an ACT of  499 seconds, respectively. This reduction in ACT is mainly due to 
the proposed special data structure. 

Finally, an excellent regression fit was observed for eq. (5) with an R-squared 
value of  0.825. The estimated coefficient values are significant and different from 
zero at the 99% confidence level. A good fit was also obtained from eq. (4) with 
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Table 4 

Computational results o f  the TS + FBA and TS + BA algorithms. 

TS + FBA results "IS + BA results 

Problem Best Solution Tabu Best CPU CPU Solution Tabu Best CPU CPU 
number published value size iteration to best to end value size iteration to best to end 

GI 87514 875*/4 10 107 10.8 22.4 875*/4 I0 75 5.7 16.9 

CL 1214/7 12051'/7 22 1365 36.1 50.8 1210b/7 18 410 10.6 18.4 

G2 81014 819"/4 9 96 5.3 22.6 810./4 9 24 2.1 13.4 

C1 524/5 524*/5 13 529 61A 114.0 524*/5 11 278 35.3 67.2 

C2 8 5 5 1 1 9  844b/10 26 247 50.3 178.7 844b/10 26 190 23.8 70.8 

C3 833/8 838/8 26 1260 894.6 1543.0 835/8 34 730 400.6 675.0 

C4 1082/12 1044b/12 36 1373 1761.3 3560.0 1052b/12 38 3434 2488.1 3075.0 

C5 1351117 1334b/16" 34 895 1703.9 3246.0 1354/161 40 3851 1542.2 1972.7 

C6 560/6 5551'/6 17 233 62.9 173.0 5551'/6 13 381 84.6 140.2 

C7 916/12 911bill a 16 1654 744.6 1056.7 9131'/11 • 19 593 1 2 4 . 3  203.0 

C8 885/9 878b/9 21 1641 1964.7  2998.0 866b]9 21 1075 819.0 1200.0 

C9 1210/15 1184b/14 • 51 895 2474.7 4755.8 1188b/14" 38 1196 1446.0 2443.6 

ClO 1464/19 1441b/18" 100 968 4024.6 4561.0 1422t'/18 • 34 1194 1726.6 3310.I 

C11 1046/7 1043b/7 41 745 780.3 1445.4 10421'/7 31 858 803.4 1398.4 

C12 822/10 819b/10 26 339 339.8 892.2 819b/10 21 249 127.0 407.5 

C13 1551/11 1545b/11 61 821 1576.3 2834.0 1547b/11 31 551 613.5 1343.0 

C14 874/11 8661'/11 34 543 581.5 1175.9 866b/I 1 29 24 413.2 5579.0 

NI 709/6 716/6 I1 153 38.4 136.5 709b/6 9 56 11.4 62.5 

N2 814/8 830/8 9 747 146.5 233.2 814b/8 17 752 101.3 135.0 

N3 994/10 994b/10 26 501 87.6 160.8 1005/10 17 201 18.5 41.5 

N4 925/7 925b/7 13 827 540.7 933.7 946/7 76 224 107.1 286.5 

N5 1045/9 1066/9 19 1234 726.3 1100.7 1045b/9 19 620 200.0 321.0 

N6 1011/11 10111'111 26 718 339.3 638.5 1017/11 38 903 203.0 287.3 

N7 1035/8 I035b/8 17 1762 2444.8 3636.6 1056/8 21 308 271.7 713.0 

N8 1185/10 1185b/10 26 1742 1935.0 2877.0 1209/10 34 1472 8 8 8 . 1  1189.8 

N9 1234/12 1234b/12 26 1882 1786.8 2592.0 1267112 17 1143 509.1 731.8 

ARPD 'l 0.42 - 966.1c 1574.5 c 0.66 499.7 ~ 992.4 ~ 

° Best published solution value was obtained. 
• Better number of vehicles was found. 
b Better solution value than published was found. 
c Average computation time in CPU seconds. 
d ARPD: Average relative percentage deviation over the new best solutions. 

an R-squared value of 0.67 and a 99% confidence level for the estimated coefficient 
values. These estimates of the tabu list size values and the alteration scheme developed 
for it are used only for the large sized problems. The idea has emerged after an 
analysis on relatively small sized problems was made. 
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Table  5 

Evaluation of  metastrategy methods.  

Problem 
Number  Size 

Best  N e w  best 
C&W SA TS + FBA TS + B A  publ ished solution 

C(S) v C(S) v C(S) v C(S) v C(S)* v C(Sb,,t) v 

GI 

CL 

G2 

Cl 

C2 

(23 

C4 

C5 

C6 

C7 

C8 

(29 

CI0 

C l l  

C12 

C13 

C14 

ARPD b 

29 1017 5 875 4 875 4 875 4 S7S [10] 4 874.99 4 

30 1258 7 1213 7 1205 7 1210 7 1214 [45] 7 1205.00 7 

32 888 5 810 4 810 4 810 4 810 [10] 4 810.13 4 

50 625 5 528 5 524 5 524 5 524 [17] 5 524.61 5 

75 1005 10 838 10 844 10 844 10 855 [3] 10 838.62 10 

100 982 8 829 8 838 8 835 8 833 [17] 8 829.18 8 

150 1299 12 1058 12 1044 12 1052 12 1082 [11] 12 104435 12 

199 1707 17 1376 16 1334 16 1354 16 1387 [3] 17 1334.16 16 

50 670 6 555 6 555 6 555 6 560 [ ! 7] 6 555.44 6 

75 989 12 909 11 911 11 913 11 916 [17] 12 909.68 U 

100 1055 10 866 9 878 9 866 9 885 [17] 9 866.75 9 

150 1383 15 1164 14 1184 14 1188 14 1210 [3] 15 1164.12 14 

199 1671 20 1418 18 1441 18 1422 18 1464 [3] 19 1417.85 18 

120 1291 7 1176 7 1043 7 1042 7 1046 [44] 7 1042.11 7 

100 939 10 826 I0 819 10 819 10 822 [441 10 819.59 10 

120 1646 11 15455 11 1545 II 1547 11 1551 [3] 11 1545.98 11 

100 952 11 890 11 866 11 866 11 874 [3] 11 86635  11 

26.65 (170) 1.29 (163) 0.36 (163) 0.38 (163) 1,45 (167) 0.00 (163) 

• [" l: Numbers in brackets represent the reference in which the solution was found. 
b (x): Shows the total number of vehicles used by the algorithm. 

6. Comparative analysis and conclusions 

In this study, we have developed ;~-interchange descent methods for the 
vehicle routing problem and superimposed metastrategy simulated annealing and 
tabu search algorithms on the best of the descent methods. The objective is to 
compare their performance with respect to solution quality and computational time. 
We tested these approaches on classical routing problems with capacity and maximum 
distance constraints, and on randomly generated data with only capacity constraints. 
The results in table 5 are summarised for the seventeen test problems as follows: 

(1) The constructive method of Clarke and Wright [ 14] produces solutions with 
an ARPD of 26.65% and a total number of 170 vehicles, which is about 4.3% 
away from the optimal solution. ~-interchange descent methods with (~, = 1 
and ~, = 2) improve substantially the C&W results in the case of the I + FI, 
2 + FI and the 1 + BI algorithms. The best-improve with approximate cost 
and special data structure 1 + BI + DS reduced the average computation time 
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of the 1 + BI algorithm with a small sacrifice in solution quality. In general, 
descent methods fail to reduce the number of vehicles and produce the published 
results ( v =  167). 

(2) Simulated annealing produces new best solutions using a total of 163 vehicles, 
but displays large variance with regard to solution quality and computational 
time. The ARPD is 1.29% with an ACT of 4909 seconds to the best solutions. 

(3) Both tabu search schemes with a first-best-admissible strategy (TS + FBA) 
and a best admissible strategy (TS + BA) outperform the SA algorithm in 
solution quality and computation time. Tabu search results are also more 
robust than SA. The TS + FBA algorithm produces an average relative percentage 
deviation (ARPD) of 0.36%, similar to the value of 0.38% for the TS + BA 
algorithm with an ACT of 1004 as opposed to 626 CPU seconds, respectively. 
The time reduction is due to the sophisticated data structure. Since the difference 
in the ARPDs is acceptable, the TS + BA algorithm seems to be a more 
efficient option when computer time is a scarce resource. 

(4) Good estimates of a tabu list size and total number of iterations for tabu 
search schemes were found to depend on problem characteristics. An approach 
to vary the tabu list size around an interval was introduced to reduce the error 
in the estimate. 

(5) The total number of vehicles obtained in the published literature (167) is 
larger than the new total of 163. Also the ARPD of published solutions is 
worse by 1.48% on average. Better solutions were found for fourteen out of 
the seventeen classical problems, and identical solutions were found in the 
three other cases, where these seem to be optimal. The largest improvements 
were obtained for problems of medium and large sizes, with or without time 
constraints, as in the case of problems C5, C10 (199 customers), where the 
ARPDs are 3.97%, 3.24% and the new vehicle numbers are 16, 18 rather than 
the published 17, 19, respectively. Due to this reduction, it is not necessary 
to confine oneself to a feasible starting solution if they are difficult to obtain. 
The metastrategy algorithms can also be applied to VRP with different vehicle 
sizes without any difficulties. We strongly recommend them to other related 
routing and distribution problems. 

After the revision of this paper, we became aware of the work of Grandeau 
et al. [20]. They use a tabu search technique which performs tabu moves consisting 
of inserting cities into different routes. They allow infeasible moves to be considered 
during the search. This type of insertion resembles our shift process but without the 
interchange process. The algorithm also uses a post-optimization procedure to end 
the search. Computational results were provided for the C1-C14 problems. They 
obtain slightly better than our best solutions for three problems (C2-C4), equal 
solutions for four problems (C1, C6, C8, C14), and worse solutions for the six 
remaining problems. In the case of C5, they obtain a tour with a length of 1329.29 
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using 17 vehicles, while we obtain a tour of length 1334.16, compensated by using 
only 16 vehicles. It can be seen that our algorithms perform significantly better in 
the presence of time limits and the clustered problems. In addition, our results could 
be improved by a post-optimization procedure which is not used in this study. 

Appendix 

This appendix contains the best real solutions produced in this study for the 
seventeen test problems using real-valued distances. The input and output data for 
the nine random problems are not included due to the limited space, but can be 
obtained from the author. For every problem we present: the total route length value 
C(S) includes the drop times (value in brackets, when applicable, does not) and the 
individual route length C(Rp), the unused capacity Q = Q - Y.iGRp di; the number 
of customers, and the sequence of customers in each route. 

P r o b l e m  GI:  n = 29, C(S) = 874.99, Q = 4500, L = 240, 8i = 10. 

p cfRp) IRpl Route 

I 233.95 1650 6 
2 236.59 125 8 
3 177.24 1700 5 

4 227.21 1775 10 

0-26-28-27-25-24-29-0 
0-22-2-5-4- I-6-3-20-0 

0-23 -8-14-21 -I 9-0 
0-15-16-13-7-17-9-12-I 1-10-18-0 

P r o b l e m  CL: n = 30,  C(S) = 1205 .00 ,  Q = 140. 

p C(Rp) -Q IRpl Route 

I 177.0 0 4 0-4-29-23-0 

2 219.00 0 9 0-12-26-9-7-15-16-11-13-0 
3 86.00 64 4 0-2-I-17-0 

4 214.0 I 7 0-24-3-28-6-5-22-0 

5 168.00 1 5 0-20-25-8-19-0 
6 138.00 8 3 0-21-30-0 

7 203.00 3 5 0-14-27-10-18-0 

Problem G2: n = 32, C(S) = 810.13, Q = 80000, L = 240, 8i = 10. 

p C(R e) Q [Rp] Route 

I 227.75 150 I0 
2 177.88 80 I0 
3 181.82 750 6 
4 222.68 1650 6 

0-18-19-21-20-22-23-24-25-17-14-0 
0-13-32-I0-9-8-7-6-5-1 i-I-0 
0-29-28-16-27-26-15-0 
0-12-2-4-3-30-31-0 
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P r o b l e m  C1:  n = 50, C(S) = 524.61,  Q = 160. 

p c(.%) ~ IR.I Route 

1 118_~2 11 11 

2 99.25 0 11 

3 98.45 8 9 

4 109.06 3 9 

5 99.33 1 10 

0-8-26-31-28-3-36-35-20-22-1-32-0 

0-12-37-44-15-45-33-39-10-49-5-46-0 

0-6-14-25-24-43-7-23-48.-27-0 

0-47-4-17-42-19-40-41-13-18-0 

0-38 -9 -30-34 -5 o- 16 -21-29 -2-11-0 

P r o b l e m  C2:  n = 75, C(S) = 838.62,  Q = 140. 

p C(Rv) Q IRpl Route 

1 119_38 4 8 

2 40.43 8 6 

3 55.35 3 7 

4 89.34 2 7 

5 81.63 3 8 

6 106.59 1 9 

7 81.81 2 6 

8 95.33 1 7 

9 115.82 4 11 

10 52.93 8 6 

0-32-50-18-55-25-31-10-72-0 

0-75-27-52-46-34-67-0 

0-4-45-29-5-48-30-68-0 

0-74-21-61-28-22-62-2-0 

0-6-33-16-49-24-44-3-51-0 

0-73-1-43-42-64-41-56-23-63-0 

0-58-38-65-66-11-35-0 

0-7-53-14-59-19-54-8-0 

0-47-36-69-71-60-70-20-37-15-57-13-0 

0-26-12-39-9-40-17-0 

P r o b l e m  C3:  n = 100, C(S) = 829.18,  Q = 200. 

p c(R,,) ~ IR.I Route 

I 124.65 25 11 

2 83.10 43 13 

3 111.50 6 12 

4 107.08 47 9 

5 80.45 19 12 

6 59.35 1 12 

7 138.67 1 15 

8 124.38 0 16 

0-88-62-11-19-49-64-63-90-32-10-31-0 

0-58-2-57-41-22-75-74-72-73-21-40-52-0 

0-13-87-42-43-I4-44-38-86-16-61-99-6-0 

0-26-4-56-23 -67-39-25-55-54-0 

0-28-76-77-3-79-33-81-9-51-50-1-27-0 

0-94-95-97-92-98-37-100-91-85-93-59-96-0 

0-12-80-68-24-29-78-34-35-71-65-66-20-30-70-69-0 

0-89-18-83-60-5-84-17-45-8-46-36-47-48-82-7-52-0 
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P r o b l e m  C4:  n = 150, C(S) = 1044.35,  Q = 200.  

p C(Rp) ~ IR,,I Route 

1 123.50 0 
2 114.67 5 
3 12831 0 

4 109.85 8 
5 94.52 0 

6 77.53 0 
7 73.06 3 

8 87.12 1 
9 76.22 0 

10 72.66 6 
11 35.70 142 

12 50.81 0 

14 0-132-122-20-66-71-65-136-35-135-120-9~I03-51-I-0 
13 0-89-5-84-17-113-86-140-38-43-15-57-144-87-O 
15 0-146-7-123-19-107-11-64-49-143-36-47-124-46-114-18-0 

12 0-149-54-130-55-25-139-39-67-23-56-4-110-0 
16 0-52-88-148-62-10-108-126-63-90-32-131-128-30-70-101-69-0 

10 0-106-82-48-8-45-125-83-60-I 18-147-0 
13 0-105-26-109-134-24-29-121-68-80-150-12-138-28-0 

15 0-13-117-97-42-142-14-119-44-141-16-61-91-I00-37-96-0 

13 0-111-50-102-33-81-34-78-129-79-3-77-116-76-0 
15 0-58-137-2-115-145-41-22-133-75-74-72-73-21-40-53-0 
3 0-27-31-127-0 

11 0-6-99-104-59-93-85-98-92-95-94-112-0 

P r o b l e m  C5:  n = 199, C(S) = 2344.16,  Q = 200.  

p c%) ~ IRpl Route 

1 118.13 0 13 
2 106A9 3 14 
3 137.29 2 14 
4 109.08 1 13 
5 81.92 2 11 
6 98.45 0 13 
7 81.55 0 14 

8 77.18 0 13 
9 85.75 0 13 

10 71.58 1 12 
11 71.17 0 12 
12 72.49 1 13 
13 60.80 2 11 
14 52.16 0 11 
15 61.94 0 12 
16 48.19 2 12 

0-1-51-161-71-65-136-35-135-164-34-169-29-121-0 
0-98-100-192-14-119-44-38-140-86-113-17-84-60-166-0 
0-88-159-126-63-181-64-49-143-36-47-168-124-46-18-0 
0-21-197-56-186-23-67-39-139-187-170-25-55-165-0 
0-152-48-123-19-107-175-11-62-148-182-52-0 
0-184-116-3-129-78-120-9-103-66-188-20-122-176-0 

0-53-152-58-137-144-57-15-43-142-42-172-87-97-94-0 
0-106-194-7-82-114-8-174-45-125-199-83-6-183-0 
0-189-10-108-90-32-131-160-128-30-70-101-111-28-0 
0-26-149-195-179-54-134-24-163-68-150-80-12-0 
0-96-37-193-91-191-141-16-61-173-5-118-89-0 
0-2-178 - 115-145 -4 1-22-133 -75 -74-171-72-73 -40-0 
0-50-102-157-33-81-185-79-158-77-196-76-0 
0-13-117 -95-92-151-59-85 -93 -99-104-147 -0 
0-138-154-109-177-130-4-155-110-198-180-105-0 
0-156-112-146-167-127-190-31-162-69-132-27-0 

P r o b l e m  C6:  n = 50, C(S) = 1055.44  (555.44) ,  Q = 160, L = 200,  •i = 10. 

p cfRp) ~ IRpl Route 

1 198.08 23 9 
2 189.94 29 8 
3 195233 19 10 
4 82.33 80 4 

5 199.12 5 10 
6 190.64 27 9 

0-2-20-35-36 -3 -28-31-22-1-0 

0-17-42-19-40-41-13-25-14-0 
0-32-11-16-29-21-50-34-30-9-38-0 
0-18-4-47-46-0 

0-12-37-44-15-45-33-39-10-49-5-0 
0-6-23-24-43-7-26-8-48 -27-0 
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P r o b l e m  C7: n = 75,  C(S) = 1659 .68  (909.68) ,  Q = 140, L - 160, 8i = 10. 

p c(a,) ~ IR A Route 

I 153.82 0 8 
2 127.16 II 5 
3 146.84 8 7 
4 158.76 53 6 
5 159.92 28 7 
6 144.38 0 7 

7 151.69 17 7 

8 152.97 27 6 

9 155.24 25 7 
10 157~4 5 8 

11 151.36 2 7 

0-75-48-47-36-37-5-29-45-0 
0-38-65-66-11-53-0 
0-16-49-24-3-44-40-17-0 
0-4-20-70-60-71-69-0 
0-62-22-64-42-1-73-6-0 
0-68-2-28-61-21-74-30-0 
0-12-72-39-31-10-58-26-0 
0-32-50-18-55-25-9-0 
0-33-43-41-56-23-63-51-0 
0-27-15-57-13-54-52-34-67-0 

0-46-8-19-59-14-35-7-0 

P r o b l e m  C8:  n = 100, C(S) = 1866.75 (866.75),  Q = 200,  L = 230,  8i = 10. 

p C(R D ~ IR A Route 

1 200.12 45 11 
2 227.55 22 11 
3 197.08 47 9 
4 221.37 7 11 
5 227.93 37 11 
6 178.60 110 9 
7 213.10 43 13 
8 190.74 0 13 
9 210.26 31 12 

0-27-69-70-30-32-90-63-10-62-88-31-0 
O- 18-82-48-47-36-49-64-11-19-7-52-0 
0-54-55-25-39-67-23-56-4-26-0 
0-13 -87-42-43-14-44-38-86-I 6-61-96-0 
0-50-33-81-9-35-71-65-66-20-51-I-0 
0-89-60-83-8-46-45-17-84-5-0 

0-53 -40-21-73 -72-74-75 -22-4 1 - 15 -57 -2-59-0 

0-94-95-97-92-37-98-100-91-85-93-59-99-6-0 

O- 12 -80-68 -24-29-34-78-79-3 -77-76-28-0 

P r o b l e m  C9:  n = 150 ,  C(S) = 2664.12 (1164.12) ,  Q = 2 0 0 ,  L = 200,  81 = 10. 

p C(Re) Q [Re] Route 

I 191.33 51 11 
2 136.01 30 9 
3 188.33 71 II 
4 184.60 58 12 
5 196.13 7 I0 
6 197.72 4 12 
7 199.13 92 8 
8 192.73 85 8 
9 198.40 25 11 

10 199.64 12 13 
11 194.18 42 12 
12 193.96 1 11 
13 192.39 46 11 
14 199.57 41 11 

0-31-108-90-32-131-128-20-30-70-101-69-0 
0-147-96-104-99-93-98-59-94-112-0 
O- 137-87-144-57-15-43-142-42-97-117-13-0 
0-58-2-115-145-41-22-133-74-73-21-40-53-0 
0-105-110-4-139-39-67-23-56-75-72-0 
0-50-102-33-81-120-9-103-51-122-1-132-27-0 
0-78-34-135-35-136-65-71-66-0 
O- 1 O- 126-63 -64-49-143 -36-47-0 
0-89-83-114-8-125-45-46-124-48-82-18-0 
0-28-150-80-68-121-29-129-79-3-77-116-76-111-0 
0-127-88-148-62-11-107-19-123-7-106-52-146-0 
0-60-118-5-84-17-113-86-141-16-61-6-0 
O- 138-12-109-134-24-25-55-130-54-149-26-0 
0-95 -92-37-100-119 - 14-38 - 140.-44-91-85-0 
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P r o b l e m  C10:  n = 199, C(S) = 3407.85 (1417.85),  Q = 200, L = 200, 8i = 10. 

t, c(Rp) ~ IR~I Route 
1 198~5 15 12 

2 197.81 2 11 
3 196.58 88 8 

4 194~4 6 12 
5 198.37 32 11 
6 193.07 12 11 

7 193A7 33 9 
8 198~1 23 11 
9 19730 21 12 
10 196.06 37 10 
11 17527 20 11 

12 158.80 11 11 
13 14130 18 10 

14 198.82 33 10 
15 195A3 0 13 

16 194.14 1 14 
17 181~2 36 11 
18 19631 26 12 

0-76 - 196-77 - 158 -3 -79-129-169-78-34-164-185 -0 

0-61-16-191-141-86-113-17-173-84-5-147-0 

0-174-46-36 - 143-49 -64-11-148 -0 
0-21-197-56-186-39-187-139.4-155-110-198-180-0 
0-183-59-100-192-119-44-140-38-14-97-117-0 

0-88-182-123-19-107-175-62-159-189-10-70-0 
0-81-120-135-35-136-65-71-161-51-0 

0-50-102-157-33-9-103-66-188-20-122-1-0 
0-184-116-68-80-150-121-29-24-163-134-54-177-0 

0-108-90-126-63-181-32-160-128-30-0 
0-89-166-118-60-83-199-125-45-8-114-18-0 

0-27-167-127-190-31-162-101-69-132-176-111-0 
0-28-154-138-12-109-195-149-26-105-53-0 

0-72-75-23-67-170-25-55-130-179-0 
0-152-58-2-178-115-145.41-22-133-74-171-73-40-0 

0-6-96-99 - 104-93 -85 -91 - 193 -98 -37-151-92-95 -94-0 
0-146-52-106-194-7-48-168-47-124-82-153-0 
0-156-112-13-87-172.42-142.43-15-57-144-137-0 

P r o b l e m  C l l :  n = 120, C(S) = 1042.11 (555.44) ,  Q = 200.  

p C(np) ~ In~l Route 

1 213.63 

2 207.94 
3 199.63 
4 144A3 
5 134.96 
6 74.56 
7 66.96 

I 16 0-52-54-57-59-65-61-62-64-66-63-60-56-58-55-53-100-0 

3 21 0-109-21-20-23-26-28-32-35-29-36-34-31-30-33-27-24-22-25-19-16-17-0 

0 16 0-95-37-38-39-42-41-44-46-47-49-50-51-48-45-43-40-0 

1 16 0-106-73-76-68-77-79-80-78-72-75-74-71-70-69-67-107-0 
1 16 0-88-2-1-3-4-5-6-7-9-10-11-15-14-13-12-8-0 

7 17 0-87-92-93-96-94-97-115-110-98-116-103-104-99-101-102-105-120-0 
12 18 0-82-111-86-85-89-91-90-114-18-118-108-83-113-117-84-112-81-119-0 

P r o b l e m  C 1 2 :  n = 100,  C(S) = 8 1 9 . 5 9 ,  Q = 200 .  

p C(Rp) Q [Rp[ Route 

1 137.02 0 14 
2 101.88 0 8 
3 95.94 10 9 
4 97.23 0 9 
5 96.04 0 9 
6 76.07 30 10 
7 64.81 40 13 
8 56.17 30 11 
9 43.59 50 6 

10 50.84 30 11 

0-81-78-76-71-70-73-77-79-80-72-61-64-68-69-0 
0-55-54-53 -56-58-60-59-57-0 
0-99-100-97-93-92-94-95-96-98-0 
0-32-33-31-35-37-38-39-36-34-0 
0-13-17-18-19-15-16-14-12-10-0 
0-91-89-88-85-84-82-83-86-87-90-0 
0-47 -49 -52-50-51.48-45.46-44.40.41-42-43-0 
0-5 -3-7 -8 - 11-9-6 -4-2-1-75-0 
0-67-65-63-74-62-66-0 
0-21-23-26-28-30-29-27-25-24-22-20-0 
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P r o b l e m  C13: n = 120, C(S) = 7545.98 (1545.98), Q = 200, L = 720, t~i = 50. 

j, c(Rp) ~" IRpl Route 

1 705.09 86 10 
2 690A7 78 10 
3 691.61 128 10 
4 715.87 53 10 
5 672.87 88 10 
6 686A9 59 11 

7 717.85 45 12 

8 71132 73 12 

9 706.69 66 12 

10 708.88 51 13 

11 538.44 98 10 

0-53-55-58-56-60-63-66-64-62-57-0 
0-37-44-46-47-49-50-51-48-43-40-0 
0-21-26-32-35 -31-30 -33 -34-36-29 -0 
0-52 -54-61-65-59-45 -42-41-38-39-0 
0-17-16 - 19 -25 -22-24 -27-28 -23 -20-0 
0-68-76-77-79-80-78-75-72-74-71-73-0 

0-108-8-12-13-14-15-11-10-9-7-84-85-0 

0-101-99-100-116-110-98-67-70-69-103-104-107-0 

0-112-117-113-83-6-5-4-3-1-2-81-119-0 

0-96 -93 -94-97 - 115 - 109-114-118-18 -90-91-89-92-0 

0-120-105-106-102-95-87-86-111-82-88-0 

P r o b l e m  C14: n = I00, C(S) = 9866.36 866.35), Q = 200, L = 1040, tSi = 90. 

p C(Rp) ~ IRpl Route 

1 1028.04 0 10 
2 821.88 0 8 
3 996.70 0 10 
4 907.23 0 9 
5 906.04 0 9 
6 976.07 30 10 

7 871.56 90 9 

8 957.79 50 10 

9 949.41 40 10 

10 956.17 40 10 

11 495.47 140 5 

0-63-80-79-77-73-70-71-76-78-81-0 
0-55-54-53-56-58-60-59-57-0 
0-98 -96-95-94-92-93 -97-100-99-1-0 
0-32-33-31-35-37-38-39-36-34-0 
0-10-12-14-16-15-19-18-17-13-0 
0-91-89-88-85-84-82-83-86-87-90-0 

0-47-46-45-48-51-50-52-49-20-0 

0-67-65-62-74-72-61-64-68-66-69-0 

0-21-22-24-25-27-29-30-28-26-23-0 

0-5-3 -7-8-11-9-6-4-2-75 -0 

0-43-42-44-40-41-0 
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