
Imperial College of Science and Technology and Medicine

The Management School, OR Section

University of London

Metastrategy

Simulated Annealing and Tabu Search

ktgithm for Combinatorial Optimization Problems

by

Ibrahim Hassan Osman

A thesis submitted for the

Degree of Doctor of Philosophy of the University of London

and for the

Diploma of Imperial College

June 1991



In the name of God, Most Gracious, Most Mercfisl.

0 my Lord! Advance me in knowledge."

(QUR-AN Surra XX. 114.)



Dedicated with love

to my parents

and to my

sister



Abstract

This thesis deals with algorithms for combinatorial optimization problems related to

location, resource allocation, routing and distribution systems. The capacitated

clustering problem (CCP) is the problem in which a given set of weighted points is to

be partitioned into subsets ("clusters") so that the total weight of points in each cluster

is less than a given cluster capacity. The objective is to find the "centre" of the cluster,

and to minimize the total scatter (distance) of points from the centre of the cluster to

which they have been allocated. The generalised assignment problem (GAP) is the

problem of finding a minimum cost assignment of a set of "jobs" to a set of "agents"

such that each job is assigned to exactly one agent and the total resource of each agent

is not exceeded by the demands of the jobs assigned to him. The vehicle routing problem

(VRP) involves the design of a set of minimum cost routes, originating and terminating

at a central depot, so that the demands of all customers are supplied by the vehicles

operating these routes. The total demand of the customers on each trip must not exceed

the vehicle capacity. These problems are of practical importance in business applications,

logistics and industrial management. Exact algorithms can solve only small size

problems of this type. With this situation, it is important to have approximate algorithms

which can provide near optimal solutions for large-sized problems in reasonable amount

of computation time.

In this thesis, we design, develop and analyse empirically, metastrategy approxi -

mate (MA) algorithms for the above mentioned problems. A metastrategy algorithm

guides and directs the operations of a subordinate method (such as local search) in order

to enhance its performance and to avoid poor local optima. Recently, two MA algorithms

Abstract	 i



have been proposed to solve difficult combinatorial optimization problems: Simulated

annealing (SA), which is based on ideas from statistical mechanics; and tabu search

(TS), which is based on the general tenets of intelligent problem solving.

A survey of exact and approximate methods for each of the above problems

together with a review of the metastrategy TS and SA methodologies are given. The

main contribution of this thesis is the development of the MA algorithms for solving

combinatorial optimization problems. We investigate their performance and compare

them against other available methods with respect to solution quality and computation

time. We have developed the concept of a —interchange neighbourhood mechanism

and used it in local search algorithms. A new cooling schedule for SA is established,

which has out-performed other cooling schedules in the literature. A new dynamic search

strategy for (TS) produces better results than the classical approach for all the above

problems. Also, we have designed a special data structure for the TS algorithm with

which the computation time is more than halved. Computational results are presented

for all the algorithms that have been developed. In cases where results for test problems

are available (for example, the VRP), the new methods improve on all results reported

in the literature.

Abstract	 ii



Acknowledgements

Firstly, I would like to express my gratitude to God, He who taught man who knew not.

Thanks also to my family, for their love, their support and the feeling that they are always

there across the miles to turn my fears, and anxieties into a higher degree.

I am grateful to Professor Nicos Christofides, who introduced me to the field of

Combinatorial Optimization Theory while I was at Imperial College. I am also indebted

to the Harriri Foundation for the financial support I received, without which, this thesis

would not have been possible. I am also grateful to the Harriri Foundation and the

Management School for supporting my trips to Beograd and Athens. Many thanks to

Professor Laurence Wolsey for his hospitality and help during two visits I made to

Belgium as a participant of the "European Doctoral Program in Quantitative Methods

in Management".

The professional support which I received from many scholars has clarified my

research task. I am very grateful to Dr. Chris Potts who introduced me to the Simulated

Annealing approach, and encouraged me to investigate the Tabu Search technique. I

wish to thank Professor Fred Glover for the long discussions we had on top of the hills

of Hydra, and also for his Continuous encouragement and support. The help of Professor

Luk Van Wassenhove is also appreciated for sending me his exact Fortran code for the

Generalised Assignment Problem. Many thanks to Dr. Dirk Cattrysse who sent me a

set of test problems.

Abstract	 jjj



The internal help at Imperial College must not be forgotten, especially, Dr. John

Beasley for his friendly advice, and Dr. Norman Murray for patiently signing extra

computer units whenever I required. This thesis would have taken longer without the

moral support of Miss Ghad.a Al-Tajir, and Yazid Sharaiha for their help in reading parts

of my thesis. Many thanks to Dr. Mohan Krishnamoorthy, for his critical reading of the

final draft of this manuscript; sharing offices with him was a good experience.

I would like to thank my friends and fellow students at the Operational Research

section for making life in the college a little more bearable. The help I received from

Merza Hassan in a variety of ways is deeply appreciated. Many thanks to: Au Salem

El-Sabah, Andreas Johannsen, Asma Bahormoz, George Magalokonomos, Hala Badra,

Nild Niktari, and Yang Guang for the friendship they have shown and the pleasant

environment they created throughout the course of this work.

Finally, I would like to express my deepest gratitude to my cousin Dr. Ahmad

Osman and to many friends in Lebanon for the moral support they have expressed. Last

but not least, the friendship of Miss Mona Al-Qatari, Gary Hutton and Marwan Naghi

is also appreciated.

Abstract	 iv



Table of Contents

Abstract	 . j

Acknowledgments ...................................................................... ....................lii

Tableof contents ............................................................................................ v

Chapter1: Introduction ...............................................................1

1 .0 Introduction ........................................................................1

1.1 What is OR in the past and today 93

1.2 Combinatorial optimization problems and their complexity......................4

1.3 Why metastrategy approximate algorithms................................................9

1.4 Research objectives and contributions .......................................................11

1.5 The thesis outline ................................................................12

Chapter2: Literature Review ......................................................16

2 .0 Introduction................................................................................................16

2.1 Heuristics (Approximate algorithms).........................................................17

2.1.1 Why should we use a heuristic method '18
2.1.2 Classification of approximate algorithms.......................................20
2.1.3 Performance analysis of approximate algorithms...........................24
2.1.4 Evaluation criteria for approximate algorithms.....26
2.1.5 Disadvantages of approximate algorithms.............28
2.1.6 Local search descent methods.........................................................29
2.1.7 Metastrategy algorithms and local search.......................................31

2.2 Simulated annealing (SA).................................................-.........................34

2.2.1 Simulated annealing background ..........................34
2.2.2 Problem specific choices...............................................................36
2.2.3 Generic choices.....................................................- ........................36
2.2.4 Cooling schedules.................................................37
2.2.5 Classification of cooling schedules......................... ........................39

2.2.5.1 Stepwise temperature reduction schemes .......................39
2.2.5.2 Continuous temperature reduction schemes ....................46
2.2.5.3 Non-monotonic Reduction Schemes ...............................49

2.2.6 Simulated annealing procedure............................... ........................52

2.2.7 Performance of SA on combinatorial optimization problems........53

Abstract	 v



2.2.7.1 The travelling salesman problem (TSP)..........................54
2.2.7.2 The quadratic assignment problem (QAP)..................... 56
2.2.7.3 Machine scheduling problems .........................................57
2.2.7.4 The graph partitioning problem. (GPP) ........................... 59
2.2.7.5 The graph colouring problem (GCP) ...............................61
2.2.7.6 The multi-constraint knapsack problem. (MCKP) ..........61
2.2.7.7 The generalised assignment problem (GAP) ...................62
2.2.7.8 Other Combinatorial applications....................................64

2.3 Tabu search .................................................................................................65

2.3.1 Background .....................................................................................65
2.3.2 Tabu search strategies .....................................................................66
2.3.3 The forbidding strategy ...................................................................67
2.3.4 Aspiration criteria and tabu restriction ..........................................70
2.3.5 The intermediate and long-term strategy .......................................71
2.3.6 The freeing strategy ........................................................................72
2.3.7 The short term memory strategy .....................................................72
2.3.8 Performance of TS on combinatorial optimization problems.........77

2.3.8.1 The travelling salesman problem (TSP)..........................77
2.3.8.2 The Quadratic assignment problem. (QAP) ....................78
2.3.8.3 The machine scheduling problems ..................................79
2.3.8.4 The graph colouring problem (GCP) ...............................81
2.3.8.5 Other Combinatorial applications....................................81

Chapter 3: Simulated annealing and tabu search for the

CapacitatedClustering Problem............................82

3.0 Introduction................................................................................................82

3.1 Mathematical formulation ..........................................................................85

3.1.1 Solution representation...................................................................88

3.2 A constructive heuristic.............................................................................88

3.3 Iterative improvement methods..................................................................90

3.3.1 A A—interchange mechanism..........................................................90
3.3.2 The order in which neighbours are generated .................................92
3.3.3 Evaluation of the cost of a move ....................................................94
3.3.4 A—interchange descent algorithm...................................................94

3.4 Simulated annealing algorithm...................................................................96

3.4.1 Classification of the cooling schedules...........................................97
3.4.2 The new cooling schedule...............................................................99
3.4.3 The general annealing algorithm....................................................103

3.5 Tabu search implementations.....................................................................105

Abstract	 vi



3.5.1 Tabu search algorithm 	 . 108

3.6 Computational experience 	 . 109

3.6.1 Test problems..................................................................................109
3.6.2 Iterative descent algorithms............................................................110
3.6.3 Comparisons of simulated annealing algorithms............................111
3.6.4 Comparisons of simulated annealing and descent algorithms........114
3.6.5 Comparisons of metastrategy SA and TS algorithms .....................116

3.7 Concluding remarks....................................................................................127

Chapter 4: Simulated annealing and tabu search for the

Generalised Assignment Problem ..........................128

4 .0 Introduction ................................................................................................130

4.1 Mathematical programming formulation and review .................................132

4.2 Iterative improvement methods ..................................................................138

4.2.1 Problem definition and a solution representation ...........................138
4.2.2 The Martello and Toth heuristic for the GAP .................................139
4.2.3 X—interchange generation mechanism ............................................140
4.2.4 Selection strategy of alternate solution ...........................................143
4.2.5 Long term strategy for initial solutions ...........................................143
4.2.6 Evaluation of the cost of a move ....................................................144
4.2.7 The k—interchange descent algorithm ............................................145

4.3 Simulated annealing ...................................................................................147

4.3.1 Simulated annealing implementation ..............................................147
4.3.2 Simulated annealing algorithm .......................................................149

4.4 Tabu search .................................................................................................151

4.4.1 The forbidding and freeing strategies .............................................152
4 .4.2 The short term strategy ...................................................................153

4.5 Computational Experience .........................................................................157

4.5.1 TestProblems ................................................................................157
4.5.2 DescentMethods .............................................................................158
4.5.2 Simulated Annealing .......................................................................160
4.5.4 Tabu Search ....................................................................................162
4.5.5 Comparison of Algorithms .............................................................168

4.6 Conclusion ..................................................................................................170

Chapter 5: Simulated annealing and tabu search for the Vehicle

RoutingProblem .......................................................173

Abstract	 vii



5.0 Introduction	 . 173

5.1 Problem definition and solution representation	 . 176

5.2 Iterative improvement methods ..................................................................177

5.2.1 An initial solution (saving method) ................................................178
5.2.2 The A—interchange generation mechanism ....................................179
5.2.3 Selection strategy of alternate solutions .........................................183
5.2.4 Evaluation of the cost of a move ....................................................184
5.2.5 The A—interchange descent algorithm ............................................187

5.3 Simulated annealing implementation .........................................................189

5.3.1 Simulated annealing algorithm .......................................................192

5.4 Tabu search implementation .......................................................................193

5.4.1 The forbidding and freeing strategy ................................................195
5.4.2 The short term strategy ...................................................................199
5.4.3 Tabu search algorithm.................................................................... 205

5.5 Computational experience ..........................................................................206

5.5.1 Test problems ..................................................................................206
5.5.2 Descent algorithms .........................................................................209
5.5.3 Metastrategy algorithms .................................................................213

5.6 Comparative analysis and conclusions .......................................................222

Chapter 6: Conclusion and Suggestion for Further Research

.........................................226

6.1 Conclusion ..................................................................................................226

6.2 Future research ...........................................................................................230

References....................................................................................... 231

AppendixA.! ................................................................................. 247

AppendixA.2 ................................................................................. 249

AppendixA.3 ................................................................................. 255

Appendix A.4 ................................................................................. 257

Abstract	 Viii



Chapter 1

INTRODUCTION

1.0 Introduction

During the past two decades, a great deal of effort has been invested in the field of

combinatorial optimization.

Combinatorial optimization is defined (Lawler 1976]) as follows:

Combinatorial optimization is the mathematical study of finding an optimal

arrangement, grouping, ordering, or selection of discrete objects.

Typical problems in combinatorial optimization are: an optimal location of faci-

lities at given positions, the best grouping of customers, optimal ordering of jobs on

machines, optimal assignment of jobs (customers) to agents (vehicle routes), optimal

selection among various investment possibilities. Major references on aspects of

combinatorial optimization are Lawler [1976], Christofides eta!. [1979], Papadimitriou

& Steiglitz [1982], Nemhauser & Wolsey [1988].

An instance of a combinatorial optimization problem can be seen as an implicit

description of a fmite set of feasible solutions. An objective (weight) function assigns

to each of these solutions a value. The optimal solution is then that feasible solution

with minimum (or maximum, depending on the prob em) value. These problems are

mostly well-defmed in the sense that an optimal solution always exists if the set of

Chapter 1	 1



feasible solutions is non-empty. Thus, it is not so much the existence of the set of feasible

solutions or, indeed the existence of an optimal solution, but rather the computational

effort required to obtain the optima which is of central interest in the design of algorithms

for combinatorial optimization problems.

In most of these problems, the optimal solution is computationally difficult to

obtain. Hence, it is important to have approximate algorithms (heuristics) which can

provide near optimal solutions for large-sized problems in a reasonable amount of

computational time.

Of late, a lot of research attention has been focussed on the development of

intelligent and effective heuristic approaches that solve large problems of practical size.

These approaches have evolved through interactions and analogies derived from bio-

logical, physical, computer and decision making sciences. New approaches to the

approximate solution of difficult combinatorial problems include: simulated annealing,

tabu search, genetic algorithms and neural networks. The first derives from physical

science - more specifically, from statistical mechanics. The second stems from the

general tenets of intelligent problem solving. The last two are inspired by principles

derived from biological sciences. See Glover, eta!. [1989] for a further exposé.

In this thesis, we use the first two of the above-mentioned approximate approaches

and describe them as merasrrategy algorithms. Briefly stated:

A metastrategy algorithm is a computer method for solving approximately,

difficult, large and/or complex combinatorial optimization problems for which

optimal solutions can not be found in a realistic amount of computing time using

even the most powerful computer. Such an algorithm is superimposed on other

subordinate methods, and enhances their performance by using different per-

ational and organizational strategies.

Chapter 1	 2



In this chapter we discuss the following:

• What is OR in the past and today?

• Combinatorial optimization problems and their complexity.

• Why metastrategy algorithms are used?

• Research objectives and contributions.

• The thesis outline

1.1 What is OR in the past and today?

In the literature, two definitions can be found for the term OR. It is known as Operational

Research in Britain and as Operations Research in American.

The Operational Research Society (UK) has adopted the following short definition:

"The Science of Decision Making in Business, Industry, Government and Society."

The American definition of OR is as follows:

"Operations Research is the professional discipline that deals with the application

of scientific methods to decision making, especially to the allocation of resources.

rations researchers aim to provide rational bases for decision making; they seek

to understand and structure complex situations and to use this understanding to

predict system behaviour and improve system performance. Much of this work is

done using analytical and numerical techniques to develop and manipulate math-

ematical and computer models of organizational systems composed of people,

machines, and procedures."

Chapter 1	 3



Operational research began during World War II when the British Government

drafted a team of scientists from various disciplines to assist with military operational

problems. The goal was to combine purely technical research and operational research

by bringing in ideas from Engineering, Management, Mathematics, Computer Science,

and Psychology. Because this team conducted research on (military) operations, its

activities were called operational research. By the early 1970's, the researchers efforts

had resulted in the development of large bodies of theory and methods such as: linear,

integer and dynamic programming; queueing theory; network analysis; inventory and

replacement theories; scheduling; simulation and others. Practitioners have successfully

used OR methods to contribute to many areas including the military, manufacturing,

transportation, communications, health care, banking and other public sectors. Today,

OR scientists and practitioners work on methodological subjects such as optimization,

probabilistic models, decision analysis, stochastic processes, and also on the combination

of OR with other disciplines like artificial intelligence, physical and biological sciences.

The majority of operational researchers work in areas of both public (such as energy and

urban issues) and private concern. Private industrial applications include, for example

marketing, operations management, production, scheduling, finance and decision sup-

port systems.

1.2 Combinatorial optimization problems and their complexity.

The name combinatorial optimization is composed of combinatorial and optimization.

The word Combinatorial is sometimes replaced by discrete, and optimization by pro-

gramming. A combinatorial optimization problem (COP) asks to fmd a solution of

minimizing (or maximizing) an objective function over a combinatorial (or discrete) set

of feasible solutions.

An optimization problem, P. is generally defined as follows:

Chapter 1	 4



P:	 Minimize 1(x)

subject tox E S

where S çX denotes afeasible region in the space X. In other words, S is the set

of feasible solutions satisfying the imposed constraints. The function f:S -* R is called

the obj ective function, where R is the set of reals. A feasible solution, x E 5, is optimal

if no other feasible solution y satisfies f(y) <f(x).

The sets X and S take a variety of forms according to specific applications. We

call an optimization problem P as a combinatorial optimization problem, (COP), if X

and S are combinatorial or discrete (i.e. discrete sets of finite elements). For example,

the family of a finite set of n objects contains 2R finite elements.

In this thesis, we consider three combinatorial optimization problems related to

location, resource allocation, routing and distribution problems:

The capacitated clustering problem (CCP)

The CCP is the problem in which a given set of weighted points is to be partitioned into

clusters so that the total weight of points in each cluster is less than a given cluster

capacity. The objective is to define a centre for each cluster and to find that partition

which minimizes the total scatter (distance) of points from the centre of the cluster to

which they have been allocated.

Chapter 1	 5



The generalised assignment problem (GAP)

The GAP is the problem of finding a minimum cost assignment of a set of jobs to a set

of agents such that each job is assigned to exactly one agent, and the total resource of

each agent is not exceeded by the demands of the jobs assigned to him.

The vehicle routing problem (VRP)

The VRP involves the design of a set of minimum cost delivery routes, originating and

terminating at a central depot, for a fleet of vehicles of variable (orflxed) size, which

services a set of customers. Each customer is supplied by a route operated by one vehicle.

The total demand of the customers on each route must not exceed the vehicle capacity,

and the total length (travel) of each vehicle route must not exceed a pre-specified

maximum bound value.

These problems have been extensively studied, especially in the last decade. They

have attracted both theoretical as well as practical attention. The theoretical interest

arises mainly from the intriguing nature of their underlying combinatorial optimization

models. Moreover, these problems are interesting because of their close relation with

other difficult combinatorial problems.

From the above definitions, it can be seen that the above problems share one

common characteristic: They are easy to describe but difficult to solve. The devel-

opment of computational complexity theory has led, in the last fifteen years, to a

fascinating insight into the inherent difficulty of these and other combinatorial

optimization problems. This theory has also contributed by providing rigourous methods

for evaluating algorithms and for classifying problems as hard or easy. According to

Johnson et al. [1985], "This theory is deeply indebted to the field of combinatorial

optimization, which has provided it with invaluable motivation, insight, paradigms".

Chapter 1	 6



What is meant by an easy (or difficult) problem?

To answer this question, we need to introduce an important complexity measure of

algorithms: the time complexity, which is the number of arithmetic computation steps

required to solve a given problem instance. Given an instance of a problem of size N,

an algorithm is said to have a complexity O(g (N)) iff(N), the maximum time required

to execute the algorithm is such that: I f(N) 1< c x I g (N) I. Here, c is a constant and g(N)

is a real function of N.

A problem is easy if it has an algorithm with time complexity 0 (Nk) for a constant

k, where N is the size of the problem. Here, 0 (Nk) is a function that depicts:

a,, x Nk + a_ xN' + ... + a 1 xN + a0 where, a are constants. Such complexity is said

to be of polynomial order, and the algorithm is called a polynomial time algorithm. On

the other hand, if any algorithm for the problem requires a complexity not bounded by

a polynomial function in N, it is considered to be difficult or intractable. Typical orders

that are not polynomial are 0 (N'°'), 0 (k b') and 0 (N!). Table 1.1 illustrates the estimated

computer time necessary to execute the number of steps defined by some functions.

Table 1.1. Computation time to execute f(N) steps (one step is assumed to take one

microsecond)

SizeN

50	 100Number of

steps f(N)

l000xN

100 xN3

2'

3N

20

0.02 sec

0.8 sec

1 sec

5.8 mm

0.05 sec
	

0.1 sec

12.5 sec
	

100 sec

35 years
	

3 x	 centuries

2 x i09 centuries

Chapter 1	 7



What is NP-completness?

As the feasible region of many COP's are finite sets, an optimal solution for a

minimization problem P can be obtained by a straight forward method that enumerates

all feasible solutions in the space S and outputs the one with the minimum objective

value. This method is called complete enumeration. Then, the class of NP problems

is characterised by:

1. Every problem P E NP can be solved by complete enumeration.

2. Each enumerated case can be solved in polynomial time.

A problem P1 is said to be polynomially reducible to a problem Q1 if any instance

of P1 can be transformed to an instance of Q1 in polynomial time. This suggests that the

complexity of P1 is not greater than Q1 if the complexity of the transformation is

negligible. Also, a problem Q2 is said to be NP - hard if any problem P2 in class NP is

reducible to Q2. Furthermore, if an NP - hard problem Q2 belongs to the class NP then

Q2 is said to be NP - complete. Thus, an NP - complete problem is the most difficult

type of problem in NP. This is a brief description of essential result in computational

complexity. Further reading on the subject can be found in Ibraki [1987], and a com-

prehensive book on the NP - completeness theory and problems by Garey and Johnson

[1979].

Computational complexity theory has provided strong evidence that the solution

for some optimization problems belonging to the class NP is likely to require a

computation time that grows exponentially with a problem size. Hence the attention

Chapter 1	 8



paid to the study of exact algorithms for NP problems in general, and the problems

considered in this thesis in particular, is likely to diminish as the size of the problem

instance increases.

Our interests in the CCP, GAP and VRP are due to both their theoretical and

practical importance. They belong to the class of NP - complete problems. Exact

algorithms for them can only solve problems of small size. The largest problems, that

have been solved optimally, are of sizes: 60 jobs and 10 agents for the GAP - Cattrysse

[1990]; 50 customers and 8 vehicles for the VRP - Christofides [1985]; and up to 60

customers for special cases of the VRP - Laporte et al. [1985]. There are no exact

methods reported for the CCP. Practical applications of these problems are numerous,

and many organizations have achieved major economic benefit by implementing

effective modelling, efficient innovative CCP, GAP, VRP algorithms for handling their

strategic, tactical and operational problems. See Mulvey et a!. [1984], Fisher et a!.

[1986], Cattrysse [1990] and Golden er a!. [1988] for further details on the application

of these problems.

1.3 Why metastrategy approximate algorithms.

In practice, algorithms are required to solve difficult problems of large size. It may not

be possible to solve these problem instances exactly using even the most sophisticated

algorithms. With this situation, a less ambitious approach to handle such difficult

problems would be to relax the goal from one of obtaining exact (optimal) solutions to

one of obtaining good sub-optimal solutions. Although these practical problems are

difficult to solve in an optimizing sense, they can be solved in an operational sense.

Operational researchers have recognized early, the importance of approximate algo-

rithms (heuristics). These algorithms can provide near optimal solutions for large-sized

problems in reasonable amounts of computation time and with reasonable storage space

Chapter 1	 9



requirements. Research efforts have resulted in the develqpment of a vast number of

heuristics for different combinatorial optimization problems, see survey in Zanakis et

a!. [1989].

One group of approximate algorithms for combinatorial optimization problems is

known as iterative improvement (local search) methods. An iterative improvement

algorithm starts from a feasible solution and repeatedly seeks to improve it by altering

the solution, through the application of search mechanisms until no further improvements

are possible. At this stage, the algorithm stops at a local optimum solution. The local

optima depends heavily on the starting feasible solution, and the search mechanisms.

These local optima are often of low quality.

Recent advances in the design of sophisticated approximate methods have resulted

in the development of innovative approaches called metastrategy algorithms that

overcome some of the disadvantages and limitations of local search methods. We

mention briefly two metastrategy algorithms that have been proposed to solve difficult

combinatorial optimization problems:

Simulated annealing (SA), which is based on randomized search and acceptance

strategies, emerged from the analogy between the annealing process of solids and the

problem of solving COP's. It was developed by Kirkpatrick, Gelatt and Vecchi [1983],

and independently, by Cerny [1985].

Tabu search (TS), which is based on constraining and freeing search strategies, is

drawn from the general tenets of intelligent problem solving. It was originated by Glover

[1986]. A similar approach was independently developed by Hansen [1986].

Chapter 1	 10



Both SA and TS approaches are devised so as to avoid being trapped in poor local

optima. They allow the local search method to be continued after a local minimum is

detected where no further search for a global minimum can be performed. Hence, they

can be viewed as enhanced versions of local search techniques. They also increase the

chances of obtaining near optimal solutions when applied to new problem areas. There

have been a few successful applications of the metastrategy SA and TS algorithms.

However, apart from the unsuccessful use of SA to solve the GAP, by Cattrysse [1990],

we are not aware of any reports on the use of these novel approaches to solve the CCP,

GAP and the VRP.

1.4 Research objectives and contributions

The goal of this thesis is to fully develop, design, and empirically analyse metasirategy

algorithms for the CCP, GAP and VRP. We also provide some general guide-lines on

how these approaches can be used forother similar combinatorial optimization problems.

These guide-lines indicate the best choice of strategies and parameters for particular

problem types. The main drawback of these approaches is that, although they produce

near optimal solutions for COP's, they do not guarantee optimality. Asymptotic con-

vergence to the set of optimal solutions has been proven for SA under conditions which

are mainly of theoretical interest. They also provide little hope in achieving such

convergence in less than exponential time.

The main contributions of this thesis are the development of the metastrategy

approximate (MA) algorithms for the above mentioned problems. For each problem,

we start by giving a brief discussion on the mathematical model. We then develop

approximate local search descent and metastrategy SA and TS algorithms. We analyse

and investigate their performances and compare them against other available methods

with respect to solution quality and computation time. We have developed the concept

Chapter!	 11



of a —interchange neighbourhood mechanism and used it in local search and MA

algorithms. A new cooling schedule for SA is established. This has out-performed other

cooling schedules in the literature. A new dynamic search srrategy and a data structure

for (TS) are also developed. The TS algorithm produces better results than the classical

TS approach for all the above problems. In addition to proposing new different search

strategies for both TS and SA algorithms, we show through extensive computational

experiments that our algorithms out-perform the best of available heuristic algorithms

in the literature.

We compare the performance of SA and TS methods against one another, and also

against other existing solution methods on the three COP's. To our knowledge, this is

the first attempt of its kind that has been carried out. Although there exist single com-

parisons of either SA or TS approaches on different problems, few make such a

cross-comparison. In the case of Skorin-Kapov [1990], both MA's were applied to the

quadratic assignment problem, and compared. The SA algorithm, however, was bor-

rowed. As a consequence, biased results might have been produced. Since SA is so

parametric in nature, we have to be cautious with such comparison since better SA

applications than the one used in the above comparison were found. The only other

comparisons to our knowledge were reported by Malek et al. [1989] for the TSP. In this

comparison, sequential and parallel TS and SA algorithms were developed and com-

pared, using a classical cooling schedule in the SA algorithms.

1.5 The thesis outline

This thesis is organised as follows:

Chapter 2 is composed of two parts. The first is concerned with heuristic methods,

classification, evaluation criteria and local search methods. The second deals with two

Chapter 1	 12



metastrategy algorithms, namely simulated annealing (SA) and tabu search (TS). We

first review the theory of SA, classify its cooling schedules and survey most of its

applications. Next, the TS methodology and principles are introduced together with an

explanation of their components. This is followed by a survey of TS applications.

Surveys of the CCP, GAP, and VRP are provided in their respective Chapters and, hence,

are not considered in Chapter 2.

Chapter 3 to Chapter 5 have similar structures: First, the relevant problem is

reviewed and then algorithms to solve it are developed and analysed. Although, the

general features of the algorithms are similar, they are tailored to meet the particular

problem's characteristics (for example objectives and constraints). The similarity

between the CCP, GAP and VRP is that they have the concept of assignment (points to

clusters, jobs to agents, and customers to vehicle routes, respectively). The differences

are many. For example, the CCP has the additional requirement of locating centres.

Although the order of assignment is not crucial for the CCP and GAP, it is in the case

of the VRP. Thus, apart from catering for the differences, similar discussions and

algorithmic principles are maintained. The reason is to make each chapter as

self-contained as possible.

Chapter 3 considers the capacitated clustering problem. We introduce the new

neighbourhood generation mechanism and develop the concept of —interchange

iterative descent methods. The new proposed cooling schedule for SA is compared with

the best existing cooling schedules in the literature. The SA algorithm is then compared

to the 1 -interchange and 2-interchange iterative improvement descent methods both with

a random and heuristically initial solution. This constructive heuristic is developed to

give a computationally fast initial feasible solution. Two versions of TS are introduced.

Chapter 1	 13



The first is inspired from the classical TS principles. The second is our modified and

improved version. These TS versions are compared with the best SA results. TS

techniques are described in greater depth in Chapter 4 and Chapter 5.

Chapter 4 studies the generalised assignment problem. Here, we develop further,

different neighbourhood selection strategies such as first-improve (best-improve)

approaches. Moreover, a long-term strategy is used which gathers information during

the search to regenerate different heuristic initial starting solutions. All strategies that

have been developed are tested on the iterative descent methods. The best combination

of these strategies are identified and, then embedded into the SA and TS approaches.

TS methodologies are explained in greater detail. These include definitions of a

short-term memory function and its elements such as aspiration criterion, tabu list data

structure, tabu conditions, and tabu list sizes. Computational results are reported on the

hardest type of test problems in the literature (problems of type C, See Martello et al.

[1981]). We compare our SA results with that of Cattrysse [1990]. Finally, experiments

with descent, SA and TS algorithms are carried out and the results are compared those

from exact solution methods.

Chapter 5 tackles the vehicle routing problem. This chapter summarises the best

of all the descent and metastrategy algorithms, that have been developed. Some of the

suggestions that were put forwards in the foregoing Chapters are implemented. A new

data structure is developed with which the computation time of the TS algorithm is more

than halved. Regression analysis is used to find good fits for the tabu list sizes and the

number of iterations. Both values depend on the characteristics of the problem.

Computational results are reported on 17 test problems taken from the literature and for

9 new randomly generated problems.

Chapter!	 14



Finally, in Chapter 6, we present conclusions and propose avenues for future

research. In the appendices, we record the best results that were found along with the

data sets used. These are stored on the floppy diskette included with the thesis.

Chapter 1	 15



Chapter 2

LITERATURE REVIEW

Heuristic! Patient rules of

thumb, So often scorned:

Sloppy! Dumb! Ye:, slowly,

common sense become.

(Pearl)

2.0 Introduction.

In this Chapter, we present a classification of heuristic methods, the analysis of heuristics,

their advantages and disadvantages. We also describe the basic search strategies used

in the simulated annealing (SA) and the tabu search (TS) metastrategy algorithms with

special attention to the way in which they incorporate heuristic information. Applications

which highlight the main contributions and findings of both (SA) and (TS) are reviewed.

The material presented in this Chapter is intended to be a supplement, not a replication

to some excellent surveys that are available. Therefore, only relevant information is

included. This work, together with the given references, should present a complete

literature review on heuristics and metastrategy approximate algorithms for many

combinatorial problems.

Chapter 2	 16



2.1 Heuristics (Approximate algorithms).

Heuristics are rules of thumb, common sense and educated guesses. They are criteria,

or computer methods for deciding the most effective among several alternative courses

of action in order to achieve some goal. They do not necessarily identify the most

effective course of action. Algorithms are procedures for solving a problem stated in

mathematical terms. Algorithms without proven convergence to the optimum are called

heuristics. Approximate algorithms have convergence properties but do not guarantee

the precise solution, only an approximation of it. In the following discussion, we use

the terms heuristic and approximate algorithm interchangeably.

There are numerous definitions of heuristics. We will adopt the definition of

Nicholson [1971] who defines a heuristic as a procedure '...for solving problems by an

approach in which the problem can be interpreted and exploited intelligently to obtain

a reasonable solution'. This definition is preferred for two main reasons: Firstly, it

emphasizes the importance of exploiting the structure of a problem in designing a

heuristic. Secondly, it refers to a reasonable solution to the problem. The definition

therefore encompasses methods which produce good, though not necessarily optimal

solutions, to well defined problems as well as methods for ill-structured problems where

all the objectives and constraints may not even have been defined explicitly.

Heuristics were recognized in the ancient world, and used as early as 300 A.D.

(Michael [1972]). Modern interest in heuristic starts with Polya [1948]. The 1950s were

a flourishing period for Management Science and Operational Research. This period

saw many practical problems successfully solved through the application of inelegant

but effective heuristics. In the 1960s, attention turned to optimization. This led to the

development of more sophisticated exact algorithms. While these algorithms represented

a significant research achievement, they failed to provide reliable solutions to many

Chapter 2	 17



practical sized problems. In the 1970s, computational complexity results were dis-

covered. These results provided evidence that, since most combinatorial optimization

problems are intractable, attention paid to heuristics should not be discouraged. As a

result, intellectual efforts were directed to the study of heuristics. However, the efforts

began from an advanced perspective that emphasized sophisticated design, and (theor-

etical and empirical) performance analysis. The science of heuristics aimed toward

understanding the workings of heuristic knowledge and current research is focussed on

closely related issues: design, analysis, implementation and reasons for success and

failure.

A large number of NP - hard combinatorial problems of practical size can only

be solved efficiently by heuristic methods, rather than by exact methods. Almost all

large-sized instances of combinatorial optimization problems (e.g., the travelling

salesman problem (TSP) and other routing problems, the quadratic assignment, many

kinds of flow and job shop scheduling problems as well as most of the integer pro-

gramming problems) can be solved effectively by heuristic methods. A recent survey

of 442 articles on heuristic methods and applications covering more than 12 classes of

heuristic approaches and 144 areas of applications can be found in Zanakis etal. [1989].

For more information on heuristic and heuristic design, we refer to Fisher eta!. [1989],

Eglese [1986], Muller-Merbach [1981, 1984], Silver eta!. [1980] and Lin [1975].

2.1.1 Why should we use a heuristic method?

Most complex problems require the evaluation of an immense number of alternatives to

determine an exact solution. Heuristics play an effective role in such problems by

indicating a way forward to reduce the number of evaluations and to obtain solutions

within reasonable time constraints. There are also many other reasons for using a

heuristic method. These include:

Chapter 2	 18



(a) The combinatorial optimization problem is of such a nature that an exact solution

procedure is unknown. Sometimes, although an exact procedure thay exist, it may

be computationally prohibitive to use or unrealistic in its data requirement. Also,

the time and resources required to develop a suitable exact algorithm may far

exceed what is needed to implement a heuristic method.

(b) Heuristic methods, by design, may be simpler for the decision maker to understand.

This understanding would increase their chances of implementation.

(c) Heuristic methods can be used for learning purposes and as part of any exact

procedure. In exact branch and bound procedures, they are used to get an initial

feasible solution to provide a bound on an optimal solution and to decide on

branching strategies.

(d) In mathematical formulations of real world problems, Some of the most difficult

aspects are often ignored (what objectives and what constraints to include, what

alternatives to test and how problem data is collected and approximated). Poor

quality of the data used to estimate model parameters may induce much larger

errors than the sub-optimality of a heuristic.

With all these possible reasons for using heuristics, an optimal solution to a problem

may sometimes be unnecessary. This is closely related to whether the problem involves

a model of a strategic or tactical nature. A strategic problem requires a one-time major

decision for which an elaborate analysis may be justified. Tactical decisions are more

minor and repetitive in nature; decisions for which opportunities exist for correcting

errors made earlier. Heuristic methods are more suitable for vaguely defined problems

where exact methods would fail to be effective. Thus, we believe that approximate

methods are of increasing importance to operational research practitioners, decision

analysts and managers.

Chapter 2	 19



2.1.2 Classification of approximate algorithms.

Heuristics are algorithms based on the developer's ingenuity, experience and skillful art

of design. The process of designing heuristics is a process of taldng decisions, and the

process of taldng decisions is a process of choice between alternatives. Therefore, it is

not surprising to have a large variety of them. In the following, some general principles

of heuristic design that are widely applicable are classified according to Ball eta!. [1981]

and Zanakis eta!. [1989], with some modifications of our own.

A. Consiruction. (a single pass heuristic)

Construction algorithms generate a feasible solution after a single pass through the

data. Greedy methods are an important class of single pass heuristics in which successive

steps are taken so as to maximize the immediate gain. Furthermore, a feasible solution

is not found until the end of the heuristic procedure. Examples of construction heuristics

are given in Section 3.2 for the CCP, the heuristic of Martello et a!. [1981] for the GAP,

and in Section 5.2.1 for the VRP.

B. Improvement.

Improvement heuristics begin with a feasible solution and successively improve it

by a sequence of exchanges or mergers in a local search. Generally, a feasible solution

is maintained throughout the procedure. All local (neighbourhood) search (or iterative

improvement) heuristics fall into this category. In these methods, the search proceeds

by moving from one feasible solution to one of its neighbours while improving the

objective function and maintaining feasibility. If no such new solution is found, a local

optimum is obtained. The ?.-interchange method is one such procedure and is

implemented in Section 3.3 for the CCP, in Section 4.2 for the GAP and in Section 5.1

for the VRP.

Chapter 2	 20



C. Mathematical programming

Mathematical programming approaches use optimization models and a suitably

truncated version of an exact solution procedure to obtain an efficient heuristic algorithm

for the problem. More precisely, when it is not computationally feasible to implicitly

enumerate all possible cases, only a small fraction are systematically enumerated. The

rest are enumerated in a heuristic manner. This idea can be incorporated naturally in

branch and bound algorithms or in dynamic programming approaches. The two-phase

method of Fisher et a!. [1981] is an example of this approach to the VRP. The general

use of branch and bound algorithms for the purpose of obtaining approximate algorithms

was also studied for the VRP by Christofides et al. [1979].

D. Partitioning

Partitioning algorithms break the problem into a set of similar subproblems, each

of which is solved independently. These sub-solutions are then merged or patched into

a solution for the original problem. Karp [1977] uses this approach to solve the TSP in

the plane by partitioning the plane into small regions. A TSP is solved within each

region, and the resulting sub-solutions are patched together to form the final tour.

E. Solution space restriction

In this approach, the set of solutions to a problem is restricted, so that it becomes

easier to solve by an efficient algorithm. In some sense, all heuristics are restrictive

methods. In particular, iterative improvement methods, which allow only feasible

solutions to be accepted during the search, belong to this class. Some scheduling

problems with time windows are NP-complete problems. If the time windows are fixed,

the problems may be solved using a minimum cost flow algorithm (see Orloff [1976]).

However, an optimal solution to a restricted problem need not necessarily be a global

Chapter 2	 21



optimum to the original problem. In some respects, tabu search algorithms which free

and constrain the search to solutions of special properties belong to this category as the

solution is always feasible but obtained through a restricted search procedure.

F. Solution Space Relaxation.

Algorithms in this category work in contrast to the restriction principle. The feasible

solution space is expanded to obtain a tractable relaxed problem. A solution to the

relaxed problem might be infeasible to the original one. However, it is possible that a

feasible solution can be easily obtained. All linear programming relaxations of an integer

program belong to this category. In addition, [agrangean heuristics have been widely

used to obtain good solutions. Barcelo et al. [1984] report such an approach to the

capacitated plant location problem. Klincewicz er a!. [1986] solve the same problem,

but with single source constraints.

G. Composite algorithms.

This category is based on the idea that two heuristics can be combined in order to

have a significantly better overall performance. It is not uncommon to see heuristics

which combine construction (A) and improvement (B) heuristics to search for local

optima. In this approach, (A) is used to obtain an initial starting solution. This is then

passed into (B) to be further improved. This combined approach forms the basis of the

descent methods we have developed in this thesis. This approach is explained in greater

detail in the subsequent chapters.

Chapter 2	 22



H. Metastrategy approximate algorithms.

Metastrategy approximate algorithms organise and direct the search of subordinate

methods such as local search and employ different strategies in order to enhance their

performances. These strategies include:

- A long term strategy, which is a learning procedure that gathers information

during the algorithm run to improve the choice of initial constructive solutions.

- A high evaluation strategy in that the alternate solutions are selected by the best

or the least disimprovement criterion.

- A random strategy for selection and generation of alternative solutions.

- A probabilistic strategy for acceptance alternative solutions to replace the current

one.

- Constraining andfreeing strategies in order to guide the exploration of the solution

space.

Examples of these metastrategy algorithms are tabu search (Glover [1986]) and

simulated annealing (Kirkpatrick et a!. [1983]). This category of algorithms also

includes newly developed heuristics such as Genetic algorithms and Neural Networks.

Genetic algorithms have their origin in biological science (Holland [1985]). They employ

an evolutionary learning strategy that encourages the survival of the fittest (Goldberg

[ 1989]). Neural networks axe based on ideas from artificial intelligence techniques. The

algorithmic approach consists of a number of small primitive processing units linked

together via weighted, directed connections. Each unit receives input signals via

weighted incoming connections, and responds by sending a signal to all the units it has

outgoings to. For further details refer to Masson et al. [1990] and Korts a a!. [1988].

It has to be pointed out that the simple and obvious techniques appear to have been

explored. Metastrategy algorithms form a growing area of research that is developing

Chapter 2	 23



rapidly and gaining major popularity among OR researchers. These algorithms are now

able to obtain near optimal solutions to many hard combinatorial problems of sizes that

were not solved satisfactorily before.

2.1.3 Performance analysis of approximate algorithms.

In recent years, there has been a growing interest in developing sophisticated methods

to evaluate the performance of heuristics. Essentially, the performance of a heuristic

can be evaluated in three different ways: worst-case analysis, probabilistic (or

average-case) analysis and empirical analysis. These approaches provide different

advantages in achieving the objective of measuring the performance of a heuristic. Thus

they should be treated as complementary rather than competitive.

Worst-case analysis.

Worst case analysis establishes the maximum deviation form optimality that can

occur when a specified heuristic (H) is applied to problem instances of a problem P. A

worst-case study also involves the construction of examples for which performance of

the heuristic is as bad as its guarantee. In addition, it also aims to provide upper bounds

on the number of steps that a given algorithm can take to solve any problem instance.

This type of analysis has the advantage of providing worst-case performance guarantees.

However, the main disadvantage of the analysis is that the worst-case performance of

an algorithm is usually not predictive of the average performance. For further details,

refer to Fisher [1980].

The performance guarantee is normally expressed in terms of a worst-case ratio,

r, such that Ch (I)^rxC(J) for somer>1, where C(I)andC(I) are, respectively the

heuristic and the optimal solution of a minimization problem instance I e P. Equiv-

alently, we can express the heuristic performance in terms of a worst-case relative error.

Chapter 2	 24



trivial in comparison with the previous two methods. Many researchers and practitioners

argue that worst-case analysis bounds are too loose to be useful in justifying solutions,

and that probabilistic analysis tends to assume unrealistic probability space of the input

data. However, they believe that both methods of analysis are useful in providing a

better scientific understanding of the problem characteristics and the heuristic properties.

Furthermore, the principal advantages of empirical testing are accuracy and certainty

for the problems that are run. However, the empirical analysis is often performed in a

subjective way rather than a scientific manner like in the previous analyses. There is

also a lack of uniformity and no widely accepted guide-lines for conducting experimental

analysis. In particular, there is a definite need for a standard set of easily obtainable test

problems. For further information on empirical analysis, we refer to the work of Ball

eta!. [1981], and Golden eta!. [1985].

In the thesis, only empirical methods are used to analyse the performance of the

developed algorithms. This is based on the relative percentage error of the solutions,

and on some evaluation criteria which will be explained in the next section.

2.1.4 Evaluation criteria for approximate algorithms.

(i) Quality of solution and computation time.

Solution quality and computation time of an algorithm are important criteria to

assess the effectiveness of an algorithm as discussed in Section 1.2 and Section 2.1.3.

A reasonable running time is a very important element to algorithm evaluation and

implementation. Therefore, a very desirable algorithm would be one that is equipped

with a set of adjustable parameters, that would allow the user to meet changes in emphasis

between cost and performance through controlling the trade-off between the quality of

the solution and the amount of computational effort.

Chapter 2	 26



(ii) Code difficulty and ease of implementation.

It is difficult to measure the intricacy and simplicity of coding of a particular

algorithm. Algorithm principles must be simple, not cumbersome; generally applicable,

not problem specific. This generality would enable an easy implementation of the

algorithm to new domain areas with little apriori knowledge of the problem structure.

(iii) Flexibility.

Since heuristic algorithms are typically involved in the solution of real world

problems, it is important that they should be flexible. In particular, they should easily

handle changes in the model, constraints and objective function.

(iv) Robustness.

This class of algorithms have a number of desirable characteristics including: the

ability to perform parametric analysis; a good characterisation that would enable a user

to prove that the solution is within a certain percentage error (deviation) from the optimal

solution; the ability to generate high quality feasible solutions - which do not depend

strongly on the choice of the initial solution - whenever such a solution exists.

(v) Simplicity and analyzability.

There is a significant appeal to algorithms that can be simply stated and that lend

themselves more readily to analysis. Extremely complex algorithms are less likely to

be analyzed in terms of flexibility, and quality of solution than a simple algorithm.

(vi) Interactive computing and technology changes.

The idea of using man-machine interaction within the algorithm has been widely

implemented in many systems. The seminal work in this respect is that of Krolak et al.

[1971, 1972] for the TSP. It is now common knowledge that a good user interface makes

Chapter 2	 27



a computerized system more appealing. An important factor in the effectiveness of an

interactive system is the ability to portray solutions graphically. The user of the com-

puterized system who may have some feel for the problem, could then avail the

opportunity to make this experience known to the system. With the rapid advance in

computer technology and the increase in micro-computer power, design of good user

interfaces and the incorporation of the users experience through user interactions and

inputs, would enhance the applicability and benefit of such algorithms. Algorithm

designers should therefore take into account these new environments.

2.1.5 Disadvantages of approximate algorithms.

Some approximate algorithms produce local optima that usually depend on the initial

starting solution. This is particularly so in the case of iterative improvement methods.

These local optima can be very far from optimality. In addition, for most combinatorial

problems there are no guide-lines available for an appropriate choice of initial solution.

Furthermore, heuristic algorithms are not elegant from the mathematical point of view

and the worst-case analysis is not known for most problems. For instance, the worst-case

time complexity of Lin's well-known local search algorithm for the TSP that uses k-opt

arc exchanges is still an open question.

In order to avoid some of the disadvantages of the local search methods, while

maintaining its simplicity and generality, the following possibilities can be considered:

Execution of the improvement algorithm for a large number of initial starting

solutions. Performing a finite number of different random starts is computationally

expensive and would never guarantee that an optimal solution is found (Papadi-

mitriou er al. [1982]).

Chapter 2	 28



Introduction of a more complex neighbourhood structure in order to generate

better neighbouring solutions.

The use of sophisticated learning strategies that gather information during the

algorithm execution. This information can be used to penalise certain positions

by adding penalty costs to the original data at the end of each run. The modified

data is then passed into a construction procedure to generate different (possibly

better) starting solutions for another execution of a composite algorithm.

Accepting, in a limited way, some disimproving moves so as to escape from local

optimality. Note that in local search methods only those moves that decrease the

objective value are accepted.

2.1.6 Local search descent methods.

To understand simulated annealing and tabu search, we first need to understand the

working of local search optimization methods. A combinatorial optimization problem

P can be specified by identifying the set of its feasible solutions together with an objective

function, C, that assigns a numerical value C(S) to each solution S. An optimal solution

is a solution with the minimum possible objective value.

Given an arbitrary starting solution to P, a local search descent method attempts

to improve on that by a series of local impro ng changes. To define a local search

descent algorithm, we define first a step-by-step method for perturbating solutions to

obtain different ones. The set of solutions that can be obtained in one such step (or

move) from a given solution S is called a neighbourhood of S, N(S). The method that

generates N(S) is called a neighbourhood generation mechanism. In a narrower sense,

we will refer to a move as a particular instance of mapping function, e.g., speaking of a

Chapter 2	 29



move "from S to n(S) in N(S) ". A move, whose identity depends on the solution details

of S as well as the neighbourhood mechanism N, will be called a solution specific move.

In addition to the generation mechanism, the algorithm must determine the search and

selection criteria of alternatives among the neighbours. There are two such obvious

criteria or strategies: a first improve , H, strategy which chooses the first neighbourS'

that reduces the objective value upon detection; and a best improve, B!, strategy which

selects the bestS' that produces the largest decrease in the objective value in the whole

neighbourhood of the current solution. The algorithm then performs the loop steps are

depicted in Figure 2.1, and returns a solution S.

1. Get an initial solution S.

2. While there is an untested neighbour S' E N(S), execute the following.

2.1 Let 5' be the thai neighbour of S.

2.2	 If C(S')czC(S),then,setSf—S'.

Otherwise, repeat Step 2.

3. Stop, and return the local optimum S.

Figure 2.1. Local search descent method for a minimization problem.

Although, S need not be an optimal solution when the loop is finally exited, S will

be locally optimal in that none of its neighbours has a lower objective value. Figure 2.2

illustrates the conceptual difference in local and global optimal solutions.

Chapter 2	 30





The Figure 2.3 shows a schematic representation of the computational search

progress of the descent and the metastrategy SA and TS algorithms. In this figure, we

start with an initial solution S1 (either at random or by construction) with an objective

function value C(S1). A neighbour of this solution S 2 E N(S1 ) is generated by a suitable

neighbourhood mechanism N and the change in the objective function values,

A = C(S2) - C(S1), is calculated. If A <0 then all three procedures (descent, SA and TS)

accept the generated neighbour as the new current solution; otherwise if A . OS1 is kept

as the current solution in the descent method and the search continues to find other

neighbours. For any i, if 5, is the best in its own neighbourhood N(S,) then, the descent

method stops and declares 5, as its local minimum. However, the SA and TS procedures

treat the case of A> 0 differently from the descent method. Both simulated annealing

(SA) and tabu search (TS) approaches allow the continuation of the search beyond the

local optimality of descent methods. This implies that these methods accept disimproving

moves (solutions that increase rather than decrease the objective value). However, each

approach uses different strategies to achieve the common goal of escaping from local

optimality.

In Figure 2.3,54 represents a local optimum. Let us assume that the SA procedure

accepts a move to S5 with an objective function value C(S5). This move has an associated

increase 6= C(S5) - C(S4) in the objective value with an acceptance probability, which

is not absolutely zero, but that depends on 6. Normally this acceptance probability is

set to e where T is a control parameter which corresponds to temperature in the

analogy with physical annealing. This acceptance probability function implies that small

increases are more likely to be accepted than large increases. Moreover, when T is high

most moves will be accepted, but as T approaches zero most disimprovement moves

will be rejected. The SA algorithm starts with a high temperature and proceeds, by

attempting a given number of neighbourhood moves at each temperature. The tem-

Chapter 2	 32



C(S)

perature parameter is controlled and is gradually lowered during the algorithm, according

to a deterministic cooling schedule that also defines a stopping criterion (Kirkpatrick et

a!. [19831).

N(S.)

Itercilions

Figure 2.3. Progress of the local search and metastrategy search computations.

S1 , S4, 59 are the initial, local and optimum solutions respectively. N(S)

depicts the neighbourhood of Si.

The TS accepts a move to S5 if it results in the highest evaluation move in the

neighbourhood N(S4) of the current solution S4. The TS algorithm assumes the use of

the highest evaluation strategy. This strategy selects the best feasible solution in the

neighbourhood that reduces the objective function value the most, or disimproves it the

least. With this strategy, the pursuit of such moves could induce reversion to the same

local optimum and, could, hence, result in cycling. Thus, a means to avoid cycling is

necessary. This is accomplished by forbidding moves with certain attributes (making

Chapter 2	 33



them tabu), and choosing moves from those remaining with the highest evaluation

criterion. Tabu search structures the operation of descent methods employing tabu

conditions that have the goal of preventing cycling and inducing the exploration of new

regions (Glover [1989a, 1989b]).

Both SA and TS may obtain the optimal solution (S9 in Figure 2.3) through a series

of uphill and downhill moves and continues until a stopping rule is satisfied.

2.2 Simulated annealing.

2.2.1 Simulated annealing background

The simulated annealing metastrategy has its origins in statistical mechanics. The interest

in SA began with the work of Kirkpatrick eta!. [1983], and Cerny [1985]. They proposed

a simulated annealing algorithm which is based on the analogy between the annealing

process of solids and the problem of solving combinatorial optimization problems. In

condensed matter physics, annealing denotes a process in which a solid (crystal) in a

he at path is melted by increasing the temperature of the heat path to a high maximum

value at which all molecules of the crystal randomly arrange themselves into a liquid

phase. The temperature of the melted crystal is then reduced until the crystal structure

is frozen (reaches a low ground state). If the cooling is done very quickly by dropping

the external temperature immediately to zero and by not allowing the crystal to reach

thermal equilibrium for each temperature value, widespread irregularities and defects

can be locked into the crystal structure. This is known as rapid quenching which results

in meta-stable structures.

In this analogy, the states of the solid correspond to the feasible solutions of a

combinatorial optimization problem; the energy of the states correspond to the objective

Chapter 2	 34



function value of the solutions; the minimum energy or ground state corresponds to an

optimal solution; the rapid quenching process can be viewed as analogous to local

optimization via steepest descent. When the external temperature is zero, no state

transition can lead to a state of higher energy. Thus, as in local optimization, uphill

moves are prohibited and the algorithm is trapped in a local minimum. When crystals

are grown in practice, the bad local optima are avoided by a process of careful annealing.

In this process, the temperature (7) descends slowly through a series of levels, each held

long enough for the crystal melt to reach equilibrium at that temperature. As long as the

temperature is not zero, uphill moves remain possible. By keeping the temperature from

getting too far from the current energy level, we can hope to avoid local optima, until

we are relatively close to the ground state.

Metropolis etal. [1953] proposed a Monte-Carlo method to simulate the evolution

to thermal equilibrium of a crystal for a fixed value of the temperature T. The method

generates sequences of states of the crystal in the following way: Given the current state,

S, of the crystal, characterised by the position of its molecules, a small perturbation is

applied by a small displacement of a randomly chosen molecule. If the difference in the

energy level, A, between the current state and the newly generated state S' is negative -

the new perturbed state is of a lower energy - S' is accepted and the process continues

from the new state. When A ^ 0, a random number 0 E [0,1] from the uniform dis-

tribution is drawn, and if 0 ^ e then S' is accepted; otherwise S is retained as the

current state. This acceptance rule is referred to as the Metropolis (or simulation)

criterion. The name simulated annealing thus refers to the use of the simulation tech-

niques in conjunction with an annealing (or cooling) schedule of declining temperatures.

SA is more of an approach than a specific algorithm. In any application to a par-

ticular combinatorial optimization problem, we must take a number of decisions on

Chapter 2	 35



choices. These choices fall into two classes according to (Johnson et al. [1989]): problem

specific choices and generic choices for cooling schedules. These classes are further

explained in the following sections.

2.2.2 Problem specific choices.

The list of choices are presumably specified in the optimization problem we are trying

to solve. Improved performance can often be obtained by modifying the definition of

these choices. This will be demonstrated in the applications covered in the thesis. Typical

problem choices can be summarised as follows:

(i) A concise representation of the set of feasible solutions, an objective function

value to be minimised and an initial starting solution.

(ii) A neighbourhood generation mechanism that generates neighbouring solutions

must be defined. The efficiency of SA depends on the neighbourhood structure

used. This is theoretically proven by the asymptotic convergence to the set of

optimal solutions (Hajek [1988]).

(iii) Strategies for move selections and search order inside the neighbourhood must

be defined. Also, an easy and an efficient method must be used for calculating

the changes in the objective value of alternate solutions.

2.2.3 Generic choices.

Generic choices define the components of the cooling schedule. A cooling schedule

must give specific answers to the following questions on how to determine:

(i) The initial starting value of the temperature parameter T.

(ii) The cooling rate and the temperature update rule.

(iii) The number of iterations to be performed at each temperature.

Chapter 2	 36



(iv) The termination of the algorithm (stopping criterion).

2.2.4 Cooling schedules.

The performance of the SA algorithm depends strongly on the chosen cooling schedule.

With a proper cooling schedule, near optimal solutions can be reached for many

combinatorial problems. A great variety of theoretical and practical cooling schedules

have been suggested by many authors in the literature. In this section we distinguish

between two types of cooling schedules which are further classified later.

(i) Theoretical cooling schedules:

This type of cooling schedules provides asymptotical convergence of the SA algorithm

to the set of globally optimal solutions with probability equal to one. The SA algorithm

has been modelled using the theory of Markov chains with respect to the temperature

parameter T, and a transition matrix P which represents the transitional probability of

moving from the solution state i to the solution state j. Two formulation models have

emerged:

A homogeneous algorithm, in which Tis reduced in an infmite sequence of stages

until it reaches zero. A stage is normally defined as a Markov chain in which the tern-

peratureTis kept constant, Aarts etal.[1985]. The Markov chain lengrh,L, (temperature

duration) is the number of iteration moves performed at a given temperature value. It

can be shown that, if T is kept constant for an infmite number of iteration moves L, and

if any two solution states i and j can be reached from each other in a finite number of

moves with positive probabilities (i.e. the solution space is completely connected), then

this Markov chain has a unique stationary (steady-state) distribution independent of the

Chapter 2	 37



starting state. Thus, as T -40 the corresponding stationary distribution is uniform

distribution over the set of optimal solutions. These type of models have been studied

by many authors including Aarts et al. [1985] and Lundy eta!. [1986].

An inhomogeneots algorithm is also one in which Tis reduced to zero in an infmite

sequence of stages. However, each stage represents only one iteration move. More

precisely, one iteration (attempted move) is performed at each temperature before the

temperature is reduced (a Markov chain of length, L=1). The transitional probabilities,

are now dependent on the number of iterations. For this class of algorithms, several

results have been derived giving sufficient conditions for asymptotic convergence to the

set of optimal solutions (see Gidas [1985], Mitra eta!. [1986], and Hajek [1988]). The

important results of Hajek [1988] offer a necessary and sufficient condition for the

asymptotic convergence provided that the sequence of temperatures T - 0, as k -+

but not faster than O(Ik)) at each iteration k. More precisely, The cooling schedule

has the update rule Tk =	 the condition for convergence is that d be greater than or

equal to the depth, suitably defined, of the deepest local minimum which is not a global

minimum. The depth of a local minimum (say S) is the smallest number E, E >0 such

that some solution S' with its objective value C(S') <C(S) can be reached from S at

height C(S)+ E. A solution S' is said to be reachable at height E from S if

S = S' and C(S) ^ E or if there is a sequence of solutions S = S0,S1 , . ..,S,, for some p ^ 1

such thatS11 E N(S) forO ^i<p and C(S) 	 forO	 0.

(ii) Simple cooling schedules:

In addition to theoretically based cooling schedules, there are many other practically

based, simple cooling schedules, which are similar in nature to that of Kirkpatrick et a!.

[1983]. These schedules are in practice vastly superior to those based on the strict

adherence to the purely theoretical principles, since the latter are motivated primarily

Chapter 2	 38



by the need to be able to prove convergence - however slow that may be.

2.2.5 Classification of cooling schedules.

In any implementation, the conditions that guarantee asymptotic convergence to the set

of global minima can only be approximated. Due to these approximations, identifi-

cation of the global optimum in less than exponential time by the SA algorithm can not

be guaranteed with probability one. However, asymptotic convergence results are of

great help when trying to approximate the corresponding cooling parameters. In the

following, we will classify the cooling schedules from the literature into three categories

(Osman & Christofides [19891). Each category includes both the simple theoretical and

practical cooling schedules.

It has to be pointed out that all implemented annealing schemes (practical or

theoretical) use a random selection of neighbours during the algorithm search. Thus, in

the following, we assume this random recourse throughout, unless otherwise stated.

Furthermore, we assume throughout the thesis that an iteration is an attempted move,

whether it is accepted or not.

2.2.5.1 Stepwise temperature reduction schemes.

This category includes implementations in which a fixed Markov chain length, L, is

performed at a given value of the temperature T, before T is reduced in stages according

to some specific rules. This reduction is illustrated in Figure 2.4. In this category, there

are two types of cooling schedules:

1- The Simple Cooling Schedules.

Initial and final temperature values (1', and T1)

Chapter 2	 39



V
SM

SM
U

E
U

Kirkpatrick et al. [1983] propose the following empirical rule to choose a value for T,.

They started with an initial large value forT,. A few hundred moves are then attempted

in order to determine the fraction of the accepted moves to the total number of moves

attempted at the given value ofT,. If this fraction is less than an given acceptance ratio

x (say x= 0.8), then the initial temperature value is doubled. This procedure continues

until the observed fraction exceeds this threshold. The SA algorithm continues with the

temperature reduced in a stepwise fashion, using expression (2.2) for its temperature

update rule, until the system freezes at a value ofT1 (less than 1, if the cost coefficients

in the problem are integers) at which the algorithm terminates.

iterauoni

Figure 2.4. Stepwise temperature reduction schemes.

This initial rule was further refined by Johnson et a!. [1989]. The initial T, value

was determined so that the probability of accepting the average change in the objective

values, A, of a number of initial random moves was equal to a given acceptance ratio L

(say L= 0.8). More precisely, they solved the following expressions to obtain a value

forT,:

Chapter 2	 40



(2.1)
—A

T._ln(L)hence,

(-x

= e

Note that, the average was taken only for those moves which produced a positive

increase in the objective function.

Bonomi et al.'s [1984] stopping criterion uses a fixed number of temperature

reduction stages for which the algorithm is to be executed. Kirkpatrick et al.'s [1983]

termination criterion is based on the solution changes. if the last solutions for a number

of consecutive Markov chains length are identical, the algorithm is stopped. This latter

stopping criterion is further refined by Johnson eta!. [1989]: If a number of consecutive

chains (say 5) have a percentage of accepted moves which is less than or equal to a given

percentage value (say 2 %), then the annealing process is declared to be frozen and

is stopped.

• The decrement ratio and the temperature update rule.

The value of the decrement ratio is chosen, such that the successive Markov chain lengths,

L, can be kept small, but long enough to achieve quasi equilibrium before the temperature

is updated. A frequently used rule is known as the geometric cooling rule. This rule

updates the temperature sequence in the following way:

Tk+l = cxTk ,	 k=0,1,...	 (2.2)

where c is a temperature factor- a constant value smaller than but close to 1 - generally

taken to be in the interval [0.50, 0.99]. Kirkpatrick et a!. [1983] propose this rule first

with c= 0.90 and the temperature duration L = n, where n is the number of variables in

the problem. This rule is also adopted by Johnson et a!. [1989] who use L=m X I N I

Chapter 2	 41



where m is a constant and N is the expected size of the neighbourhood. The advantage

of this rule is that the temperature duration will remain proportional to the number of

neighbours no matter what the problem size. Bonomi eta!. [1984] used a fixed number

of temperature reductions, and the same rule for the temperature updates. The tem-

peratures are reduced in a sequence 50 steps to the final temperature T1 < 1, and at each

temperature value, the temperature duration (L) is given an arbitrary value of 9000

iterations for a TSP instance of size 400 cities.

2- The theoretically approximated cooling schedules.

In this class, we consider the cooling schedule of Aarts eta!. [1985] and discuss, briefly,

a few other schedules. The temperature cooling pattern was shown earlier in Figure 2.4.

The initial temperature value Ti.

The initial temperature, T,, is obtained by monitoring the evolution of the system during

a number of moves before the actual optimization process starts. Let us define m1 and

m2 to be the number of moves with i ^ 0 and 4, >0 respectively, m0 = m + in2, and

let ii be the average value of A for those moves for which >0. The value of T, is

then adjusted in such a way that a constant value of the acceptance ratio, X' is maintained.

The value of T, is then given by the final value of T. This final value is obtained by

updating T,m0 times according to the following expression

T=ix(ln	
in2	 -1

m2XX_(1_X)Xmi)	
(2.3)

The above calculation ofT, can be reliable only if the objective values for the different

moves are sufficiently uniformly distributed. In cases where the assumption is false,

Chapter 2	 42



Equation 2.3 would result in a T, value which is too small and, therefore, will cause the

SA algorithm to get stuck in a local optimum. In this case, T, is determined according

to

T = p x maxA.,	 (2.4)

Where p *' 1 (e.g., p = 10), Q is the solution space - the finite set of all possible solutions

- , and is the set of the solution labels contained in .

Temperature duration and cooling temperaiure decrease.

The decrements of the temperature are chosen to be small, thus avoiding the necessity

of long Markov chains for establishing equilibrium at each new value of the temperature.

Equilibrium means the establishment of astaiionary steady-state probability distribution

of the accessible state. Aarts eta!. [1985] argue that the stationary distributions for two

succeeding Markov chains should be close to each other. Thus, a small Markov chain

length (the temperature duration L) is used. The value of L is taken to be equal to the

maximum size of the neighbourhood of any state i € . After each performed Markov

chain (say k-th Markov chain), the average value C(Tk) and the standard deviation a(Tk)

of the objective function are computed. The temperature is then updated according to

the expression

Tk+l Tkx{	
J.n(1+6)xTk'

=	 1+
3xcy(Tk) J

where S is a given small decrement ratio specified at the beginning of the algorithm.

Termination criterion

The SA termination criterion is based on the decrease during the optimization process

(2.5)

Chapter 2	 43



of the average value of the objective function over a number of Markov chains. Let us

defme S be the optimal solution. At the k-th Markov chain, the algorithm is terminated

once C(Tk) - C(S) is small. Since S is not known, Aarts et al. [1985] estimate that if

T is small then, the average difference in the objective function is as follows:

C(Tk)—C(S)Tkx	
, J	

(2.6)

The algorithm is then terminated at a value ofT1 if the following is satisfied

____	 T1
x	 <C	 (2.7)

T JT=Tf C(T:)

for some small real number, e.

Note that, this cooling scheme uses a fixed Markov chain length, a constant

decrement ratio, 6, and temperature update rule which depends on the change in the

objective function. The most important among these parameters is the choice of the

value of the decrement ratio, 8. A small value of 8 produces a near optimal solution at

a high computation time, while a larger value of 8 produces the reverse (a lower quality

solution at a smaller computation time). Thus, the value of 6 represents the trade-off

between the solution quality and computation time. The next important item in this

scheme is the value of the stopping parameter ,c, which has to be reasonably chosen.

This class of cooling schedules includes other schemes such as Huang eta!. [1986].

Huang et a!. [1986] specify the initial temperature T, differently, based on White [1984].

White [1984] proposes that T, a, where a is the standard deviation of the objective

function during a random sampling. The value of a was obtained after an initial

Chapter 2	 44



exploration of the solution space. Assuming a normal distribution of the objective

function and a given probability x to accept moves whose objective values are up to

r x a worse than the initial one, Huang et a!. then computed a value for T, as follows:

=1 x a
	

(2.8)

where 1 is evaluated by:

r
ln( x)

The scheme of Huang et al. [1986] also uses a variable Markov chain length rather

than a fixed Markov length like in Aarts et a!. [1985] scheme. In this scheme, the

Markov chain length is chosen based on the following requirements:

(i) The number of accepted moves whose objective value is within the range ±&

from the average objective value C.

(ii) The total number of newly accepted moves.

If the ratio of the number in (i) to the number in (ii) equals to a given a certain

value, X then, a new chain is started. A typical value for ö is ö = 0.5 x a. Assuming a

normal distribution for the value of the objective function, it can be shown that

x = erJ(-j) where erflx) is an error function. Huang et al. define the within count and

the tolerance count to be the number of accepted moves with an objective value inside

and outside the range (C(T) - 3,C(T) + ), respectively. Equilibrium is considered

maintained if the within count exceeds a target value before the tolerance count exceeds

a maximum tolerance limit. Typically, the target value equals to x while the tolerance

limit has a value of x (1— x) for some parameter depending on the size of the problem.

Chapter 2	 45



Although, the above conditions provide Markov chains of length that are dynamically

adjusted, these lengths can be long at low value of T. To avoid this case, some other

conditions were also imposed.

Huang et a!. [1986] decrement rule requires the difference, between the average

of the objective values of the last two consecutive Markov chains, to be less than the

standard deviation of the objective function. This requirement is translated, and resulted

in the following decrement rule:

x T,,
Tk+l = Tk xexpl	 I	 (2.9)

L cY(Tk) )

where ? is a constant less than one.

Once the equilibrium is established at the end of the k-th Markov chains, a check

for the stopping criterion is made. This criterion is based on, the difference between the

maximum and the minimum objective values among the accepted moves at Tk is com-

pared with the maximum change in the objective value of any accepted move during the

k-th chain. If they are the same, they concluded that all the accessed solutions have

about the same objective values. Hence, there is no need to continue using the simulated

annealing algorithm. At this stage, the algorithm is deemed to have reached its stopping

criterion.

2.2.5.2 Continuous temperature reduction schemes

This category includes the class of cooling schedules which perform only one move at

each temperature value. The temperature T is reduced after each iteration move (in-

homogeneous Markov chain of length L equal to one). In this class, the temperature is

Chapter 2	 46



U
'4

'4
U

a

continuouslyreduced according to some rule. A temperature evolution pattern is depicted

in Figure 2.5. This class includes the cooling schedules of Hajek [1988], Lundy et al.

[1986]. We only elaborate on Lundy et al. [1986] as it has some common features with

the scheme developed in this thesis.

Lundy et a!. [19861 build their cooling schedule based on the asymptotic con-

vergence properties of the simulated annealing algorithm. This scheme uses a constant

decrement ratio and an exponential temperature update rule. The advantage of this

scheme is that it requires less worries about the optimal size of the temperature duration,

as L=l, and needs only a careful choice for the decrement ratio.

icrauons

Figure 2.5. Continuous temperature reduction schemes.

Chapter 2	 47



The cooling scheme of Lundy et a!. [1986J is summarised as follows:

The initial temperature value T,.

It is proposed that the initial value T, of T needs to be chosen so that T, U. U is an

upper bound on the maximum change in the objective function between neighbouring

solutions. This implies that in the initial stage the algorithm is likely to accept most

changes in the solution. Thus, good solutions which can only be attained by a sequence

of changes will not be missed. Since, such a sequence includes moves which increase

the objective function.

The final temperature value T1.

The final value of T, T1 is obtained by requiring that, the probability of the objective

value of the current solution to be more than an error E above the optimal objective value,

to be less than some small real number, u. More precisely, if S is the current solution

at T1 and S' is the optimal solution then, it is required that

Pr{C(S)> C(S*)FE I T = T} <u Solving this condition would lead to the following

bound for the value ofT1:

C
Tf ^ 1(111)J())	 (2.10)

where	 is the size of the solution space a Equation (2.10) provides a strong condition

in that T1 is always very small. More precise, the probability of accepting any uphill

move is zero long before this condition is met. They suggested another practical stopping

criterion such that, as soon as T1 gets small enough (say, T1 < where p,,, is some

small probability), the simulated annealing should be stopped. Furthermore, at this point,

the optimization process may continue with an exhaustive search of the current final

solution until no further improvement can be made.

Chapter 2	 48



The temperature update rule.

In this scheme, the temperature is reduced at each iteration by successively smaller

amounts using a constant decrement ratio 13 c 1 U, i.e. the temperature is updated after

each iteration k according to the following rule:

Tk+l =Tk x(1+I3xTk ) 1
	

(2.11)

It can shown that the total number of iterations M needed before the algorithm

terminates satisfies M <h	 . This means that the number of iterations M isxe

essentially proportional to in I Q . This value of M is used as a general guide to determine

a bound on the number of iterations depending on 13. Inversely, if we have definitive

values for T,, T1 and M then 13 can easily be evaluated as:

13=(T,—T1)x(MxT,xT1i1
	

(2.12)

2.2.5.3 Non-monotonic Reduction Schemes

This class of non-monotonic reduction schemes reduce continuously the temperature

after each attempted interchange, with occasional increases (or resets) in the temperature.

The reset is an increase in the temperature to a higher value than the current one. The

reset occurs whenever a complete search of the neighbourhood takes place without any

accepted move. This means that there is no point in decreasing the temperature any

further. A pictorial representation of the temperature pattern is illustrated in Figure 2.6.

This scheme is developed by Osman & Christofides [1989] to handle some of the

disadvantages inherent in the previous two classes. First, the neighbourhood is often

randomly searched to generate alternate solutions, at low temperature values of T, the

probability of accepting worse solutions than the current one becomes small. If there

Chapter 2	 49



I

are only a few neighbourhood solutions which give improved objective values then, the

previous classes would miss or may take a long time to find them. Thus, a systematic

search of the neighbourhood is prefened. This observation is also supported by the work

of Johnson era!. [1989], and Connolly [1990].

Iterations

Figure 2.6. Non-monotonic temperature reduction scheme.

Second, in SA schemes worse solutions can be accepted. Therefore, It is possible

that the SA solution at the end of the search is worse than the best solution found during

the run. Hence, storing the best solution will be an advantage. Doing so, our SA approach

would then resemble the tabu search algorithm in one aspect. Similar, approaches which

store the best solution are also implemented by Matsuo eta!. [1989] and Connolly

[1990].

The SA scheme Osman & Christofides [1989] gives the user control over the

trade-off between the quality of solution and the computer time through the number of

temperature resets required. In this scheme, the temperature is reset initially to

Chapter 2	 50



U'I

hi
U

E

T,q = 
where ^ 2 Subsequent resets update the value of T,, to T,,• If the updated

value of Trjp is greater the temperature before the reset then, the current temperature is

updated. Otherwise, the temperature is reset to the temperature at which the best solution

is found, Tf(,.. This scheme uses a variable decrement ratio whose values are related

to the number of iterations and to the characteristic of the problem being solved. Both

the multiple resets and the variable decrement ratio would allow the running time to be

spread more effectively rather than being wasted at the beginning or end of the cooling

schedule. A more detailed description of this cooling schedule will be found in later

chapters.

Connolly's [1990] scheme uses the decrement ratio and the temperature rule of the

Lundy et al. [1986] scheme (Section 2.2.5.2). With the exception, that the temperature

is reset only once to T1 . The reset occurs as soon as a neighbourhood search happened

without any move is accepted. After the reset, 3 is set to zero. Then, the search is

continued for a pre-specified number of iterations with a constant temperature, T10.

The temperature pattern of this scheme is shown in Figure 2.7.

ILCIUUU

Figure 2.7. Connolly's temperature reduction scheme.

Chapter 2	 51



sierauons
(b)

0
V

V

U
V.-

0

Iterations
(a)

V

V

V

0

Connolly's [1989] scheme would work on problems having shallow optima (i.e.,

a smooth topology, see Figure 2.8b). However, in problems with deep local minima

(i.e, a bumpy topology, see Figure 2.8a) this scheme may fail.

Figure 2.8 Topological representation of objective values

2.2.6 Simulated annealing procedure.

Having defined previously, all simulated annealing terminology and its analogy with

statistical mechanics, SA can be seen as a generalised iterative improvement algo-

rithm. The SA algorithm steps are summarised as follows:

Chapter 2	 52



Step 1 Generate an initial random or heuristic solution S.

Set an initial temperature T, for T, and other generic parameters (see Sec- 
I

tion 2.2.3).

Step 2 Choose a solution S' E N(S) and

compute the difference in the objective values4 = C(S')— C(S).

ISiep3 If:

(i) S'isbetterthanS(AczO),or

(ii) 5' is worse than S but "accepted" by the randomization process

at the present temperature T, i.e. e( T )> 0, (where 0< 0 < 1 is a

random number).

Then replace S by S'.

Else Retain the current solution S.

Step 4 Update the temperature T depending on a set of rules, including:

(i) The cooling schedule used (see Section 2.2.5),

(ii) Whether an improvement was obtained in step 3 above,

(iii) Whether the neighbourhood N(S) has been completely searched.

Step 5 If a "stopping test" is successful stop, else go to step 2.

2.2.7 Performance of SA on combinatorial optimization problems.

Ever since its introduction in 1983, simulated annealing has been applied to a large

number of different combinatorial optimization problem and in diverse areas. We confine

ourselves to applications where some concluding remarks and novelties can be drawn.

In addition, we review some of the more recent applications that have not been listed in

the surveys mentioned here.

Chapter 2	 53



2.2.7.1 The travelling salesman problem (TSP).

The TSP problem acts as a test bed for almost every new algorithm. The TSP consists

of finding the shortest Hamiltonian circuit in a complete graph, where the nodes represent

cities. The cost of a tour is the total distance covered in traversing all the cities.

Kirkpatrick eta!. [1983] and Cerny [1985] introduce the SA algorithm and present

its application to the TSP. Cerny [1985] reports that the effectiveness of SA depends

on the neighbourhood structure that is used. Kirkpatrick [1984] studies a special class

of the TSP in the plane. He studies the performance of a SA algorithm which uses a

simple cooling scheme (Section 2.2.5.1) incorporating repeated applications of the

well-known 2-opt or 3-opt iterative procedures of Lin e a!. [1973]. He concludes that

SA out-performs solutions found by Lin's arc exchange iterative methods, Lin [19651.

Bonomi eta!. [1984] apply SA to the TSP in the plane using a simple cooling schedule,

with a decrement ratio c= 0.925. The neighbourhood generation mechanism is restricted

through partitioning the unit square into disjoint subregions. Two cities from the same

region or two adjacent subregions are chosen at random to be exchanged. Experiments

on problem instances of size n= 100, 200, and 400 cities shows that the SA algorithm

always produces better solutions than Liii's 2-opt procedures. In this application, the

2-opt procedure is rejected for large-sized problems, and it is coupled with the convex

hull procedure of Golden eta!. [1980] to enhance the overall composite algorithm. The

performance of this composite procedure is then compared to that of their SA algorithm

for n ^ 200. This procedure out-performs the SA algorithm in only 3 out 100 problem

instances. Furthermore, probabilistic analysis of their SA on the 400 city problems and

on a TSP with 10,000 cities shows that the cost of the final solutions are 0.749 and

0.763'J for the 400-city and the 10,000-city problems, respectively. For the TSP in the

plane, the optimal solution is proven to converge asymptotically to 0.749 as n - oo.

Moreover, the complexity of their SA algorithm is polynomially bounded by

Chapter 2	 54



o (nP) with 1 <, <2 Thus, their conclusion is that the SA algorithm is a powerful tool

for solving large and difficult problems provided it is supplemented by an efficient move

selection mechanism that favours the choice of important moves. Aarts et a!. [1985]

also use an O(n 3 ln(n)) SA algorithm to solve this class of TSP and report that the

average solution is less than 2% from the optimal solution.

Golden et a!. [1986] use simulated annealing to solve the TSP and p-median location

problems. They implement a SA scheme which reduces the temperature in 25 equal

intervals waiting for equilibrium to be achieved at each temperature value before it is

updated. They compare their SA scheme with a sophisticated hybrid procedure CCAO,

(Golden er al. [1985]), on a number of well- known test TSP's from the literature. The

CCAO heuristic combines convex hull with greatest angle and cheapest insertion criteria,

followed by a branch exchange procedure. They conclude that CCAO out-performs SA

in both solution quality and computation time. They find that SA is extremely sensitive

to small changes in the cooling schedule. On the other hand, Van Laarhoven et a!. [1987]

use the scheme reported in Aarts et al.[1985] (Section 2.2.5.1) to solve well-known TSP

test problems. For example, their scheme, when tested on the 318-city problem of Lin

eta!. [1973], produces a solution with a relative percentage deviation of 1.12% in 811.2

minutes. In contrast, the SA algorithm of Golden et a!. [1986], produces a relative

percentage deviation of 4.03% in 713.6 minutes. However, the results of Golden et a!.

[1986] show that their SA performs poorly in comparison to their CCAO algorithm,

since for the 31 8-city example the relative performance deviation of the CCAO was

1.01%, and was produced in 43.55 minutes. The computation time of all the above

algorithms were obtained using the same type of VAX 1 11780-computer.

We conclude that it is of great importance to choose a good cooling schedule for

the SA algorithm to be effective. The scheme of Aarts et a!. [1985] out-performs the

Chapter 2	 55



SA scheme of Golden eta!. [1986]. However, SA is out-performed by the tailored CCAO

heuristic, both with respect to solution quality and computation time. More research is

needed to analyse the merit of SA on the TSPs. Johnson et a!. [1989] have reported

applications of SA to the TSP, graph colouring and partitioning problems.

2.2.7.2 The quadratic assignment problem (QAP).

After the TSP, The QAP is one of the most studied problem using simulated annealing.

The QAP is the problem of assigning inter-communicating objects to locations so as to

minimise the total cost of communication between them.

Burkard et a!. [1984] use a step-wise reduction simple cooling schedule. They

adopt the temperature update rule (Equation 2.2) with a decrement ratio c= 0.5. The

total number of iteration moves performed at each temperature, L, is increased as the

search proceeds. In other words, L is initially set to be equal to the size of the neigh-

bourhood, IN I. Subsequently, L is multiplied by a constant, 1.1 (i.e., L= 1.lxL). Not

many details are given regarding the initial temperature and the stopping criterion. They

compare the SA scheme with sophisticated techniques and descent methods. They

conclude that the SA algorithm reveals an excellent behaviour, and produces solutions

which are 1 to 2% away from the best known solutions. Unlike the SA approach, the

solution quality of their descent method decreases as the size of the problem increases.

Furthermore, their descent method depends heavily on the choice of the starting solution.

Wilhem eta!. [1987] report on the use of another SA scheme which involves waiting

for convergence at each temperature before cooling to the next temperature values.

Although, they report a large number of results for a variety of parameter settings, they

were unable to indicate a consistently dominant set of parameters that would produce

best results. Nevertheless, their results are better than those of Burkard eta!. [1984].

Chapter 2	 56



Connolly [1990] presents a non-monotonic cooling scheme which has been dis-

cussed in the classification of cooling schedules (See Section 2.2.5.3). Comparison of

the SA schemes show that both the Burkard er al.[1984] and Wilhem et al.[1987]

annealing algorithms are out-performed by the SA annealing approach of Connolly

[1990] in terms of quality of solutions. The compared algorithms are allowed the same

amount of running time. The conclusion is that SA is an extremely efficient heuristic

for the QAP.

2.2.7.3 Machine scheduling problems

1- The permutation flow-shop scheduling problem. (FSSP)

The FSSP may be stated as follows: Each of n jobs is to be processed on machines 1,..,m

in that order. P is the processing time of job i on machinej. At any time, each machine

can process at most one job and each job can be processed on at most one machine i.e.,

preemption is not allowed. The sequence in which the jobs are to be processed is the

same for each machine. The objective is to find a sequence of jobs which minimizes

the maximum completion time C,,.

Osman & Potts [1989] have investigated the application of SA algorithms and

descent methods to the solutions of the FSSP. The implemented SA algorithm uses a

continuous temperature reduction scheme. The decrement ratio and temperature cooling

rule is the same as Lundy etal. [1986] (Equations 2.12 and 2.11). The initial temperature

is set arbitrarily to a fifth of the average processing time of all the jobs on the machines,

and the fmal temperature value is set to the smallest change in the objective function.

The number of iterations was estimated in terms of the problem characteristics. The

computational time required by the algorithm was shown to be O(nm ln(n +m)) and

near optimal solutions were produced. Different neighbourhood search methods were

Chapter 2	 57



tried and the best was identified. The SA algorithm is compared with two composite

descent methods. The composite descent algorithms are hybrid combinations of several

constructive methods and local search descent procedures, DES. The first uses the NEH

procedure of Nawz eta!. [1983] as a starting sequence, while the second uses the PCDSD

procedure which is the best of m+ 1 sequences generated from the constructive methods

of Palmer [1965], and Campell eta!. [1970]. Computational results show that the hybrid

NEH+DES procedure produces the same results as the PCDSD+DES procedure, in less

time. The merits of SA with the NEH-i-DES procedure remains to be analysed. Over

all test problems with sizes up to 100 jobs and 20 machines, the SA algorithm produces

an average relative percentage deviation of 0.49% and an average computational run

time of 8.84 seconds. The comparative figures for the NEH+DES algorithm are 1.15%

and 6.62 seconds. Thus, the simulated annealing of Osman & Potts [1989] is better than

others methods and has become the state of the art method for solving the FS SP. Further

details on SA experiments of the FSSP can be found also in Osman [1987].

2- The single machine weighted tardiness problem. (SMWT)

The SMWT problem is characterised by njobs available for processing on a single

machine. Each job has an associated weight and a due date. The objective is to find the

non-preemptive sequence of the n jobs on the single machine that minimizes the total

weighted tardiness cost.

Matsuo eta!. [1989] present a SA annealing scheme with a step-wise temperature

reduction scheme which replaces the Metropolis (or exponential) acceptance probabil-

ities at each temperature by a linear function that is independent of the change in the

objective value. The scheme also restricts the search to a small neighbourhood, and

retains the best solution obtained during the search as opposed to the solution where the

annealing stops. The scheme uses a good heuristic as a starting solution along with a

Chapter 2	 58



low initial acceptance probability. Computational results are compared to the solution

produced by the SA scheme of Aarts eta!. [1985]. The new scheme yields results that

are nearly as good as the latter. Moreover, the time required to obtain this is far less-by

a factor of 10. In cases where the algorithm produces worse results, the initial acceptance

probability is increased and the results are improved. Although this adjustment increases

the computational effort, this new SA algorithm out-perfonmthat of Aarts er a!. [1985]

while consuming a similar amount of computation time.

2.2.7.4 The graph partitioning problem. (GPP)

Given a graph G=(V,E), where V is the vertex set and E, the edge set, the GPP is one of

partitioning V into two equal sized sets V1 and V2, V = V1 u V2 such that the number of

edges that have end-points in different sets is minimized. The problem is of great

importance in circuit design.

Johnson et al. [1989] report an empirical study of the simulated annealing approach

to the GPP. Their annealing scheme uses a simple cooling schedule with a step-wise

reduction strategy. The initial temperature is determined so that the acceptance ratio,

x = 0.4, the decrement ratio, c= 0.95, the temperature duration L = 16 x N I where I N I

is the size of neighbourhood of any solution, and the termination criterion depend on the

number of consecutive Markov chains with no improved solution (see Section 2.2.5.1

for further detail). Simulated annealing was compared with the well known traditional

heuristic of Kernighan & Lin [1970]. They conclude that SA seems to be a competitive

approach to the problem. For certain types of random graphs, (dense and of large-sized

problem), it appears to out-perform the traditional heuristics of Kernighan & Lin [1970]

as well as the more recent improvements of it, both, with respect to solution quality as

well as computation time. However, if the graph is sparse and or of small size, it may

well be better to spend an equivalent amount of time performing multiple runs of a

Chapter 2	 59



heuristic specially tuned to the problem at hand. Simulated annealing is out-performed

by other heuristics on geometric graphs. The poorer performance on this class of

problems may well be traceable to the fact that the topology of the solution space is

bumpy (see Figure 2.8 (a)) and thus, local optima may be far away from each other.

Thus, SA is much more likely to be trapped in deep local optima. Their experiments

also provide some insight on how annealing should be implemented. Their conclusion

can be summarised as follows:

1- It is better to perform a long run than to take the best of a time-equivalent collection

of shorter runs.

2- Systematic sampling of the neighbourhood is better than totally random sampling.

Similar conclusions are drawn in Osman & Christofides [1989] when SA is applied

to the capacitated clustering problem (CCP).

3- Both quality of solution and running time may be improved by the use of a good

heuristic. Heuristics which take advantage of some special structure of the problem

seem to be preferred to general ones. The initial temperature must be relatively

small otherwise the benefit of the good initial solution will be lost. This is in

agreement with Osman & Christofides [1989], in which SA is combined with an

initial constructive heuristic solution. The results are almost the same as those

produced by multiple runs of SA with random starts. However, starting simulated

annealing from a constructive heuristic takes less computation time than that with

an initial random start.

4- Replacing the computation of the exponential acceptance probability function

with a simple look-up approximation table reduces the computation time by a

third without sacrificing quality of the solutions.

5- It may be possible to allow violations of some constraints so long as a penalty for

the violation is included in the cost function. This would allow for a smoother

solution space in which local optima are easier to escape from.

Chapter 2	 60



2.2.7.5 The graph colouring problem (GCP)

The GCP is the problem of finding a k-coloring of a graph G=(V,E) with node set V and

edge set E, i.e a partition of V into k independent sets V1 , .. ., V. A set V of node is

called independent or stable if no two nodes in V, are linked by an edge in G. The

objective is to find the minimum possible value of k.

Chams et a!. [1987] implements a simple step-wise reduction temperature scheme

for their cooling schedule to solve GCP. They compare their SA approach with other

approaches. They conclude that SA seems to be extremely efficient for small sized

problems (up to 200 nodes). Furthermore, the best results (in terms of CPU time and

the number ofk colours used) are obtained by combining simulated annealing with other

techniques. Using SA alone may not be the best alternative, since this procedure does

not use any knowledge we might have of the structure of the problem. It would be

advisable to use as much as possible the technical knowledge of the problem to provide

a good starting solution and then apply SA for the crucial last steps only to improve it.

This is the conclusion reached in Johnson eta!. [1989] and Osman & Christofides [1989]

who have found that a combination of simulated annealing with other techniques may

improve the performance in terms of solution quality or computation time (or both).

2.2.7.6 The multi-constraint knapsack problem. (MCKP)

Drexi [1988] solves the MCKP problem using a SA approach which uses a simple

geometric cooling schedule (a simple step-wise temperature reduction). The temperature

duration L is set to be equal to the size of the problem n and is gradually increased by a

multiplication factor of 1.2 at the end of each Markov chain. Simulated annealing is

compared to a descent method and a restricted branch and bound approach by Gavish

et al. [1985]. The latter is the most efficient algorithm for solving MCKP exactly with

Chapter 2	 61



the number of constraints m less than 5. Simulated annealing works as fast and efficiently

as the branch and bound heuristic with arbitrary sizes of m and n. Furthermore, the gap

from the optimal solution never exceeds 1%, while the descent heuristic yields results

with maximum deviation of 9%. However, the descent heuristic is, on average, 20 times

faster than the SA algorithm.

Drexi [19881 reports the first application of the SA approach on a combinatorial

optimization problem with capacity constraints. The solution is represented by a single

array of length n (a permutation). Each entry is either 0 or 1. Neighbouring solutions

are obtained by switching one or two entries (toO or 1). Thus, not all generated solutions

are feasible.

For infeasible solutions obtained during any SA algorithm, three possibilities exist:

1- It may be possible to allow violations of some constraints so long as a penalty for

the violation is included in the objective function, as in Johnson eta!. [1989]. This

approach is similar to lagrangean relaxation.

2- It may be possible to restrict the search to only feasible solutions and reject all

infeasible ones as in Osman and Christofides [1989].

3- It may be possible to add a second Monte-Carlo simulation in order to decide

whether each infeasible solution should be accepted or rejected. This approach

is adopted in Drexi [1988]

2.2.7.7 The generalised assignment problem (GAP)

A short definition of this problem is given in Chapter 1 and it will be studied compre-

hensively in Chapter 4. Cattrysse [1990] reports an application of simulated annealing

to the GAP. The cooling scheme is a simple step-wise reduction schedule. The SA

Chapter 2	 62



algorithm is explained briefly here. The reason is that we are comparing its results with

our SA results in Chapter 4. Catirysse's [1990] SA algorithm is described as follows:

the initial and final temperatures are evaluated so that the probability of accepting a 1%

change is 90 % at the start and equals to 0.1% at the end; the temperature update rule

is given by equation (2.2) with a decrement ratio c= 0.98; the total number of iterations

performed is m x n x 100 x mp (where mp is a multiplier, n is the number of jobs, m is

the number of agents); the temperature length L is a fixed value expressed in terms of

the total number of iterations and the initial and the final temperatures.

The problem specific choices are as follows: the initial starting solution is random

(feasible or infeasible); the solution is represented by an array of size n in which an array

entry gives the index of agent to process the corresponding job. For example, a solution

S = (2, 1,2, 1) indicates that jobs 1 and 3 are assigned to agent 2 and jobs 2 and 4 assigned

to agent 1, assuming that the jobs are in the order 1,2,..,n,. The neighbourhood solutions

are generated by performing 30% random shift operations of jobs and 70% random

switch operations of two job assignments. Monte-Carlo simulation is added in order to

decide on the acceptance or rejection of infeasible solutions that may be encountered.

This follows an approach similar to that of Drexl [1988].

The annealing scheme is compared with another set partitioning approach that was

developed (SP). The results from simulated annealing are very discouraging and have

a poorer performance. The best of SA with a multiplier np= 50, is with an associated

average relative percentage deviation of 3.90% at an average of 2660 CPU seconds of

micro-computer time compared to 0.09% at an average of 1565 seconds using the SP

approach. SA is tested under many control settings. However, it was not possible to

select one superior set. The performance of simulated annealing is improved by starting

with a pre-processing heuristic. A simple prepossessing procedure, called a fixing

Chapter 2	 63



heuristic F, is used to reduce the problem to a smaller one. This fixing procedure solves

the linear programming (LP) formulation (Section 4.1 of Chapter 4). Then, based on

the solution variables, valid inequalities (that are violated) and/or facets of the polytope

are added to the formulation. Again, the extended LP is then solved. At every iteration,

an equality is added for every knapsack constraint. When no violated inequalities can

be added, all variables equal to one are permanently fixed and a reduced problem is

created. The reduced problem is then solved with the SA and SP approaches to produce

two FSA and FSP new heuristic solutions. The solution of FSA with mp= 20 was

improved to produce an average percentage deviating 0.72% in an average time of 520

seconds compared to FSP 0.09% in an average of 68 seconds.

Our SA implementation for the GAP in Chapter 4 shows that our SA is better than

both the FSP and FSA approaches, both, in computation time as well as in the quality

of solution. When tested on the same set of problems as in Cattrysse [1990] the average

relative deviation of our SA is 0.04% obtained in an average of 47 seconds (adjusted

time to take into account the difference in computer speed).

2.2.7.8 Other Combinatorial applications.

SA has been applied to many problems where no problem-specific algorithms were

available. These include the controlled rounding problems (Kelly et a!. [1990]),

multi-level lot-sizing problems (Kuick et al. [1990]), scheduling a manufacturing cell

(Vakharia [1990]), placement of shapeable blocks (De Bont et al. [1988]), conference

seminar time-tabling (Eglese er a!. [1987]), locomotive scheduling problem (Wright

[1989]), construction of exact optimal designs for linear regression models (Haines

[1987] and Bohachevsky er ci. [1986]). Major books and surveys on the theory and

applications of SA are Van Laarhoven er a!. [1987], Collins et al. [1988], Aarts and

Korts [1988], Johnson era!. [1989], and Eglese [1990].

Chapter 2	 64



2.3 Tabu search

2.3.1 Background

Tabu search (TS) is a metastrategy iterative procedure introduced independently by

Glover [1986] and Hansen [1986] for solving optimization problems. It is based on the

general tenets of intelligent problem solving. Tabu search shares with simulated

annealing, the ability to guide the search of iterative (local search) improvement methods.

In this context, tabu search provides a guiding framework for exploring the solution

space beyond points where an embedded heuristic would become trapped in a local

minimum. The process in which the TS method seeks to transcend local optimality is

based on an evaluation function that chooses the highest evaluation move at each iter-

ation. The steps of the TS generic procedure are depicted below:

Step 1. Get an initial solution S.

Step 2. Select the best admissible solution, S,

(S is the best of ailS' € N(S): S' is not in the tabu-list).

Step 3. Update the current solution S - S, and update the tabu-list.

Step 4. Repeat Step 2 and Step 3 until a stopping criterion is satisfied.

The core of this procedure is in Step 2 and Step 3. The best admissible move is

the highest evaluation move in the neighbourhood of the current solution in terms of the

objective value and the tabu restrictions. The highest evaluation function selects the

move which produces the most improvement or the least disimprovement in the objective

function. The reason for introducing a tabu list is to store in that list characteristics of

accepted moves so that these characteristics can be used to classify certain moves as

tabu (i.e., to be avoided) in later iterations. By accepting disimproving moves, it becomes

Chapter 2	 65



possible to return to solutions already visited. Hence, cycling may occur and the purpose

of the tabu list is to prevent such occurrence. Thus, it is necessary to constrain and

restrict the search by a forbidding strategy whose only function is to control and update

the tabu-list. The goal of the forbidding strategy is to avoid as a result of the solution

selections to retrace a path previously visited and to induce the exploration of new

regions.

In the following sections, we shall explain existing TS strategies and their corn-

ponents. More details can be found in Glover [1989a., 1989b, 1990]. However,

implementation details, illustrating specific components are given in Chapter 3 to

Chapter 5. Here, we report only the basic strategies.

2.3.2 Tabu search strategies

The TS metastrategy is generally an approach rather than a strict algorithm. The most

basic form of the TS approach consists of three main strategies and their components:

(1) The forbidding strategy which manages what goes into the tabu list.

(2) The freeing strategy which manages what goes out of the tabu list, and when.

(3)The short term strategy which manges the interplay between the above strategies

to select trial solutions.

In addition to the above strategies, there is also a learning strategy that gathers

information during a TS run and this information can be used to direct the tabu search

in subsequent runs. This strategy consists of the use of intermediate and long term

memory functions. The TS strategies have a lot of overlap and interplays among their

components. These strategies will be explained individually in the next sections.

Chapter 2	 66



2.3.3 The forbidding strategy

One aim of this strategy is to establish a mechanism which makes certain moves forbidden

(or tabu) thus, preventing cycling. We will define a move s to be a mapping function

defined on a subset of the feasible solution space. In order to avoid cycling which involve

preventing the move from a solution S to another s (S) S' € N(S). It is clearly sufficient

to check that a previously visited state is not revisited. Ideally, the tabu-list should store

all such previously visited states and the list would be checked prior to any new move.

However, the process of checking the tabu status of a move based on the above generally

requires a great deal of memory and computational effort. This is so because we have

to store all attributes of a solution that are needed to check the tabu status of a future

move, i.e., recording at an extreme level of detail the whole solution before and after the

move. A crude but reasonably effective way of avoid cycling is to instead insist on not

reverting to a state S from 5' if S' was obtained form S at the last iteration. Clearly, this

does not guarantee that cycling will not occur. In addition, we may well insist that we

do not return form 5' to any state visited during the last I Ts I iterations (and these states

are, therefore, stored in the tabu-list). Moreover, even the checking of only the set of

I Ts I "last" states stored in the tabu-list, can be itself expensive, and a further

approximation to that check must be used.

For example, the CCP, GAP and VRP problems that are considered in this thesis,

are formulated in terms of the union of disjoint subsets i.e., N = u S, where 1= (1 ,...,K)

set of indices and n =J N I is the size of the problem. Each subset, S, satisfies a given

set of problem constraints, and their totality minimizes a well-defined objective function.

To prevent cycling, we can use an approximate implementation of a TS algorithm as

follows: Assuming the availability of a computer with a binary word of length at least

n, then each feasible subset 5, can be obviously represented uniquely by a single word

as:

Chapter 2	 67



W(S,)=	 2'	 (2.13)

where W is a perfect hashing function from the subsets into the set of integer values.

Thus, the tabu-list would consist of I Ts I sets of values W(S,) for a fully avoiding the

return to a state in the tabu-list. However, computational experiments showed that,

although recycling is prevented even when I Ts I is small (say n/5), the procedure is still

expensive. If instead of W(S,) we use a cruder (move set) representation of the state,

based on partial move attributes. We can (with the same value of tabu list size "represent"

more states and check those states faster with the result that better solution can be pro-

duced in this way.

In the context of this approximation to prevent cycling, there are four key elements

to consider

(1) To identify attributes of a move that will be used to create the tabu-list of states.

Indeed we will use the tabu list not only to represent states to avoid but also to

represent "moves" to avoid if these moves are "lilcely" to lead to a previous state.

Tabu lists are normally represented by matrices that store these attributes. An

attribute could be, for example, the cost of the state (solution), or the index of a

customer involved in a move that produced that state, or the set S, containing the

above customer.

(2) To propose a data structure which can be used to update the tabu status of moves

easily.

(3) To identify an aspiration level criterion which allows the tabu status of certain

moves to be overridden and instead be considered as admissible. Not that, for

example, since the state "attributes" are approximations, a move may be prohibited

Chapter 2	 68



although its state has been previously visited. In certain situations this is obvious,

(e.g., if a proposed new state has an objective function value better than the current

best solution), and the aspiration level criterion is meant to correct these errors.

In addition to these elements, it is necessary to determine how long atabu restriction

will be enforced. Or in other words, determine the tenure for which a move remains on

the tabu list. This is important because the capacity of the tabu list is small finite. It is

assumed that the likelihood of cycling is inversely related to the distance of the current

solution from the previous solution. Thus, by preventing the choice of moves that

represent the reverse of any decision taken during a sequence of the last I Ts I iterations,

the TS procedure moves progressively away from all solution states of the previous I Ts

iterations. Here, I Ts is normally called the rabu list length or tabu list size. With the

help of an appropriate value of Ts I, the likelihood of cycling effectively vanishes - a

small value would create cycling. Note however that, a very large value is also not

desirable because it would drive the procedure away from good solution regions before

these regions are "fully" explored.

iauu ii	 I i.i

Figure 2.9. A tabu list data structure with a circular update.

Chapter 2	 69



Although strategies for dynamically varying the tabu list size are possible (Chapter

5), considerable success has resulted from simpler strategies that keep I Ts I at a fixed

value (Chapter 4). We observed that the value of Ts I depends on the size of the problem.

This value is statistically derived and implemented. The tabu list embodies one of the

primary short-term memory functions of any tabu search procedure. It is implemented

by recording only the I Ts I most recent moves or their partial attributes. Once the list

is full, each new move is written over the oldest move of the list. Effectively, the tabu

list is processed as a circular array in first-in-first-out (FIFO) procedure. This data

structure is shown in Figure 2.9 where each column represents the attributes a1 (k), of

each state k.

Note that this F1FO rule is one type of the many types of tabu list data structures

which can be used, and an alternative is used in our TS algorithms which we will describe

later. This alternative also records the iteration number at which a particular move is

made tabu and requires less computational effort.

2.3.4 Aspiration criteria and tabu restriction (exception to the for-

bidding strategy)

Aspiration criteria are measures mainly designed to override the tabu status of a move

if this move is good enough and sufficient to prevent cycling. The tabu restrictions and

aspiration criteria play a dual role in constraining and guiding the search process (see

Glover [1989a]). A move is admissible if tabu restrictions are not violated. However,

a tabu move is also admissible if the aspiration criteria apply regardless of the tabu status.

Aspiration criteria are managed through the use of an aspiration function A(C(S))

applied to the objective function C(S). Aspiration functions are either time-independent

Chapter 2	 70



or time-dependent. In the first case, if, say, a tabu move applied to a solution S produces

a solution whose objective value is better than the best solution found so far, it can not

produce cycling. We say that the aspiration level is attained if C(S) <A C(S)). Another

type of aspiration function, that has been found to be practical, is time-dependent and is

further explained later.

2.3.5 The intermediate and long-term learning strategies.

These strategies are implemented using intermediate and long term memory functions.

The intermediate function provides an element of intens4fication. It operates by

recording good features of a selected number of moves (such as local attributes of good

solutions) generated during the execution of the algorithm. This can be seen as a learning

strategy, which seeks new solutions that exhibit similar features to those previously

recorded. This is achieved by restricting or penalising moves, (encountered during a

run) that do not possess favourable features.

The long term memory function is constructed in such a way as to allow the

investigation of a number of alternative starting solutions for the entire TS procedure,

while encouraging the selection of starting solutions not near those previously selected.

It also can be viewed as an intelligent means of creating diversification into regions to

which the procedure is applied. In other words, it avoids reliance on a blind, random

starting process. The fundamental elements of intensification and diversification

strategies are already present in the short term memory component of tabu search where

they are applied during the current execution of the algorithm.

Chapter 2	 71



2.3.6 The freeing strategy

The freeing strategy is concerned with the management of what comes out of the tabu

list. It removes their tabu restrictions so that they can be reconsidered in any future

search. The attributes of a tabu move remain on the tabu list for a duration of I Ts I

iterations. If the tenure of such attributes has lapsed, then they are freed from their tabu

status by this strategy. A move is considered admissible if none of its attributes are tabu

or if it has passed an aspiration criterion test. This strategy is integrated together with

others inside a short term strategy that organizes the interactions between move selec-

tions, tabu restrictions and aspiration criteria. This will be explained in the following

section.

2.3.7 The short term strategy (an overall strategy)

The short term memory strategy is the core of the TS algorithm. This strategy manages

the interplay between all the above different strategies. It records more information

about the past search behaviour than SA (which records none) and less information than

branch and bound procedure (which record a full history of the search). The overall

strategy is outlined and depicted in Figure 2.10.

Explanation of the Diagram in Figure 2.10.

This diagram has two key steps (highlighted by asterisks): (1) the best move in the list

of admissible candidates; and (2) the update of the admissibility conditions. These two

steps will be explained separately. The overall procedure starts with an initial solution

(which may be infeasible).

Chapter 2	 72



Begin with a starting current solution

Create a Candidate list of moves

I
** Choose the best admissible candidate

'I,

ingCten

/	
cntue

Stop /
Update admissiblility conditions **

Globally terminate or restart

with a long-term memory component

Figure 2.10 Tabu search short term memory strategy.

(a) The candidate list of moves.

A candidate list is a sublist of the possible moves. Candidate list strategies are generally

problem dependent and can be derived, for example, from the field of network opti-

mization, move decompositions and random sampling (see Glover [1989c]). In this

thesis, the TS algorithms include candidate lists of dynamic and/or fixed size; these lists

Chapter 2	 73



contain the neighbourhoods generated by the . —interchange generation mechanism

(Section 3.3.1). If the neighbourhood is very large, a better way to sample the neigh-

bourhood automatically is desirable. This is achieved by the dynamic search strategy

which is proposed later.

(b) The best move selection strategy (or highest evaluation)

The best move selection strategy selects that admissible move from the current

solution which yields the greatest improvement or the least disimprovement in the

objective function, subject to the tabu restriction and aspiration criterion being satisfied.

This strategy will be abbreviated as BA best (admissible) improve strategy. This

aggressive criterion is based on the supposition that moves with higher evaluations have

a higher probability of either leading to a near optimal solution, or leading to a good

solution in a fewer number of steps. Figure 2.11 elaborates the step of Figure 2.10 that

chooses the best admissible move. This criterion is proposed by Glover and used in

some subsequent applications.

The step begins by evaluating each move in the candidate list in a sequential

manner. If the number of tabu moves is small relative to those available, and if the

expense of evaluating a move is not great, then it is desirable that we check first whether

a given

Chapter 2	 74



Generate a candidate move

Check the evaluation criterion
Does the move have a higher
.eva1uation than the incumbentL.

Yes

/1ckbuss

Ta>N

Move is admissibleasplranleve
Does move satisfy ) admissible move

afiona?

No	 / Candidate list check

Has the neighbourhood

been searched 7

Yes

Make the chosen move
the best admissible.

(i.e., record it)

Figure 2.11. Choosing the best admissible candidate move.

move has a higher evaluation than its admissible predecessors before checking its tabu

status. Otherwise, the tabu status check is made before the high evaluation check.

Thereby, the computational effort is saved. If a higher evaluation move is tabu, the

No

Chapter 2	 75



aspiration criteria are given the opportunity to override the tabu status. This provides a

second chance to nominate the move as admissible before the next move is selected for

evaluation. The inter-relationship between tabu restriction and aspiration level may, thus,

be stated as follows: if a move satisfies the aspiration criteria it is admissible whether

or not it is tabu, while, if it does not satisfy these criteria, then it is admissible if it is not

tabu.

(c) The first and best improve selection strategy.

In the thesis, we propose the first and best (admissible) improve strategy, FBA,

which is based of the combination of first and best improve selection strategies. This

strategy uses a greedy approach which selects the first admissible move that provides

an improvement over the current solution in the objective value. The corresponding

solution is compared with the best recorded solution. The necessaiy updates are made

and the selection continues for another move from the solution. If all moves in the

candidate list (i.e., the neighbourhood) are tried without any improvement, the FBA

strategy selects the best disimproving move. At this moment, the FBA is similar to the

BA selection strategy. The FBA strategy has the advantage of dynamic sampling of the

candidate list. The size of the search is indeterminate as it need not the whole list. This

is in contrast to the BA strategy which uses a fixed candidate list size which must be

scanned in all cases. Moreover, with FBA strategy, we are accepting more moves in

good regions, hence the tabu list is updated more frequently and as a consequence a

larger part of the solution space is finally searched.

(d) The stopping criterion

The stopping criterion terminates the TS procedure either after a specified total number

Chapter 2	 76



of iterations have been performed in total or, since the currently best solution was found.

2.3.8 Performance of TS on combinatorial optimization problems.

At present, the TS method is not as widely studied as SA in terms of the theory and the

practice of applying the method. Nevertheless, TS has been successfully applied to a

number of problems. For some problems, TS has been able to find solutions superior

to the best results previously obtained by any method. Tabu search has also shown

advantages through its ease of implementation or in the flexibility to handle additional

constraints not easily included by the original problem formulation. In the next section,

we shall give a summary of the most successful applications of TS on some combinatorial

optimization problems. The general feeling is that the study of the TS algorithm is an

area that has to be further explored. The motivation being that TS can eventually provide

a sound basis for solving COPs.

2.3.8.1 The travelling salesman problem (TSP).

Malek et a!. [1989] implemented TS with a long-term memory strategy, and utilized

tabu lists whose lengths could vary according to the tabu conditions. The size varied

between one-third to one-fifth of the number of cities. The tabu status of moves is based

on time-independent attributes with an aspiration level to override the tabu status. They

also implemented a simulated annealing algorithm using a simple geometric cooling

schedule with a step-wise temperature reduction scheme. Both "serial" and "parallel"

TS and SA algorithms were tested on known problems in the literature of sizes 25, 33,

42, 57 and 100-city problems. Computational results show that the "serial" imple-

mentation of TS consistently out-performs the serial SA in terms of time and solution

quality. However, the performance of "parallel" versions of these algorithms produced

improved solutions of comparable quality. TS was much faster and obtained optimal

Chapter 2	 77



solutions to the test problems with a substantially greater frequency (optimal solutions

are known for these test problems). For the 50 and 75-city problems, the parallel tabu

search produced better results than the best published tour lengths to date. TS compu-

tation time consumes only 1/3 to 1/25 the SA computational effort.

Another TSP study was undertaken by Fiechter [1990] who developed a parallel

TS algorithm using an intermediate and long-term strategy. In addition to a restricted

candidate list strategy. The algorithms were tested on a large size problems ranging

from 500,...,100000 points in the plane, and a few other large-sized test problems from

the literature, such as the 512-city problem of Padberg and Rinaldi [1987]. The TS

solution for the 10000-point problem was 72.95, compared to 73.36 obtained by Bonomi

& Lutton [1984] using SA. The parallel TS results for the 512-city problem were 0.55%

away from the known optimal solution. Computational results on the large-sized

problems show that the TS solutions were very close to the asymptotic estimates of the

optimal solutions. Another TS application on the TSP can be found in Knox er al. [1989].

2.3.8.2 The Quadratic assignment problem. (QAP)

An application of TS to the QAP has been developed by Skonn-Kapov [1990], using a

tabu list whose size varies both in relation to the problem size and in relation to the stage

of the search. The TS approach also makes use of the long term strategy for diversification

of the search process. The algorithm utilizes a time-independent tabu list and an

aspiration level criterion. The TS algorithm obtained the best known solutions for all

tested problems ranging from 15 to 36 facilities taken from the literature, and new

problems of size up to 90 facilities. The method also succeeded in achieving such

solutions at a much smaller CPU time. Furthermore, the TS solutions were equal to or

better than the solutions obtained by a SA algorithm developed by Burkard et al [1984].

Chapter 2	 78



A parallel version of TS that incorporated a long term strategy was applied to the

QAP by Taillard [1990]. The new feature in this application was the introduction of a

random selection of the tabu list size, I Ts I. from a small interval about the mean of two

chosen values. This size was maintained for 2 x Ts I iterations before a new value was

selected. The computational results showed that the parallel TS algorithms out-per-

formed the algorithm of Skorin-kapov [1990] on all the test problems and found better

solutions for the large-sized problems. Tabu search algorithm seems to be the best

available approximate algorithms for the QAP (see Connolly [1991]).

2.3.8.3 Machine scheduling problems

1- The permutation flow-shop scheduling problem. (FSSP)

An application of TS to the FSSP was implemented by Widmer et al. [1989]. The

algorithm was composed of two phases. The first finds an initial starting solution using

a constructive heuristic method by considering the FSSP to be an open-ended TSP. Here,

the distances between jobs were obtained by a weight function based on the difference

between the processing times of jobs. The second phase tries to improve the initial

sequence using a TS technique. Neighbourhood sequences were generated by permuting

two jobs which were in two respective positions. A simple selection procedure is used

in which all admissible neighbours are searched and the best is selected to be the new

current solution. In this method, a circular tabu list is used to update the list of tabu

moves, with tabu conditions prohibiting permutated jobs from returning to their previous

positions. A small fixed tabu list size of 7 is used.

Computational results of TS on small-sized problems up to 20 jobs, were compared

to the algorithm of Nawaz etal. [1983] - NEH - and showed thatTS yields better solutions

than NEH for 58% of problems, identical solutions for 14% of problems and worse

solutions for 28% of problems. TS, however, consumes 4.5 times more CPU time than

Chapter 2	 79



NEH. There are no direct comparisons between TS and SA reported for this problem.

However, the SA of Osman & Potts [1989] reports results on problems up to 100 jobs.

They produced better solutions than NEH for 82.5% of problems, with identical solutions

generated for the remaining 17.5%. By considering both SA and TS implementations,

we conclude that the SA algorithm may be the most efficient of all the three algorithms

for the FSSP. Another TS application for the problem was applied by Taillard [1990],

in which neighbours were generated by shifting ajob from one position and inserted in

another. Different first and best improve strategies for selection of moves were tested.

A parallel version of TS algorithm was presented to speed up the calculation of the best

move in the neighbourhood. The conclusion, again, was reached that TS produced better

results than NEH and that the first improve strategy would require less computational

time than the best improve strategy at least on problems with sizes up to 50 jobs.

2- The single machine problem with linear delay penalties and set-up cost

dependencies.

A tabu search study by Laguna eta!. [1989] examined the above problem which requires

minimizing a weighted combination of delay penalties and sequence-dependent set-up

costs. The method utilized the concept of a long-term memory function and a best

improve strategy for selection of alternate moves. Several branch and bound procedures

were used to find the optimal solution for test problems. These procedures could not

find the optimal solutions of 20-job problems within 150 CPU seconds on a mainframe

computer. However, with a comparable time of 155 CPU seconds on a microcomputer,

TS approach completed a set of 12 solution trials per problem and succeeded in obtaining

an optimal solution (found by other means) to each problem. Moreover, the worst

solutions obtained by TS were within 0.2% of optimality on average. In addition, the

method also generated high quality solutions very quickly to larger problems.

Chapter 2	 80



2.3.8.4 The graph colouring problem (GCP)

A study by Hertz et al. [1987] compared the performance of TS & SA on the GCP. The

TS approach used simple tabu components in which a first-improve selection strategy

was employed with a fixed-sized sample of moves in order to reduce the computational

effort. The tabu list was a small fixed size of 7. Moves were randomly selected rather

than sequentially searched. Computational results on problems with sizes ranging from

100 to 1000 vertices, demonstrated that TS obtained solutions of significantly higher

quality than SA at a lower computational time.

2.3.8.5 Other Combinatorial applications.

A study, comparing TS and SA for the clique partitioning problem was conducted by

Dc Amorim et a!. [1989]. The main conclusion was that the most commonly used

heuristics were proven to perform badly in comparison with both SA and TS. The

computational time for SA algorithm was generally greater than that of the TS algorithm.

Application of tabu search to the solution of the Course Scheduling Problem in a

University, the independent sets problem in a graph and a few others problems can be

found in Hertz et a!. [1989]. Also, an application of TS to the Job Shop Scheduling

Problem can be found in Widmer [1991]. A comprehensive review in the form of a book

is currently under preparation by Glover & Dc Werra [1991]. Materials in this would

cover the past history and development and recent research in TS. However, for surveys

on successful applications so far, we refer to Glover [1989a, 1990, 1990a].

Chapter 2	 81



Chapter 3

SIMULATED ANNEALING AND TABU SEARCH

FOR THE CAPACITATED CLUSTERING PROBLEM

3.0 Introduction.

The capacitated clustering problem, CCP, is defined as follows: A set J=( 1,...,n} of n

customer points is given. The demand of a customer point j is a known value d1. The

distance (or "cost") between any two points i andj is given by the matrix [ce] . The

problem is to assign the n points to p clusters (each point is assigned to exactly one

cluster) so that the total demands of points assigned to a cluster k is not greater than Qk.

a given capacity for cluster k. The objective is to minimise some measure of clustering

quality. For a given cluster, a "centre" is that point of the cluster from which the sum

of the distances to all other points in the cluster is minimisecL This sum is called the

"scatter" of the cluster. The measure of clustering quality which is used in this chapter

is the total scatter of all clusters. A pictorial representation of the CCP is given in Figure

3.1.

The applications of clustering models are diverse and appear in many other areas

including:

Depot location in distribution systems: See for example, Cullen er al. [1981],

Klincewicz er al. [1988], Derby-Dowma et a!. [1988], Bookbinder er a!. [1988];

Chapter 3	 82



Sale force territorial design: Mulvey era!. [1984];

Switching centres in communication networks: Mirzaian [1985];

Clustering of customers into different market segments in marketing studies:

Chaffray era!. [1973];

Clustering instances of varieties of cancer: Burbank [1972];

Drawing inferences of scene content in pattern recognition problems: Bryant

[1978].

For a comprehensive review of clustering models and their applications, refer to Bran-

deau et al. [1989].

0 Customers	 i:ij:jj Cluster Center

Figure 3.1. The Capacitated Clustering Problem

Recently, a great deal of attention has focussed on two new techniques: simulated

annealing (SA) and tabu search (TS) for solving hard combinatorial optimization

Chapter 3	 83



problems (COPs). Both these methods help reduce the effects of local optimality using

strategies based on ideas from statistical mechanics and intelligent problem solving

respectively. SA algorithms have been successfully applied to many COPs namely: the

travelling salesman problem, Cerney [1985], Kirkpatrick [1984], Kirkpatrick et al.

[1983], Bonomi et at. [1984]; the quadratic assignment problem, Burkard ci a!. [1984],

Wilhem ci a!. [1987], Connolly [1990]; the flow shop scheduling problem Osman &

Potts [1989]. Reviews of the theory and other extensive applications of SA can be found

in Van Laarhoven eta!. [1987], Eglese [1990], and Johnson eta!. [1988]. For the theory

and applications of tabu search, we refer to two fundamental papers, Glover [1989a,

1 989b].

In this chapter, we investigate the applications of SA and TS to the CCP. In Section

3.1, we formulate the CCP as an integer programming problem and summarize its

relationships to other combinatorial problems. In that section, we also review some of

its available solution methods. In Section 3.2, we develop a constructive heuristic for

the CCP. Section 3.3 introduces A-interchange descent improvement procedures for the

CCP. These procedures are similar to those introduced by Lin [1975], and Lin ci al.

[1973] for the travelling salesman problem. In Section 3.4, a new cooling schedule for

simulated annealing algorithm is introduced and implemented for the CCP. In this

section, we also give a brief classification of different SA algorithms. In Section 3.5,

we discuss briefly tabu search and its implementation to the CCP. This technique is

introduced in Section 2.3 and is explained in greater detail in Chapter 4 and Chapter 5.

Computational results in Section 3.6 compare the proposed SA algorithm with other SA

algorithms and with descent methods. We also compare different search and selection

strategies for descent and simulated annealing methods, in addition to a comparison of

SA and TS algorithms. These comparisons are based upon solution quality and running

time on a set of randomly generated problems. Section 3.7 contains some concluding

Chapter 3	 84



remarks.

3.1 Mathematical formulation

Define the input data:

c = Cost of assigning point ito centre k,

d, = Demand of point j,

Qk =Capacity of centre k,

p = Desired number of clusters,

I = { 1, .. ., n }, the set of customer points,

K I, the set of potential cluster centers.

Defme the decision variables:

= 1, if customer k is chosen as the k - th cluster centre,

=0 otherwise.

x = 1, if customer j is assigned to centre k,

=0 otherwise.

The integer programming formulation of the CCP can then be stated as follows:

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Mm

subject to:

x=1,
k K

ke K

Xk ^Y&,

d1x^Qxy
j€J

X,Y&E {0,1},

ViE I,

Vk E K,Vj El,

V/CE K,

Vk E K,VJ E I.

Chapter 3	 85



We assume that the costs are symmetric (i.e., ck, = c,,, for all k andj), and that c, =0

for all k. In the above formulation K and J are taken to be identical, but this restriction

is not necessary. Constraints (3.2) are the assignment constraints which force each

customer to be assigned to one and only one cluster. Constraint (3.3) specifies the desired

number of clusters. Constraints (3.4) ensure that no customer can be allocated to a point

that is not a centre and constraints (3.5) specify that the total demand is less than the

centre capacity. In the presence of constraint (3.5), constraints (3.4), are redundant in

this formulation, however, they yield a much tighter linear programming bound than the

equivalent, (but weaker) formulation without them, (Geoffrion et al. [1978]). The CCP

can also be called the Capacitated p-median Problem.

An early integer formulation of the clustering problem may be found in Rao [1971].

A branch and bound algorithm for it is suggested by Konntz et a!. [1975]. Stanfel

[1986] provides an optimal algorithm based on Lagrangean relaxation and dynamic

programming to solve clustering problems where the customers lie on a line and suggests

the usage of the algorithm for the more general case. An algorithm for the Uncapacitated

Clustering Problem (UCP) is developed by Mulvey & Crowder [1979]. This is based

on Lagrangean relaxation and a sub-gradient procedure for improving the lower bounds,

as in Held ci' a!. [1974]. The UCP is the p-median problem (Christofides & Beasley

[1982], Beasley [1985], Ahn ci' a!. [1988]) and related to the Uncapacitated Facility

Location Problem (Cornuejols eta!. [1977]).

For the UCP, Whitaker [1983] describes a heuristic which modifies the greedy

interchange algorithm of Teitz & Bart [1968], thereby, obtaining improvements on the

quality of solution and running time. Mulvey & Beck [1984] present a hybrid

heuristic-sub-gradient method to obtain good solutions for the CCP. The

heuristic-sub-gradient procedure is repeated for a predetermined number of iterations.

Chapter 3	 86



At each iteration, the cluster centres are obtained by solving a relaxed problem that

excludes the assignment constraints. A heuristic procedure attempts to locate a feasible

assignment of points to centres. Improvements to this solution are made through the

pairwise interchange of entities between clusters. Computational results on test problems

of size up to 100 customer points, show that the heuristic produces results with a relative

percentage deviation in the range of 0.43% to 5.4%.

There is a vast literature on problems that are mathematically related or very similar

to the CCP. The 0-1 Cap acitated Facility Location Problem (CFLP) has the CCP

formulation without Constraint (3.3). This constraint is included in the objective function

by associating a fixed cost, fk for each opened centre. The objective function then

becomes:

Ck,X1+	 fv	 (3.1')
kKJ€J	 kcK

Neebe & Rao [1983] formulate the problem as a Set Partitioning Problem. They

use a branch and bound procedure to solve it, where bounds are obtained by a linear

programming relaxation. Heuristic algorithms based on lagrangean relaxation have been

widely used to obtain good solutions for solving COPs. They generate feasible solutions

to the original problem by modifying the solutions obtained from the relaxed problems,

in order to satisfy the original constraints prior to their relaxation. For the Capacitated

Plant Location Problem, CPLP, Barcelo & Casanovas [1984] report such a heuristic

approach in which the assignment constraints are relaxed. Cornuejols et a!. [1991]

report computational results comparing different relaxations found in the literature for

the CPLP. For the single source CPLP, Klinewicz & Luss [1986] and Darby-Dowman

& Lewis [1988] present another similar approach in which the capacity constraints are

Chapter 3	 87





FIND: Find a set of p centres.

Step 1: Find the largest c,.,.. Set 1 =i and ç2 = J' . K =

If p =2 go to ASSIGN; Else, Set r 4- 2

Step 2: Set r - r + 1. Find the next centre , E f—K so that the product of

costs from to the previous centres is maximized, i.e.,

identify ç=leJ—Ksuchthat

fl c, = Max flc
qek	 q€K,:QI-K	

tq

Step 3: Set K - Ku . If r= p; go to ASSIGN Else; Go to Step 2.

ASSIGN: Assign customer points to centres.

Step 4: For each point j {,. . ,,,}, find the distance to its nearest centre.

Arrange the points in increasing order of these distances. Assign points

in this ordered sequence to their corresponding centres so long as the

resource capacity allows. If not, assign the point jto its immediately

available nearest centre.

RE-COMPUTE: Re-compute cluster centres

Step 5: For each cluster S find the new centre . In other words,

identify =1 e S,, such that, C(S)	 c, = Mm ) c.	 (3.8)
j €S	 ES*JeSa

Chapter 3	 89



The above heuristic may fail to find a feasible solution when the capacities are very

tight. Note, however, that in order to guarantee a feasible solution (if one exists) we

would need to solve a multiple- knapsack (or bin-packing) problem exactly. This would

be too time consuming to be considered for inclusion in our general heuristic. Also,

note that the above three steps can be recursively repeated to improve the solution further.

3.3 Iterative improvement methods.

Iterative improvement methods have been introduced and discussed in Section 2.1.2 (B).

The algorithm starts with any feasible solution and then iteratively improves upon the

current objective value by amending the solution if possible. Descent and metastrategy

SA and TS algorithms are examples of such methods. In any implementation of descent

and metastrategy approaches, the following steps have to be followed.

(1)	 An initial starting solution,

(ii) A generation mechanism for generating neighbouring solutions,

(iii) An acceptance criterion, (of an alternative solution)

(iv) A stopping criterion

3.3.1 A —interchange mechanism.

The generation mechanism describes how a solution S can be altered to generate 5' the

neighbouring solution. It is a mapping function, N, ,, from S into N,(S), the neighbourhood

of S. We define a move to be a transition from one solution to another. This is char-

acterised by a set of attributes. An attribute is a change made during a move. For

example, in the exchange of two customers between two clusters, the attributes of the

move are the indices of the clusters, the indices of the customers (from those clusters)

involved, and the change in the objective function. Note that the set of attributes is an

Chapter 3	 90



over-specification for the move, itself. It scores some "historical" information after a

sequence of moves, and this "memory" is made use of in TS, as mentioned later. Clearly,

the effectiveness of any iterative algorithm is partly determined by the efficiency of the

generation mechanism and the way in which a neighbourhood is searched for a better

solution. Lin etal. [1965] suggested a generation mechanism called the K —change (arcs

exchange) procedure for the TSP. We adopt and introduce a similar customer-inter-

change procedure for the CCP.

The neighbourhood generation mechanism for the CCP can be explained as follows:

Consider a solution S = (S1, .. .,S,, ...,S, 2, ...,S). let and be the centres of the

clusters and SA , respectively. A A. —interchange between two given clusters S and

is a replacement of a subset c S, ISk, I^ A. with	 c Sb , where I5k,1 I^ A., and vice

versa, to get two new clusters, with possibly different new centres. Now,

- (s	 , &	 f- (s—)u;	 (3.9)

and , and	 are re-computed. Hence, a new solution S (S 1,S2, . . .,S,,) with

K = {, , .. ., ,,} is obtained. There are p(p-1)/2 possible combinations of pairs of sets

of customers that need to be searched to generate neighbouring solutions.

Definition 3.1

A A.—interchange neighbourhood, N(S), of a solution S is the family of all possible

solutions S' that can be reached from S in one A.—interchange over all combinations of

a pairs of sets, (Sq, S), in S.

Chapter 3	 91



3.3.2 The order in which neighbours are generated

The effectiveness of iterative algorithms is affected by the way neighbours are generated.

This generation depends on the order in which the pairs of sets are selected for

? —interchange.

Let the permutation a (1, ...,k1, ...,k2, ...,p) be the order of cluster indices in a

given CCP solution, S = (S1, .. .,S,, . . .,S, .. .,S), where a(i) = i, V i = 1,.. .,p. We

define an ordered search for cluster pairs. An ordered search selects all possible

combinations of pairs of clusters (Sq, SA ) according to a without repetition. A total of

p(p-1)/2 combinations of (Sk1S) are examined in the following order:

(S I), S 2)), ..., (S 1), Sc, )), (S ), S (3)), ..., (S	 _I),Scy(p))	 (3.10)

Definition 3.2

A cycle of search is a complete examination of all neighbours S' in the neighbourhood

N(S) of a given solution S. These neighbours are generated by the k—interchange

mechanism which selects systematically in the order of a permutation a all pairs of

clusters (Sk1 , S½) without repetition.

For the descent algorithm and tabu search, the same permutation, a, is used after

each cycle is completed (see later for details). However, in the case of the simulated

annealing algorithm, a new permutation a is generated at the end of each cycle of search.

(Note that for a given S, descent and TS algorithms search the entire neighbourhood

N,(S) before a decision is made, whereas for SA a decision on whether to accept a change

or not is made after each move, in which case the sets S are updated and the sequence

(3.10) is affected).

Chapter 3	 92



Furthermore, for a given pair s, S, we must define the search order for the cus-

tomers to be exchanged between S, and S. We consider the case of A = 1 and a similar

analogy can be followed for other values of ?3.. The 1-interchange mechanism uses two

processes to generate neighbours.

71 N
C) Customers	 C) Cluster Center

(a) Before the shift process 	 (b) After the shift process

0 Customers	 0 Cluster Center

(c) Before the interchange process	 (d) After the interchange process

Figure 3.2. The A-interchange mechanism for the case of (A = 1)

(a) A shift process which is represented by the (0,1), (1,0) operators. The (0,1)

and (1,0) denote the shift of one customer from one cluster (say S) to another cluster

(say S) or vice versa. Figure (3.2) illustrates an example for the shift process in which

Chapter 3	 93



customer i is shifted from one cluster to another by the (1,0) operator. After the shift

process, centres of clusters must be re-evaluated. As a result, customer 1 becomes the

centre of the cluster to which i has been shifted, Figure (3.2.b).

(b) An interchange process which is represented by the (1,1) operator. This process

exchanges a customer (say 1) from one cluster with another customer (sayj) from the

other cluster. Figure (3.2c) shows two clusters before the interchange move, whilst

Figure (3.24) depicts the situation after the interchange takes place. In Figure (3.2d),

the centres of both clusters have been changed due to the interchange move.

The customers in a given pair of clusters, Sk1 and S12, are searched sequentially and

systematically for improved feasible solutions by the shift and interchange processes.

The order of search, we implement, uses the following order of operators (0,1), (1,0),

(1,1) on any given customer pair to generate neighbouring solutions.

3.3.3 Evaluation of the cost of a move

The cost of a move is the difference between the objective function value of S and S',

A = C(S') - C(S). 5' is generated the X-interchange mechanism applied to S. The

calculation of A requires finding the (new) centres for each one of the involved clusters

(say Ski and 5k2) and computing C(.) from Equation (3.8). Here, the centre	 is

re-computed exactly after each move in 0 
(( i. )) 

time. Finally, the cost of the move can

be obtained by a simple calculation.

3.3.4 A. —interchange descent algorithm.

?.. —interchange descent algorithm can be described as follows:

Chapter 3	 94



Step 1. Generate an initial (random or heuristic of Section 3.2) solution S

Step 2. Choose a solution 5' E N,(S) in the order indicated in Section 3.3.2.

Step 3. If S' is a better solution than S (a reduction in the objective value, i <0)

Then replace S by 5' and go to Step 2.

Step 4. If the neighbourhood N,(S) of S has been completely searched (a cycle of

search is completed) without any improvement in the objective value Then

Stop;

Else go to Step 2.

The iterative improvement descent algorithm has some peculiarities and difficulties

to be overcome in any application. It can be shown that the algorithm depends strongly

on the initial starting solution. A good constructive heuristic may reduce the computation

time to produce a good final solution. Starting from a completely random solution would

requires more iterations to find a good solution. However, there are no guide-lines on

how to initiate an iterative descent method in order to obtain a good quality solution.

Clearly, a larger neighbourhood would most likely provide better local optima but

will take a larger computation time to search. Hence, we will show that the nature of a

neighbourhood mechanism determines whether biased or completely random starts

should be used.

In classical steepest descent method, the entire neighbourhood N,(S) is searched

before a best-improve (BI) move is made. However, an obvious alternative is to accept

the first-improving move (clearly this is not steepest descent) in which case the sets Sk

are modified before the current search cycle is completed. After such a move is made,

the search can continue in two stages. Either by restarting the cycle from the beginning

(with the new definition of S) or by continuing from the current position to the end of

Chapter 3	 95



the cycle and restarting a new cycle until the current position is reached again. This is

similar to searching a circular list. The circular search is more efficient than the restart

strategy, because of its computational advantage.

Definition 3.3. (A-optimality)

A solution S is -optimal (A. -opt) if and only if, for any S, S E S no improvement

can be made by a A. -interchange.

For the iterative descent algorithm, we use the first-improve (H) search strategy

incorporated with a 1-interchange or 2-interchange neighbourhood generation mech-

anism to produce two descent algorithms 1+H and 2+FI respectively. The 2+FI algo-

rithm produces 2-optimal solutions by applying the 2-interchange mechanism to the

1-optimal solution produced by 1^FI solution. Note that a A.-opt solution is not unique

and depends on the order of the search.

Proposition 3.1.

The A.-optimal solutions produced by the descent methods are .t-optimal for any jt < A..

Proof. (immediate)

3.4 Simulated annealing algorithm.

Simulated annealing is an iterative descent algorithm modified by random ascent moves

in order to escape poor quality local minima. The level of randomization is determined

by a control parameter (T), called the temperature which tends to zero according to a

deterministic "cooling" schedule. The theory and practical applications of the SA

Chapter 3	 96



algorithm are introduced in Section 2.2. In most of the applications discussed, SA

performed remarkably well. The sensitivity of the performance of the algorithm to the

choices of the control parameter was exhibited in some of the applications, thus dem-

onstrating how in practice the annealing algorithm can be prematurely trapped in local

minima. The SA computation time can be speeded up by incorporating ideas that include:

alternative methods of calculating (approximately) the change in the objective function,

A; identification of a set of promising regions to search and the size of the neighbourhood.

In this section, we briefly classify the different types of cooling schedules which

are discussed in Section 2.2.5. We also describe the SA we developed and implemented

for the CCP.

3.4.1 Classification of the cooling schedules. (A summary)

Implementing a SA algorithm needs a cooling schedule that defines:

(i) An initial value of the control parameter T;

(ii) A decrement function T;

(iii) Indicates how many iterations to be performed at each temperature;

(iv) A termination criterion.

The performance of the SA algorithm depends strongly on the chosen cooling

schedule. With a proper cooling schedule near-optimal solutions can be obtained for

many combinatorial problems (see Section 2.2).

We classify SA algorithms according to the rules used to define cooling schedule

parameters. (Another classification in a bibliography by Johnson [1988] is based on

"categories" such as: general; theory; algorithm design; computational experiments;

Chapter 3	 97



T

combinatorial optimization problems and application areas). Figure 3.3 illustrates the

following three different decrement rules. This figure shows a pictorial representation

of the temperature evolutions as the number of iterations grow.

1.	 Stepwise temperature reduction schemes (Section 2.2.5.1): In this category, the

temperature duration, L, is equal to either the size neighbourhood (i,e., the entire

neighbourhood is searched before T is reduced), or a pre-specified number. L

iterations are to be performed at a given value of the temperature T, before T is

reduced according to some formula. Each scheme has its own stopping criterion.

Iterations

a : Stepwise temperature reduction scheme
b : Continuous temperature reduction scheme
c : Non-monotonic temperature reduction scheme

Figure 3.3 Classification of cooling schedules

Chapter 3	 98



2.	 Continuous temperature reduction schemes (Section 2.2.5.2): This category

reduces the temperature after each attempted move. Moreover, the temperature

is updated aftereach iteration. This category is similarto (1) if we letL= 1. Again,

some rules are used to control the temperature and stop the algorithm.

3.	 Non-monotonic temperature reduction schemes (Section 2.2.5.3): The tempera-

ture is reduced after each attempted move with occasional increases in the tem-

perature. The philosophy of the temperature increase is based on the idea that

there is no point in reducing the temperature any further when one cycle (or a

pre-specified number of cycles) has been completed with no change in the current

solution. The new developed SA algorithm for the CCP forms the basis of this

category and will be explained next.

3.4.2 The new cooling schedule.

This section introduces our non-monotonic cooling schedule. We perform a single

feasible iteration (one attempted feasible move) at each temperature. In addition, we

define a cycle to be a complete neighbourhood search of the current solution. The generic

parameters are for this cooling schedule are:

(i) The starting temperature T, and the final temperature T1.

(ii) The temperature decrement rule and the parameters cx and y used for decrementing

T by a ratio dependent on the number of iteration k.

(iii) The condition for occasional temperature increase, and the temperature reset van-

ables, T,, the value to which T is reset, after a complete cycle with no change.

(If such a cycle is encountered we say that the "reset condition" is satisfied. T,

is itself is determined by an update rule).

Chapter 3	 99



(iv) The total number of iterations M for a stopping criterion or, another alternative

criterion based on the number of temperature resets, R.

Our cooling schedule controls the temperature decreases after each iteration and

the occasional increases after the occurrence of a no-change cycle in the following ways:

(I) The initial and final temperature values.

The initial value T, is not very important A small value is recommended if we start

from a good heuristic solution. This would also save some computation time. Although

the final temperature T1 is included, its value could be set arbitrarily to 1 with no effect.

It is included only to show the relationship with Lundy & Mees [1986].

(ii) The decrement rule.

After each iteration k, the temperature is decreased according to a parameter 13k which

is updated as follows: let us define

(T,—T1)
k_(rI)TT	

(3.11)

where a and yare constants. Then, the temperature is updated according to the sequence:

Tk
Tk^l 

= (1 + I3kTk)	
(3.12)

Note that if y= 0, 13k is a constant independent of k and is the rule used by Lundy & Mees

[1986]. In our case 3k decreases as k increases and the temperature is then decreased

more slowly with k.

(iii) The condition for occasional temperature increase.

If a cycle of search is made without accepting any k-interchange, it is likely that, with

the current temperatures dropping even further there will be no changes accepted.

Therefore, the current temperature Tk needs to be reset to a higher value. The reset

Chapter 3	 100



values should not be very high since what we want is only to escape the current local

optimum, but not to deviate from the current solution very much as if we are starring

from a totally new random solution. The temperature reset could then allow further

moves to be accepted, and perhaps better solutions might be generated.

At iteration k, where the reset condition is met, the temperature at iteration k^ 1 is

reset to a temperature value, T,, (i.e., Tk +l = T,,,). We need to define how the values

Of Trgsa are updated. Initially, T,,l ., is set to the value of T,. Before the reset of the current

temperature takes place, the value of T, is updated as follows:

T =-'Wi	 2 '
	 if T,,1, > T

= T1 ,	 otherwise	 (3.13)

where T.4 is the temperature value at which the best solution is found. After the reset

temperature of T,,,41 is made according to Equation (3.13), then Tk +1 = T,,11 . After this

reset, the temperature updates are carried out using either Equations (3.12) until the

algorithm stops.

(iv) The stopping criterion.

Our SA algorithm is designed so that it gives the user control of the trade-off between

the quality of solution and the computation time. Two stopping criteria are used. The

first is to execute the algorithm for a pre-specified number of iterations M. The second

is the one which depends on the number of temperature resets, R, since the best solution

is found.

Note that a and 'y control the rate of temperature reduction with iteration number

Chapter 3	 101



k. Hence, there is a trade-off in the choice of the values of a & y. A large ratio produces
7

a cooling schedule similar to previous cooling schedules for small values of k. A small

ratio produces a cooling schedule which is slow even for small k. The values of a & 'y

are related to the problem size.

The cooling schedule parameters are obtained from the problem-specific char-

acteristics. A cycle of search is performed on the initial solution (with no changes done)

to estimate these parameters. We assume S is an initial solution for a CCP with n as the

number of customer points and p as the number of clusters. From our experimental

experience, we suggest that a = p x Nfeas, where Nfeas is the number of feasible moves

found during the cycle (i.e., the feasible - w.r.t. capacity - part of the neighbourhood

N,(S)); y=n; 7', can take any values in Equations (2.3), (2.4), (2.8); and T1 is set to

6, the smallest change in the objective function found during the cycle; the total number

of iterations M is given by M = n x Nfeas. We must be careful with this value of M as

it can be small for very tight capacity problems, and large for very loose problems.

Therefore, an alternative stopping criterion is also used. It is based on the number of

consecutive temperature resets for which there are no improvements made to the best

solution.

A recent cooling scheme, by Connolly [1990] (see Section 2.2.5.3) can be seen as

a special case of our proposed scheme. It shares the tenets of our scheme in the reset

criterion. However, It only resets the temperature once as opposed to several times.

When no changes occur in a complete search neighbourhood, the algorithm of Connolly

[1990] sets the temperature to, T,, the one at which the best improved solution is found

and kept at that value thereafter.

Chapter 3	 102



3.4.3 The general annealing algorithm.

Our implementation of the SA algorithm for the CCP is presented in this section. The

generic SA algorithm is denoted by SA(S, M, N, C) and abbreviated by SMN.C, where

S defines the initial starting solution, M describes a method of pair cluster selection, N

describes how customers in a given pair of clusters are controlled by the ? -interchange,

and C refers to the cooling schedule that is applied. The solution reported is the best

solution found and recorded during the search, as opposed to the one at which the

algorithm is terminated.

The steps of the SA algorithm:

(i) Initialisation:

Step 1. Generate an initial heuristic solution S by the heuristic method of Section 3.2.

or by a random procedure.

Step 2. Initialisation of the cooling schedule parameters:

Perform a cycle of search, N 1 (S) without accepting neighbours to obtain

6 the largest and smallest change in objective function values

respectively, and the total number of feasible solutions Nfeas in the neigh-

bourhood N1(S).

Set	 T, - L, T1 - 3,	 T,, - 1',,	 T1	 - T,,

a-. n xNfeas, y- n, R +- 3, k - 1, and set the counter r,,,, - 0

(ii) Selection and acceptance of generated neighbours.

Step 3. Select a solution S' E N1 (S) sequentially and systematically (see Section 3.3.1,

and Section 3.3.2).

Compute A=C(S')-C(S).

Chapter 3	 103



Step 4. If ^ 0, or 
pir0, 

where 0 is a uniform random number 0< 0< 1, then

acceptS' and setS - S'.

If S' is the best so far then keep S'. Update T1 and set r, 4- 0.

(iii) Temperature updates.

Step 5. Evaluate the temperature decrement ratio 13k as in Equation (3.11), and update

temperatures according to the rule (3.12) or the conditions for occasional

increase (3.13) of Section 3.4.2.

If the rule (3.1)	 is used, then r +- r,,42, + 1.

Setk —k+1.

Step 6. If k is greater than M, (or for the other stopping criterion, if 	 > R) then,

stop and report the best found solution and the computation time.

Otherwise go to Step 2.

We evaluate SA algorithms by restricting our attention to those types in SA(S, M,

N, C) as follows: S E (R, H), where R is a random solution and H is a heuristic solution

of Section 3.2; M E {R, S, SI, where R, S and S denote a random and a systematic and

a random systematic selection (Equation 3.10) of the cluster pair for the 1-interchange

mechanism, respectively; N € { R, S), where R refers to a random customer choice for

the 1-interchange move while S refers to a systematic (ordered) 1-interchange of cus-

tomerpoints; CE (AV,LM,OC) where,AV,LMandOCrepresentAartsetal. [1985],

Lundy & Mees [1986], and Osman & Christofides [1989] cooling schedules respectively.

Osman & Christofides [1989] is the new cooling schedule represented in Section 3.4.2.

Chapter 3	 104



Proposition 3.2.

The SA algorithm with a non-monotonic cooling schedule produces at iteration Q a

solution which is always better than or equal to that produced at iteration M <Q, holding

constant other cooling schedule parameters (including the seed of the pseudo-random

number generation).

proof. (immediate)

The importance of this property, is that it provides a guarantee of no degradation

in solutions, if extra computation time is available. However, this obviously most

necessary guarantee is not provided by many other cooling schedules in the literature.

3.5 Tabu search implementations.

Tabu search is a novel technique for solving combinatorial optimization problems (see

Glover [1989a, 1989b]). The basic components of this approach are explained in Section

2.3. Furthermore, its relationship with the iterative improvement (local search) method

is also introduced in Section 2.1.7. Generally, the TS algorithm starts with an initial

feasible solution e.g., the one obtained from the constructive heuristic in Section 3.2 and

makes a succession of moves to transform this solution into a better solution. TS shares

with SA the ability to continue the search beyond the local optimality of the descent

method. Moreover, TS uses the same 1-interchange mechanism to generate the same

neighbourhood. In order to implement this technique, we also need to define the fol-

lowing elements (see Section 2.3.7):

Chapter 3	 105



(i) A tabu list and tabu list size.

(ii) An aspiration level (ignoring tabu condition).

(iii) Selection strategies (accept the first and best admissible moves).

(iv) A stopping criterion.

Let us consider an CCP instance of size n customers andp centres, then the TS elements

are now explained briefly as follows:

(i)	 (a) Tabu conditions are based on move attributes. In this implementation, we

select only one tabu condition. This prevents the return of two customers to

previous clusters that they already occupied. This restriction remains during the

following sequence of I Ts I iterations, where I Ts I is the length of tabu list size

(see Section 2.3.3)

(b) In order to determine the tabu status of a move, a tabu list must be constructed.

A data structure for a tabu list takes the form of a matrix, TABL, of size n x p.

Each entry TABL(e1,S,) records the iteration number at which customer, e, is

removed from the cluster S . by the 1-interchange. This data structure is updated

automatically as the number of iterations is increased. Hence, the tabu status of

a move does not require an update. Furthermore, using this data structure, the

tabu status of a move can be checked easily by examining the corresponding

entry in the matrix. For example, to check whether e, is allowed to return to S,

and e is allowed to return to S1 at iteration k, we need the test in Equation (3.14).

If the test is positive, then the move is considered tabu, otherwise it is deemed

admissible.

Chapter 3	 ioo



k—TABL(e1 ,S1 ) ^I Ts I

and	 k —TABL(e1 ,S1) ^I Ts I	 (3.14)

(c) The length of tabu list I Ts I is found experimentally. If the tabu list size is

small, cycling would cur. However, if it is large, the process might be driven

away from the vicinity of a global optimum. The optimum tabu list size will be

long enough to prevent cycling but sriall enough to allow for a continuous

solution space exploration. For the results produced in this chapter, we use two

formulae to estimate the tabu list sizes:

Let us define p to be the capacity ratio of the required demands to the total

available cluster capacity, i.e.,

.4
p=-'--.	 (3.15)

Qkk-I

For the case of the TS algorithm with the FBA selection strategy (see this section

(iii) below) I Ts I is estimated by regression analysis of the computational results

as:

I Ts 1= 8^(O.078-O.067 x p)x n xp	 (3.16)

whereas for the case of the TS algorithm with the BA selection strategy I Ts I is

estimated as:

I Ts I=Max{7, —40-+-9.6xln(n xp)	 (3.17)

Chapter 3	 107



(ii)	 The aspiration criterion (Section 2.3.4), we have used, is defined as follows: a

tabu move is admissible, if this move reduces the objective function value of the

current solution to a value below the objective function value of the best solution

found so far. This indicates that a new path not visited previously is to follow.

(iii) We consider, here, two move selection strategies (see Section 2.3.7b and Section

2.3.7c):

Best admissible move, BA: This strategy evaluates all neighbours and selects a

move to obtain a solutionS'. S'is the highest evaluation move, and satisfies the

admissibility c nditions - S' is not a tabu move, or it is a tabu move but passed

the aspiration criterion (see Section 2.3.4.). S', then becomes the next current

solution.

First and best ad,nissible move FBA: This selection strategy combines both the

first-improve with the best-improve strategies incorporating the admissibility

conditions. FBA accepts the first improving move upon its discovery; if there

is no move that improves the current solution, then the best admissible move

that was recorded is selected (see Section 2.3.7)

(iv) The stopping criterion: when the number of iterations for which there is no

improvement over the best solution, is greater than a constant value which is

fixed a priori, MAX!, we stop.

3.5.1 Tabu search algorithm

In this section, we list the TS algorithm steps:

(a) Initialisation.

Step 1. Get an initial heuristic solution S, e.g by applying the constructive heuristic

of Section 3.2.

Chapter 3	 108



Initialise, the tabu list size T, according to Equations (3.16 or 3.17);

set the tabu list TABL(iJ)— -00 Vi,j,

Set a value for MAX! and Set counters k +- 1, and k 1 —0.

(b) Selection and acceptance of generated neighbours.

Step 2. Choose an admissible move S' E N 1 (S) (feasible and not tabu or one whose

tabu status is overridden by the aspiration criterion) according to the BA

(best-admissible-improve) or FBA (first-best-admissible-improve) selection

strategy.

Update as follows:

-	 Store the attributes of the newly accepted move in the tabu list matrix

TABL;

-	 Update the current solution S.

Set k4—k+1.

If the current solution is better than the best solution found so far then

update the latter and set k,, - k.

(c) The stopping test.

Step 3. If (k - k > MAX!) then go to Step 4, otherwise go to Step 2.

Step 4. Display the TS final and initial solutions together with their computation times.

Stop.

3.6 Computational experience.

3.6.1 Test problems.

We generate two sets often test problems each. One set contains problems of size (nxp):

50x5 and the other set contains problem of size lOOxlO. Customer points are located

Chapter 3	 109



in the plane and their coordinates are randomly generated from a uniform distribution

in the interval U[1,100]. We use the Euclidean distance metric to denote the cost. c,

between pairs of customer points i andj. The demand values, d1 Vj E J are generated

from U[ 1,20]. The cluster capacities Qk Vk € K are identical for a given problem. The

tightness of a problem is expressed by the ratio p obtained using Equation (3.15). Q,, is

chosen such that p is the interval [0.82,0.96]. Computational results are evaluated using

the relative percentage deviations RPD (and average relative percentage deviations,

ARPD)of the heuristic solution (C(S H)) over the best known solution (C(SB)), i.e., RPD=

100 x (C(SH) - C(SB))/C(SB). For each test problem, five different random starts are

performed in the random start case. However, when SA schemes are compared using

just one constructive initial solution, we change the random number generator seed for

probabilistic move acceptances so that a total of five different runs can be obtained. All

algorithms are coded in FORTRAN 77 and run on a VAX 8600 computer. We report

the average computation time, ACT, in CPU seconds of the actual execution time

excluding input reading and output reporting time.

3.6.2 Iterative descent algorithms.

This subsection examines the effects of the initial starting solutions and the X—inter-

change neighbourhood mechanism on the solution quality of descent methods for

= 1,2. Computational results are listed in Table 3.1. Results are evaluated using the

average relative percentage deviations ARPD. Also tabulated is the estimatedprobability

(P) that the best known solution will be found in a single run of this algorithm.

Computational results confirm our belief that, a good starting solution only reduces the

computation time as can be seen in Table 3.1, without necessary improving the final

solution. This can be seen since the average relative percentage deviations of all random

solutions for the 1+FI and 2+FI are comparable to those with a heuristic starting solution.

Chapter 3	 110



These mechanisms are powerful, since they improve any random starting solution

quickly. However, it might be important to use good initial solution with a weaker

neighbourhood generator. The 2+FI algorithm with random solutions have improved

the best and average relative percentage deviations of the 1+FI solutions by 14% and

24% respectively. However, computational time was nine time higher than that of the

1+FI algorithm.

Table 3.1. Average relative percentage deviations for descent algorithms.

	

With a random starts 	 With a heuristic starts

Measures	 1+FI	 2+FI	 1-i-Fl	 2+FI

ARPD of best solutions	 1.354	 1.163	 5.18	 3.934

ARPD of all solutions	 4.255	 3.234	 5.18	 3.934

P	 0.10	 0.13	 0.00	 0.05

ACT	 4.79	 46.49	 5.36	 45.22

ARPD: is the relative percentage deviation from the best known solutions.
* "best" refers to the best of 5 runs for a single problem.

"all" refers to the solutions of all 5 runs per a single problem.
ACT: is the CPU time in seconds.

P is the probability that the best solution is found in one run.

3.63 Comparisons of simulated annealing algorithms.

We now compare simulated annealing algorithms SA(S, M, N, C) abbreviated as

SMN.0 in Table 3.2. The compared algorithms are considered under the same initial

temperatures, starting solutions and neighbourhood generations. We can then assess the

effectiveness of the corresponding cooling schedules.

Initial values of the control parameter T, are chosen as suggested earlier in Section

2.2.5. A complete neighbourhood search of the mitial starting solution is performed to

obtain the largest (&) the average () and the standard deviation (a) of the cost

Chapter 3	 111



differences between the initial costs and the generated costs. In Table 3.2, the values of

2STD and 3STD are computed using Equation (2.8) so that solutions whose costs are

2x and 3xa worse the current initial solution are accepted with a probability of 0.8 (for
( 2xo

example, e'' = 0.8, T, = 2STD). The value T, for accepting the average increase in

cost, (i), with a probability 0.8 is denoted by AVINC. The value of AVINC is obtained

by Equation (2.1). After experimentation, we use a decrement value of 3 = 0.5 in

Equation (2.5) and a value of E = 0.001 in Equation (2.7) for the stopping ratio criterion

(as suggested in the cooling schedule of Aarts at a!. [1985]). The algorithm of Lundy

& Mees [1986] is run for the same number of iterations that has been used for our

algorithms.

For different values ofT,, the results of Osman & Christofides [1989] algorithm,

HSS.00, out-perform the Aarts eta!. [1985] algorithm, HSS.AV, in terms of the average

relative percentage deviations, APRD, (see Section 3.4.3 for abbreviations). Moreover,

the worst ARPD produced byHSS.00 is 0.448, which is twice as good as the best ARPD

value of 0.866 produced by the HSS.AV scheme. The same conclusion is demonstrated

when comparing the ARPD's of the Lundy & Mees [1986] algorithm, RSS.LM, to that

of RSS.00. The superiority of our cooling schedule over its counterparts is due mainly

to the dynamic control of the temperature decrease and the temperature reset strategy.

Unlike the other SA schemes, these strategies make the algorithm less sensitive to the

choice of the initial temperature. This feature can be concluded from the results in Table

3.2.

We shall now discuss next issues concerning the neighbourhood search. Three SA

algorithms, RSS.00, RSS.00 and RRR.00, are developed with different neighbour-

hood search strategies. The algorithm RSS.00 starts with a random solution, and

searches systematically all the p(p- 1)12 pairs of clusters combinations but with a random

Chapter 3	 112



permutation (see Section 3.3.2 and Equation 3.10). The search inside a pair of clusters

is carried out systematically in order trying to shift (or exchange) every single customer

from one cluster to the other cluster and vice versa. In contrast, the algorithm, RSS.00

uses systematic ordered search of clusters rather than the random ordered search in the

algorithm RSS.00.

Table 3.2. Average relative percentage deviations, ARPD's, for the simulated

annealing schemes.

Values ofT,

Schemes	 2STD	 3S1'D	 AVINC	 10 x

HSS.AV	 1.099	 0.915	 1.028	 0.866	 1.066

HSS.00	 0.448	 0.278	 0.361	 0.436	 0.363

RSS.LM	 0.744	 1.134	 1.077	 0.848	 1.115

RSS.00	 0.405	 0.571	 0.405	 0.494	 0.294

RSS.00	 0.391	 0.495	 0.330	 0.394	 0.271

RRR.00	 0.503	 0.367	 0.423	 0.432	 0.6 19

RSS.MOC	 0.256	 0.221	 0.356	 0.310	 0.372

HSS: Heuristic starts, systematic search of cluster combinations, systematic search between clusters.

RSS: Random starts, systematic search of a random permutation of cluster combinations, systematic
search between clusters.

RRR: Random starts, random selection of clusters, random search between clusters.

AV: Aans et a!. [1985] cooling scheme

LM Lundy & Mees [1986] cooling scheme

OC: Our cooling scheme with a variable deferment control 1,
MOC: Our cooling scheme with a constant deferment control ,

T,: Initial starting temperature

Furthermore, the algorithm RRR.00 chooses a pair of clusters randomly and makes

a random shift (or exchange) of customers. It can be seen in Table 3.2, that the RSS.00

Chapter 3	 113



yields better results on average than that of RRR.00. This is, perhaps because a random

search may miss a neighbour having a better solution, whereas the ordered search gives

a guarantee to find it within a complete cycle of search. In addition, the algorithm

RRR.00 takes more running time to generate random neighbours, with no improvements

in solution quality. Finally, the RSS.MOC algorithm uses the same cooling schedule

introduced previously (see Section 3.4.2) in which the parameter 13k is fixed to a constant

value. Furthermore, the algorithm, RSS.MOC, uses the same conditions for the tem-

perature resets, Equation (3.13) and the same stopping criterion. In fact, this scheme

becomes the same as Lundy & Mees [1986] but with the additional temperature reset

strategy. The results of the RSS.MOC algorithm are comparable to the RSS.00 results.

Both algorithms gave the best relative percentage deviations of less than 0.40 % at all

given initial temperatures.

Experimental results show that the quality of the solution produced by HSS.00

which uses a heuristic starting solution, is as good as, or better than that of RSS.00

which uses a random initial solution, yet with less computation time. Hence, a coupling

heuristic solution with SA is preferred as it reduces the computation time without loosing

the solution quality. However, RSS.00 results are better than the RSS.00 and HSS.00

with slightly more computation time as seen in Table 3.3. We see clearly that the random

permutation of clusters and their sequential search (RSS) is better than just a sequential

search of cluster with a fixed order (RSS). This demonstrates the importance of the

neighbourhood and the way in which it is searched.

3.6.4 Comparisons of simulated annealing and descent algorithms.

The ARPD from the best known solutions are taken over all initial temperatures. Table

3.3 also reports the total number of estimated runs with their corresponding total CPU

time, T, for the different algorithms. We shall establish an estimate of the number of

Chapter 3	 114



T1

1282

679

1048

680

754

758

210

1534

P

0.278

0.482

0.365

0.494

0.496

0.504

0.10

0.13

Methods

HSS.AV

HSS.00

RSS.LM

RSS.00

RSS.00

RSS .MOC

1 +FI

2+FI

ACT

90.72

97.10

101.79

101.60

117.87

116.66

4.79

46.49

NR

14.13

7

10.3

6.7

6.4

6.5

43.7

33.0

different runs (NR) needed to achieve the best known solution with a given confidence

probability, based on the empirical probability, P, of finding the best solution in a single

run. An algorithm produces a solution within 1% of the best known solution in NR

independent runs, when NR ^_°. The total number of estimated runs with their

corresponding total time T for different algorithms are given Table 3.3. We observe

that all our SA versions have the highest probabilities of finding the best known value

in one run with P E [0.482,0.504] ,compared toP E [0.278,0.365] of other SA schemes.

Table 3.3. Average relative percentage deviation over all initial T,

P Probability of finding the best known solution in single run.
ACT: The average CPU time of a single run.

NR : The estimated number of runs to produce solutions within 1% of the best known solution.

T: ThetotalCPUtimeforNRruns.

Others: As defined in Table 3.2.

The total computational time T,, for HSS.00, and all *.00, to achieve a 1%

confidence interval is less than half of that of HSS.AV, RSS.LM and 2^FI CPU time.

Our annealing algorithms found the best known results in 20 out of the 20 problems

tested. The comparable figures for HSS.AV, HSS.LM and 2-s-F! were 15 out of 20, 16

out of 20 and 7 out of 20 respectively. Although, the I -s-H takes the least computational

Chapter 3	 115



time of all algorithms, it may never find the best solutions. The 1+FI algorithm found

the best solutions for only 7 out of 20 problems of small sizes 50x5 and failed to find

the best known solution in any of the problems of size lOOxlO. Thus, our simulated

annealing heuristic SA(R,S,S,OC) is preferred to other methods.

3.6.5 Comparisons of metastrategy SA and TS algorithms

The previous computational results deal with simulated annealing and descent algo-

rithms. They can be found in Osman & Christofides [1989] which does not include

comparisons with the recent annealing scheme of Connolly [1990] or the tabu search

algorithm that we have developed here. This section investigates the performance of

our SA scheme with the above mentioned approaches.

(i) Simulated annealing schemes

First, we compare the annealing schemes. We denote our SA algorithm by HSS.00 and

the SA algorithm of Connolly [1990] by HSS.CO. HSS.CO takes the initial and final

temperatures T, and T1 to be expressed in terms &, and 8,,. The temperatures are then

set as follows: T, = , + 0.1 x - 6), and T1 = ö. Our scheme starts with the

initial temperature set to T, = 8. Both schemes have the same starting solutions,

neighbourhood generation mechanism and the same stopping criteria. Our SA algorithms

terminate, if the number of temperature resets for which there is no improvement of the

best solution is greater than R, R=3. The algorithm HSS.00 is run under a similar

stopping criterion. The HSS.CO uses the same cooling schedule of RSS.MOC without

the multiple resets as in Equation (3.13). HSS.CO resets its temperature to T1 at which

the best solution is found thereafter the temperature is left fixed.

Chapter 3	 116



Table 3.4. Computational results of our SA scheme, HSS.00 and that of Connolly

[1990] HSS.CO.

n xp No. HS.00' RPD CPU HSS.CO' RPD CPU	 Best

	

1	 820b	 0	 47.49	 820b	 0	 39.18	 820

	

2	 0	 9.13	 664b	 0	 16.07	 664

	

3	 .j1b	 0	 12.74	 734 2.94	 12.77	 713

	

4	 829b	 0	 33.59	 829b	 0	 13.69	 829

50x5	 5	 751"	 0	 13.49	 751b	 0	 22.89	 751

	

6	 740"	 0	 10.50	 740"	 0	 13.62	 740

	

-,	 0	 52.09	 715b	 0	 25.21	 715

	

8	 778b	 0	 34.03	 0	 14.24	 778

	

9	 651"	 0	 7.93	 651"	 0	 18.95	 651

	

10	 787"	 0	 11.33	 805 2.28	 26.76	 787

ave. 50	 -	 -	 0'	 23.23c	 -	 0.52'	 20.34c

	

11	 1039	 0.48 144.14	 1037 0.29 269.48	 1034

	

12	 985	 0.30 131.98	 982b	 0 251.32	 982

	

13	 1005b	 0 484.52	 1019	 1.39 134.39	 1005

	

14	 1006b	 0 650.85	 1006b	 0 190.94	 1006

	

lOOxlO 15	 1045	 0.19 299.07	 1045 0.19 156.52	 1043

	

16	 1026"	 0 191.42	 1026"	 0 223.51	 1026

	

17	 1037	 0.58 464.61	 1032 0.09 143.08	 1031

	

18	 1092 0.09 165.07	 1091"	 0 426.06	 1091

	

0 631.11	 966b	 0 1536.54	 966

	

20	 955	 0.10 188.97	 954"	 0 401.13	 954

	

ave. 100 -	 -	 0.17' 335 . 17c	-	 0.19' 373.30'

overall	 -	 0.08' 179.20'	 -	 0.36' 196.82c

: the objective function values of the corresponding SA scheme.

':the value represents the, ARPD, average relative percentage deviations.
b: indicates that the best known solution is attained.
C: the value represents the, ACT, average computation time in seconds.

Chapter 3	 117



I

0

0

0

0,
U

a)

C

The constant value of 13 is initially computed as in Equation (2.12) with a constant,

M = n x Nfeas where Nfeas is the size of the feasible moves in the neighbourhood. Both

algorithms use the same heuristic starting solution.

Iterations

- Temperatures	 Obj. values

Figure 3.4 Objective value and temperature evolutions of the HSS.CO scheme for

Problem number 3.

Computational results, reporting the RPD and ARPD along with the total

computation time in CPU seconds to achieve the best solutions, are presented in Table

3.4. This give an indication of how quickly each of the algorithms finds the best solution.

We observe that the quality of solutions and computation times of HSS.00 are better

than that of HSS.CO. The ARPD value of HSS.00 is 0.08%, compared to 0.36%

produced by HSS.CO. This represents an improvement of 350% in the ARPD. This is

accompanied by a reduction of 10% in the ACT of that of HSS.CO values. More pre-

Chapter 3	 118



U

cisely, the poor performance of H1S.CO in problems 3, 10 and 13 is explained by the

fact the scheme falls in a "hole" where T.4 is either too small a value (Problems 3 and

13) or too high a value (Problem 10). In cases where T1 is small, it is difficult to

escape from the hole of local optimality unless the temperature is reset to a higher value

than Tfr.

Figure 3.4 demonstrates the case of Problem 3, where the scheme falls into a hole

at a small value of T1 = 3.17. However, in the case of a high 	 the scheme may

(Problem 19) or may not (Problem 10) escape the local optimality easily. The compu-

tation time to find the best solution for Problem 19 is 1536 CPU seconds.

Iterations

objective values - tempesamres 	
1

Figure 33 Objective values and temperatures evolutions of the HSS.00

for Problem 3.

Chapter 3	 119



The HSS.00 scheme overcomes the problems encountered in the HSS.CO scheme

through the non-monotonic reduction in the temperature and the automatic update

procedure. Moreover, HSS.00 shows little deviation in the solutions produced and their

computation requirements. However, the scheme shows a slight deterioration in the

relative percentage deviations as the problem size is increased, reaching an RPD value

of 0.58% forProblem 17.

Figure 3.5 shows the evolution of the temperature and the objective values for

Problem 3. In the figure, we started the HSS.00 from the same starting solution and

initial temperature as HSS.CO, but with different cooling schedules.

1450
U

1300

11500

Iterations

I TmPeT11ke1 .....	 I

Figure 3.6 Objective values and temperature sequences evolutions of HSS.00 with

T, = 8 for Problem 3.

11

Chapter 3	 120



Figure 3.6 illustrates the change in the temperatures and objective value sequences

as we start from a higher initial temperature value for the HSS.00 scheme on Problem

3. The quality of the final solution did not change. However a longer running time was

needed for the algorithm to satisfy the stopping criterion.

Table 33. Descent algorithm performance with FL and BI move selection strategies.

No.	 P I H.00	 RPD	 1+F1	 RPD	 1+Br	 RPD

1	 0.92	 945	 15.24	 834	 1.7	 837	 2.07

2	 0.90	 804	 21.08	 746	 12.34	 677	 1.95

3	 0.82	 786	 10.23	 780	 9.39	 818	 14.72

4	 0.96	 1017	 22.67	 844	 1.8	 891	 7.47

5	 0.85	 972	 29.42	 811	 7.98	 816	 8.65

6	 0.84	 816	 10.27	 762	 2.97	 778	 5.13

7	 0.93	 752	 5.17	 735	 2.79	 734	 2.65

8	 0.92	 882	 13.36	 841	 8.09	 847	 8.86

9	 0.86	 891	 36.86	 651	 0	 652	 0.15

10	 0.92	 968	 22.99	 852	 8.25	 824	 4.7

ave. 50	 -	 18.73	 5.53	 5.64

11	 0.89	 1665	 61.02	 1104	 6.76	 1092	 5.6

12	 0.88	 1635	 66.49	 998	 1.62	 1054	 7.33

13	 0.94	 1872	 86.26	 1036	 3.08	 1030	 2.48

14	 0.85	 1761	 75.04	 1020	 1.39	 1019	 1.29

15	 0.89	 1345	 28.95	 1089	 4.41	 1136	 8.91

16	 0.86	 1847	 80.01	 1144	 11.5	 1053	 2.63

17	 0.9	 1634	 58.48	 1105	 7.17	 1125	 9.11

18	 0.88	 1517	 38.91	 1098	 0.54	 1138	 4.21

19	 0.85	 1567	 62.21	 1004	 3.93	 974	 0.82

20	 0.88	 1780	 86.58	 1063	 11.42	 993	 4.08

ave. 100	 -	 64.40	 5.18	 4.65

overall	 -	 41.56	 5.36	 5.14

the objective function values of the corresponding descent algorithms.

Chapter 3	 121



(ii) Descent and tabu search algorithms.

Table 3.5 refers to the performance of the pure descent algorithms (1+FI and 1+B1). It

displays the ratio of problem tightness, p, and the objective function values with their

relative percentage deviations for the following: the initial constructive heuristic (HOC

of Section 3.2); the solutions obtained by the first-improve (1 +F1) and the best-improve

(1+BI) descent algorithms. The heuristic solutions of H.00 are very bad with RPD's

ranging from 5% to 86%, at an overall average of 41%. This average value is improved

significantly to ARPD values of 5.36% and 5.14% by the 1+FI and 1+BI algorithms

respectively.

Let us represent the TS algorithms with FBA and BA move selection strategies by

TS+FBA and TS+BA respectively. Both the TS+FBA and TS+BA algorithms are run

with MAXI= 5 x n and I Ts 
I { . 

where[ denotes the smallest integer

greater than . Let TSF denotes the estimated value of I Ts I obtained by Equation (3.16),

and TSB represents the estimated value of I Ts I obtained by Equation (3.17). In addition,

both of the TS+FBA and TS+BA algorithms employ variable tabu list sizes rather than

a fixed tabu size value, I Ts I throughout the search. Thus, 10% values are taken around

the initial estimates, TSB and TSF. Let these three values be I Ts I - (0.1 x Ts I) I Ts ,

and I Ts I + (0.1 x Ts I). A random permutation of them is generated. Every 2 x Ts I

iterations, I Ts I is assigned to one of them in order.

Figure 3.7 shows the performance of the TS+FBA and the TS+BA algorithms with

different values of I Ts . We observe that the best value of I Ts 11sF for the TS+FBA

algorithm. The TS+FBA algorithm produces the best of TS results, with an ARPD value

of 0.25% compared to 0.32% of that of the TS+BA algorithm with its best I Ts I value

at ]. It is also clear that moving away from the best I Ts I in the direction of smaller

or higher I Ts I values produce poor quality solutions. This is because a high I Ts I value

Chapter 3	 122



would be restrictive, while a small I Ts value induces cycling. Further the TS^FBA

algorithm with the tabu list estimated, TSF, produces an ARPD of 0.32% which is very

close to the best ARPD of 0.25% obtained with I Ts i4 ]. However, the TS+BA

algorithm with the estimated TSB for I Ts I produces an ARPD of 0.65% compared to

0.32% obtained with I Ts =[ These results are elaborated more in Table 3.6 and Table

3.7.

05

07

Os

0
05

0.4

0.3

0.2

Tabu st size

FBA -- BA

Figure 3.7. Average relative percentage deviations of the TS+FBA algorithm and of

the TS+BA algorithm, with different values of tabu list size, and with MAXI=5 x n.

Table 3.6 presents the results which are obtained by the TS+FBA algorithms with

I Ts i4 ] and with the estimated I Ts I value, TSF. We notice that the results of the

TS+FBA algorithm with TSF, are very good compared to that obtained with I Ts i41.

Chapter 3	 123



This is probably due to the introduction of the ratio factor in the estimate Equation (3.15).

The TS^FBA algorithm with the TSF strategy produces an ARPD value of 0.32%, which

is very close to an ARPD of 0.28% that was produced with a Ts i4 1.

Table 3.6. Computational results of FBA tabu search scheme with the tabu size equal

to	 and the estimated regression fit, and MAXI=5 x n

TSF	 ITs i41	 Best
No. solutions RPD	 CPU solutions RPD	 CPU	 known

	

1	 821	 0.12	 10.82	 821	 0.12	 20.78	 820

	

2	 664	 0	 61.90	 664	 0	 26.86	 664

	

3	 734	 2.94	 26.16	 734	 2.94	 8.00	 713

	

4	 829	 0	 7.92	 829	 0	 45.16	 829

	

5	 751	 0	 11.96	 751	 0	 11.65	 751

	6	 740	 0	 4.17	 740	 0	 4.34	 740

	

7	 715	 0	 13.14	 715	 0	 21.25	 715

	8	 778	 0	 9.92	 778	 0	 10.96	 778

	

9	 651	 0	 5.68	 651	 0	 6.21	 651

	

10	 787	 0	 10.00	 787	 0	 10.72	 787

ave. 50	 0.30	 16.17	 747	 0.30	 16.59

	11	 1038	 0.38	 169.04	 1040	 0.58 1022.06	 1034

	

12	 985	 0.30 550.06	 985	 0.30 671.96	 982

	

13	 1009	 0.39 170.56	 1005	 0 327.93	 1005

	

14	 1020	 1.39	 82.10	 1009	 0.29 313.24	 1006

	15	 1045	 0.19 272.69	 1045	 0.19	 142.19	 1043

	

16	 1026	 0 651.70	 1026	 0 253.77	 1026

	

17	 1033	 0.19 1259.04	 1034	 0.29 247.56	 1031

	

18	 1092	 0 632.91	 1096	 0.36	 50.55	 1092

	

19	 968	 0.20	 96.40	 968	 0.20	 79.05	 966

	

20	 957	 0.31 634.87	 957	 0.31	 347.93	 954

ave. 100	 0.33 451.94	 0.25	 345.62

overall	 0.32 234.05	 0.28	 181.11
TSF: is the statistical estimate of the tabu list size used in the TS^FBA algorithm.

Chapter 3	 124



Table 3.7. Computational results of the TS+BA algorithm with the I Ts I values equal

to	 with the estimated value TSB, respectively and a value for

MAXI=5 x n

TSB	 I Ts i41	 Best
No.	 solutions ARPD	 CPU solutions RPD	 CPU solutions

1	 820	 0	 4.55	 820	 0	 6.44	 820

2	 664	 0	 43.06	 664	 0	 23.72	 664

3	 734	 2.94	 19.80	 734	 2.94	 17.21	 713

4	 829	 0	 11.88	 829	 0	 11.19	 829

5	 751	 0	 17.84	 751	 0	 21.65	 751

6	 740	 0	 4.37	 740	 0	 9.16	 740

7	 715	 0	 10.03	 715	 0	 20.97	 715

8	 778	 0	 10.62	 778	 0	 38.89	 778

9	 651	 0	 7.41	 651	 0	 4.85	 651

10	 787	 0	 80.01	 787	 0	 83.87	 787

ave. 50	 0.29	 20.96	 0.29	 23.80

11	 1058	 2.32 554.18	 1037	 0.29 1042.40	 1034

12	 1011	 2.95	 94.97	 1001	 1.93	 308.87	 982

13	 1010	 0.49	 80.20	 1008	 0.29	 311.49	 1005

14	 1006	 0 292.06	 1006	 0 232.36	 1006

15	 1076	 -3.16	 71.96	 1045	 0.19	 775.59	 1043

16	 1026	 0 241.57	 1026	 0 266.66	 1026

17	 1039	 0.77	 307.10	 1033	 0.19	 947.79	 1031

18	 1094	 0.18 1333.26	 1094	 0.18	 685.97	 1092

19	 968	 0.20	 73.04	 966	 0 619.53	 966

20	 955	 0.10 468.63	 957	 0.31	 973.64	 954

ave. 100	 1.01	 351.70	 0.34	 560.57

overall	 0.65	 186.33	 0.32	 292.18
TSB: is the StatistiCal estimate of the tabu list size used in the TS+BA algorithm.

Chapter 3	 125



However, in Table 3.7, the results of the TS+BA algonthm with the estimated tabu size,

TSB, are relatively poor with an average of 0.65% compared to 0.32% produced by the

TS+BA algorithm with I Ts i=11.

Table 3.6 also lists the computational results of the TS+FBA algorithms on all test

problems. This table provides the relative (and average relative) percentage deviations,

the average CPU time in seconds to the best iterations at which the best obtained is found.

Similar results are reported in Table 3.7 for the TS+BA algorithms. Both TS algorithms

are run with MAXI= 5 x n iterations. This stopping criterion is advantageous as it allows

enough time for each problem depending on its dimension. However, the drawback of

this criterion is that it requires some extra CPU time to prove the solution quality.

Comparing the TS algorithms, we find that the TS^FBA algorithm produces better results

in terms of solution quality and computational time than the TS+ BA algorithm. All

the TS algorithms have failed to produce the best solution for Problem 3 which has an

RPD of 2.94%. Since this problem has the least capacitated demand with ratio 0.82 and

since it affords more feasible solutions, the failure can be contributed to its topological

structure and its solution distribution.

Finally, we draw some conclusions on the performance of both SA and TS meta-

strategy algorithms. The best of the TS+BA algorithm produces better results than the

SA scheme HSS.CO. The ARPD of the TS+FBA algorithm is 0.28% with an ACF of

181 seconds compared to 0.36% at 196 seconds of the SA algorithm HSS.CO. Yet, the

TS+FBA algorithm is out-performed by the SA (HSS.00) algorithm, both in solution

quality and computation time. The HSS.00 has an ARPD of 0.08% at an ACT of 179

seconds. It must be pointed that the ARPDs of TS+FBA could be lowered to only 0.12%

if Problem 3 is removed as it has contributed a significant value of 2.94% to the ARPD

value. In this case, both TS and SA would then become comparable. Moreover, the

Chapter 3	 126



implementation of TS schemes, here, did not involve any sophisticated strategies such

as a long-term memory function or any special data structures. These strategies have

reduced the ACT time by half in the case of application to the VRP as will be discussed

in Chapter 5.

3.7 Concluding remarks.

In this chapter, we have presented a review of the Capacitated Clustering Problem (CCP)

theory and applications and investigated the performance of the SA and TS metastrategy

algorithms. The CCP is an NP-complete problem. Hence, iterative improvement descent

methods and SA and TS metastrategy algorithms are strongly recommended to the

solution of the CCP problem. To our knowledge, these approaches have not been used

to the CCP.

In this chapter, a constructive heuristic method is developed to generate quickly

an initial solution. This is used in the iterative descent methods and the metastrategy

SA and TS approaches. A k—interchange mechanism is also developed to generate

neighbouring solutions with the first-improve and best-improve search strategies.

Furthermore, the SA algorithm is introduced, and SA schemes are classified according

to their cooling schedule into three categories: Continuous temperature reduction

schemes; stepwise temperature reduction schemes and, non-monotonic temperature

reduction schemes.

A non-monotonic SA algorithm is introduced for the CCP. It uses multiple tern-

perature resets, and reduces the temperatures with a dynamic (rather than a fixed)

reduction factor. This is to provide a smoother temperature reduction as the number of

iteration increases. Different search and selection strategies are implemented and the

best are identified. Extensive computational results on randomly generated test problems

Chapter 3	 127



of varying sizes have demonstrated the superiority of the new coo ing schedule over the

best existing cooling schedules. The SA scheme depends heavily on the neighbourhood

search and generation. The SA algorithm, if combined with a heuristic start, would

improve the computation time without deteriorating the solution quality. This is mainly

because a good neighbourhood search scheme is implemented thai improves the quality

of the random starting solution.

Both descent methods and SA algorithms deserve serious consideration when

selecting a heuristic. Their performance is compared in terms of solution quality and

computational requirements. The l+FI descent algorithm has the advantage of requiring

smaller computation time. However, its performance decreases as the problem size and

capacity tightness increases. It is only recommended when computational time is a

limiting resource. A recent SA scheme due to Connolly [1990] can be seen as a special

case of our non-monotonic SA scheme. Since, it resets the temperature only once to,

T1 , the one at which the best improved solution is found and kept at that value

thereafter. A comparison with this scheme is also made. Our SA scheme performs better

than that of Connolly [1990], although the latter produces generally good results for

problems of smooth topological structures. Furthermore, our SA gives the user control

in balancing the trade-off between the amount of computation time and the quality of

solution desired. This is an advantage over previous SA algorithms.

TS algorithms are also investigated, developed and experimentally tested on the

same test problems. Two tabu schemes are implemented: the TS+BA is based on a

first-best-admissible (FBA) selection strategy, whereas the TS+FBA scheme uses a

best-admissible (BA) selection strategy. Only simple TS strategies are tested. The tabu

list size is derived and expressed as a function of problem characteristics, and a method

of reducing the error in its statistical estimate is implemented. Computational results

Chapter 3	 128



showed that the new TS+FBA algorithm performs better than the classical TS+BA

algorithm and takes less computational time. The TS+FBA algorithm out-performed

the SA of Connolly [1990] but not our new SA scheme. This may be attributed to the

poor performance of TS algorithm on one of the test problems.

Finally, both the SA and TS algorithms assume a given fixed number of clusters.

This is not a restriction as it is possible to start from an infeasible number of clusters.

The algorithms would always find the optimal number of clusters for which a feasible

solution exists. In our schemes, only feasible moves are checked, whereas it is possible

to allow infeasible neighbours to be considered with some penalties. We do not think

that such variations are necessary because of the generation mechanism we employed.

Both SA and TS algorithms are flexible and problem independent, in that, no apriori

knowledge is required about the problem structure. They always guarantee that better

solutions will be found (not worse) for a bigger number of iterations. They are the state

of the art algorithms for the CCP, and must be used for the solution of other related

optimization problems such as Bin-Backing Problem. Future work could consider the

topological structure of the problem and its impact on the behaviour of algorithms. Other

strategies such as a long-term memory function, and the data structure for TS algorithm

must be improved. The CCP approach could be extended to solve the vehicle routing

problem in two stages: a clustering phase followed by a routing or sequencing phase

with an appropriate cost estimate. Also, problems related to the CCP such as the maximal

covering location problem with capacities (Pirkul & Schilling [1991]) can be attempted

by the metasirategy SA and TS algorithms.

Chapter 3	 129



Chapter 4

SIMULATED ANNEALING AND TABU SEARCH

FOR THE GENERALISED ASSIGNMENT PROBLEM

4.0 Introduction

The generalised assignment problem (GAP) is the problem of finding a minimum cost

assignment of a set of jobs to a set of agents. Each job, j, is assigned to exactly one

agent, i. If agent i performs job j,; amount of resources would be required, at a cost

of c. The total demands of all jobs assigned to any agent i can not exceed b . , the total

resources available of that agent. A pictorial representation of the GAP is given in Figure

4.1.

CI,

0 Jobs	 • Agents

Figure 4.1 The Generalised Assignment Problem.

Chapter 4	 130



The GAP is a combinatorial optimization problem, which has theoretical and

practical importance. Theoretically, many location problems can be modelled as a GAP,

these include: the p-median problem and the plant location problem (Ross & Soland

[1977]) . The GAP is also a sub-problem in vehicle routing problems (Fisher & Jaikumar

[198 1]) and, ne capacitated clustering problem (See Chapter 3). Practically, the GAP

has many real-life applications in, for example, fixed charge plant location problems in

which customerrequirements must be satisfied by a single plant, scheduling of payments

on accounts where fixed-sum payments are specified; scheduling of variable-length

television commercials into time slots; scheduling of project networks; assigning soft-

ware development tasks to programmers; assigning jobs to computers in computer

networks; design of communication networks with node capacity constraints and soon.

We refer to the book by Martello & Toth [1990] for further details on recent theories

and applications of the GAP.

The GAP is an NP - Complete optimization problem (Fisher et al. [1986]) and is

therefore practically intractable for large-sized instances. As a consequence, our efforts

are geared towards developing efficient and effective approximate algorithms for such

problem instances. These approximate algorithms include: iterative improvement

descent methods, simulated annealing (SA) and tabu search (TS) metastrategy algo-

rithms.

This chapter is organised as follows: Section 4.1 introduces the integer pro-

gramming formulation of the GAP and reviews some of the approximate and exact

methods to solve it. Section 4.2 discusses aspects of iterative improvement methods and

introduces two X —interchange improvement descent algorithms. The first version is

based on a first-improve (FL) strategy for the selection of neighbourhood moves. The

second version is based on a best-improve (B!) selection strategy. Section 4.3 presents

Chapter 4	 131



(4.1)

(4.2)

(4.3)

(4.4)

Mm
EIJ I

subject to:

= 1,
.1

'€1

XE {0,1},

VJEJ,

V i E I,

ViE!, VJEJ,

the SA algorithm and discusses its implementation. This algorithm is based on the

non-monotonic cooling schedule that was introduced in Section 3.4.2. Section 4.4

describes the TS metastrategy algorithm and explains different strategies for this TS

implementation. Computational experiences are given in Section 4.5, that compare the

performance of the descent, SA, and the TS algorithms with the best existing approximate

and exact methods in the literature. Section 4.6 contains some concluding remarks.

4.1 Mathematical programming formulation and review

We define the following input parameters for the GAP:

a = Resource required by agent i to perform job j,

b = Resource capacity of agent i,

c = Cost of assigning job j to agent i,

I ={1,...,m}Setof agents,

I ={1,...,n}Setofjobs.

Let us define also the decision variables:

= 1, if job j is assigned to agent i

=0, otherwise.

The GAP can be formulated as an integer problem as follows:

Chapter 4	 132



The objective is to minimize the total cost of the assignment Equation (4.1) - such that

each job is assigned exactly to one agent - constraint (4.2) - without exceeding the total

resource capacity of each agent - constraint (4.3).

In this chapter, we give a brief description of exact and approximate algorithms

for the GAP. We use some of these algorithms to compare our results with. Most exact

methods are based on branch and bound techniques which use bounds derived from

either a linear pro grainming (LP) relaxation of the integer restrictions, or deletion,

la,..grangean, surrogate, or decomposition relaxations of the knapsack (or assignment)

constraints.

Benders & Van Neunen [1983] propose an LP relaxation of constraints (4.4). They

conclude that the LP bound tends to be strong when the number of jobs is large compared

to the number of agents and when the resource capacities are rather loose.

Ross & Soland [1975] use a relaxation in a two-stages method, which is based on

the deletion of constraints (4.3). A lower bound is obtained by assigning each job to the

least costly agent. Then, every constraint in (4.3) is checked for feasibility. In a second

step, minimum penalties are computed for reassigning jobs from one agent to another

in order to satisfy the capacity restrictions. These penalties are then added to the lower

bound. Their branching strategy is based on the penalty for not using the least cost

assignment of a job, and also on the remaining resources available to an agent.

Martello & Toth [1981] use a similar procedure in which the GAP is re-formulated

as a maximization problem. They remove the assignment constraints to compute an

upper bound. Furthermore, Martello & Toth [1981] describe a heuristic for the

maximization problem. We will denote this heuristic as MT. The MT heuristic is used

Chapter 4	 133



to generate a lower bound for their branch and bound procedure. Computational results

are given for problems of size up to 5-agents and 20-jobs. They compare their results

with that of Ross & Soland [1975]. The conclusion was that, for easy problems, where

the capacity constraints are loose, the algorithm of Ross & Soland [1975] performs better,

and that the average running times are less. For hardproblems, where capacity constraints

are tight or when the objective function coefficients and capacity requirements are

correlated, the exact algorithm of Martello & Toth [1981] out-performs the algorithm

of Ross & Soland [1975] in terms of both running time as well as the number of tree

nodes. Furthermore, for the large and easy problems of size varying from 5-agents and

20-jobs to 20-agents and 200-jobs, the MT heuristic produces an average relative error

less than 0.1%. More recently, Martello & Toth [1990] present exact solution methods

with different combinations of bounding procedures, problem up to 30-jobs and

10-agents are solved. They show that their results are better than that of Fisher et al.

[1986]. Martello & Toth [1990] also report results with the MT heuristic to problems

with size up to 500-jobs and 50-agents, with average relative percentage deviations that

vary from 0.14% to 13%.

There are two types of Lagrangean relaxations for the GAP. The first is obtained

by dualizing the assignment constraints. This reduces the GAP to I ! I 0-1 knapsack

problems. The second relaxation is obtained by dualizing the capacity constraints. This

would give I I I generalised upper bound (GUB) problems which can be solved by simple

inspection. Geoffrion [1974], shows that bounds from a Langrangean relaxation can do

no better than LP-relaxation bounds when the Lagrangean problem satisfies the inte-

grality property. It follows that relaxations of the second type, in which the subproblems

are GUB problems, produce solutions that are at best, equivalent to the LP-relaxation.

However, the first relaxation with 0-1 knapsack sub-problems, whose solutions are not

naturally integer, would produce superior bounds to those produced by an LP-relaxation.

Chapter 4	 134



A langrangean relaxation of the first type is reported in Fisher et a!. [1986]. Their

procedure consists of two phases. In the first phase, they relax the assignment constraints

(4.2) and set the lagrangean multipliers (.t1 , V j E J), in a maximization problem, to the

second largest c. A job j is assigned to an agent i if the cost of this assignment is such

that c, - >0. An assignment problem is solved for those jobs with c - p., =0. This

yields the same initial bound as that generated by Ross & Soland [1975]. In the second

phase, a heuristic procedure is used to adjust the multipliers in order to assign more jobs

and strengthen the bound. This procedure is repeated until no further improvements are

possible. At the end, the branch and bound algorithm selects the un-assigned variable

x, with the largest a to branch on. Results of this algorithm are compared with those

from Martello & Toth [1981] and Ross & Soland [1975]. The algorithm of Fisher eta!.

[1986] is faster and requires less number of tree nodes on small-sized problems of size

5-agents and 20-jobs. Guinard & Rosenwein [1989] enhance the dual ascent procedure

of Fisher et a!. [1986]. They exploit violations of assignment constraints that are not

considered in the previous approach, and add a surrogate constraint to the lagrangean

relaxed model. The new algorithm uses a branching scheme that is based on a combi-

nation of a depth-first, and breadth-first strategy. They also perform a sub-gradient

optimization proce&ire at the root node to increase the bound. As a result, they solve

problems of size up to 10-agents and 50-jobs using less CPU time and fewer number of

tree nodes.

A langrangean relaxation heuristic of the second type is reported by Klastorin

[1979]. In the first phase, a modified sub-gradient procedure is used to find the optimal

dual solution. This procedure continues until a primal feasible solution is found. In a

second phase, a tree search is performed in the neighbourhood of the feasible solution

obtained in order to improve it. Computational tests show that the heuristic procedure

Chapter 4	 135



yields solutions with an average deviation of 1% from optimality. Moreover, they also

conclude that the second phase is computationally expensive to provide any significant

improvements.

Jörnsten & Nasberg [1986] propose a surrogate Lagrangean relaxation of the

knapsack constraints (4.3). This relaxation produces multiple choice knapsack problems.

The bounds obtained are at least better than the Lagrangean relaxation of constraints

(4.3) or the LP-relaxation. However, they are slightly inferior to those obtained by the

Lagrangean relaxation of the assignment constraints (4.2). Jörnsten & Nasberg [1986]

also report another approach based on a Lagrangean decomposition. In this approach,

additional integer variables, yq' are added to the GAP formulation in the form of equality

constraints ; = y, V I I,Vj E J. In addition to the other constraints, these new

constraints are also relaxed. They multiply the objective function by (A + B = 1), where

A and B are constant, such that A + B = 1. The resulting relaxation is decomposed into

sub-problems: 0-1 knapsack problems in the x-variables and GUB problems in the

y-variables. The bounds obtained through this methods are compared to those from

classical Lagrangean relaxation procedures. Based on a small set of 10 test problems

of sizes 4-agents and 25-jobs, they conclude that this bound is stronger than the one

obtained by relaxing either constraints (4.2) or constraints (4.3). Theoretical bounds,

which are based on a combination of Lagrangean decomposition and bound improving

sequences, are provided by Barcia et al. [1990].

Set partitioning (SP) and simulated annealing (SA) approximate approaches are

proposed by Cattrysse [1990] for the GAP. These approaches are used either as

stand-alone heuristics or in conjunction with a pre-processing variable reduction (fixing)

procedure. We denote the combined procedures as FSP (for fixing-set-partitioning) and

FSA for fixing-simulated annealing). The fixing procedure uses the knapsack constraints

Chapter 4	 136



to add valid inequalities (or facets) to strengthen the LP-bound. For every violated

knapsack constraint, a valid inequality of the facet of the knapsack polytope is added to

the LP-formulation. The extended formulation is then solved to generate more facets.

This procedure is repeated until no further valid inequalities can be generated. At the

end of the procedure, all integer variables, which have; = 1, are used to assign jobs to

corresponding agents. The capacity of each agent is adjusted, the fixed variables are

removed and a reduced problem of smaller size is created. We refer to Cattrysse [1990]

for further information on how to generate valid inequalities for the GAP and to Hoffman

& Padberg [1986] for a general overview of LP-based solution methods for combinatorial

optimization problems. In the second phase, Cattrsse [1990] solves the reduced problem

either by the SA or by the SP approaches. All the algorithms (SA, SP, FSA, FSP) are

tested on 60 test problems of size varying for 3-agents and 15-jobs to 10-agents and

60-jobs. Computational results show that the SA algorithm performs badly in comparison

to the SP algorithm. Furthermore, the quality of solutions and the computation time of

both SA and SP are improved by the combined FSA and FSP procedures. Although,

the performance of the FSA is better than that of the SA, it is still poor when compared

to the FSP. On the basis of these findings, Cattrysse [1990] advocates the use of the

FSP algorithm for the solution of the GAP.

Although, as indicated above, there are a few heuristics for the GAP, to our

knowledge, there is no comparison made between them. We believe that, due to a weak

implementation by Cattrysse [1990], the SA and FSA algorithms do not perform well.

A better SA implementation is discussed in Section 2.2.7.7. There seems to be no TS

approach applied to the GAP. In this chapter, we will show that our implementations

of the SA and the TS metastrategy algorithms out-perform the FSA, and FSP heuristics

in both solution quality as well as computation time on the same test problems.

Chapter 4	 137



4.2 Iterative improvement methods

An iterative improvement method has been defined in Section 2.1.6. We will summ arise

the method as follows: The method starts with an initial feasible solution which can be

generated either by a random procedure or by the constructive heuristic of Martello &

Toth [1981]. It then attempts to improve the initial solution by a series of local changes

which are produced by a suitably defined neighbourhood generation mechanism. The

procedure is repeated until no further improvements in the objective function can be

made. Before describing our implemention of the iterative descent method for the GAP,

we must define the following generic components: (i) Problem defmition, a solution

representation and an objective function; (ii) a generation mechanism for perturbing

solutions; (iii) a selection strategy for choosing and accepting alternate solutions and

(iv) Evaluation of the cost of a move; (v) a long term strategy to generate different starting

solutions using a single constructive heuristic; (vi) a stopping criterion.

4.2.1 Problem definition and a solution representation

The generalised assignment problem is one of finding the minimum cost assignment of

a set of jobs to a set of agents. Each job is assigned to exactly one agent. The total

demand of each agent must not be exceeded.

A feasible solution for the GAP is represented by S = (S 1,S2, . . .S1,,) where S,.

i = 1, ...,m are disjoint sets. EachS1 uniquely defines the set ofjobs,j E I = {1, ...,n}

assigned to agent i E I = {1, ...,m}. The resource capacity, b,, of each agent I must not

be exceed by the total demand required from the jobs in S,. More formally, the GAP

can be formulated as follows:

A,

J=uS1 ;	 S,riS=ø, Vi1 ,12 E1;	 ViEI.
i-I

Chapter 4	 138



The objective function value of this assignment becomes:

C(S)=	 c	 (4.5)
Ic!JsJ

4.2.2 The Martello and Toth (MT) heuristic for the GAP.

Martello & Toth [1981] propose a heuristic for the GAP which we denote as, MT. The

algorithm can be described for a maximization (minimization) problem as follows: Let

f be a measure of the desirability of assigning job jto agent i. In an iterative manner,

the MT heuristic considers all the un-assigned jobs and determines the job, f, which

has the maximum difference between the largest (smallest) and the second largest

(smal1est)f,. The job jis then assigned to the agent for which j., Vi € 1, is a maximum

(minimum). In the second part of the heuristic, the current solution is improved by a

simple local exchange procedure, which checks whether an improved solution can be

found by a shift procedure. The shift procedure considers each job and tries to reassign

it to the agent with the maximum (minimum) ft,.

From differentfq functions are used and the best solution produced by the different

f, values is considered as the MT heuristic solution. The different expression forf are:

(a) fq = c - with this choice the second improvement phase can be skipped,

(b)

(c) fq=-ay,

(d) fq=%

Chapter 4	 139



4.2.3 ?. —interchange generation mechanism

A generation mechanism defines how a given solution S is amended to generate another

solution S' in its neighbourhood i.e., S' E N,(S). In this section, we will show how the

X —interchange mechanism, that is defined in Section 3.3.1 for the CCP, can be adopted

and modified for the solution of the GAP.

Consider a solution S = (S1 . . . ., S, . . ., S,,,, .. ., Sm) for the GAP, in which S COflSjStS

of sets of jobs S1 . Each S, is assigned to agent i. A k—interchange mechanism between

a pair of job sets 	 and	 is a replacement of a subset 	 ç S of size i ,^ ?. with

another subset S	 S of size I S I^ , and vice versa, to get two new sets of jobs.

These job sets become represented by S - (S —S) uS, and -. (s -)

Hence, a new neighbour, 5' (Si, . . ., S, . . ., S, . . ., S,,). is obtained. The ?. —inter-

change neighbourhood N,(S) of solution S is the family of all possible solutions S' that

can be reached from S in one —interchange, over all combinations of pairs of job sets

inS.

The effectiveness of the generation mechanism does not depend only on the gen-

eration of neighbours. It also depends on the order in which these neighbours are selected.

Thus, for any iterative improvement algorithm, it is necessary to specify the order of

selection of the pairs of sets and the order in which the ? —interchange mechanism

searches the selected pairs.

Let the permutation, a (1, ...,m 1 , ...,m2, .. .m) be the order of agents in a given

GAP solution, S = (S 1,S2, ...Sm), where a(i) = 1, Vi = 1,2, ...,m. An ordered search

would typically examine all possible combinations of pairs of agents (S,S) according

to the order specified by the permutation a without repetition. A total of m(m-1)/2

Chapter 4	 140



combinations of (S,,.,, S,,.) are examined in the following order.

(S0(1),SØ(2)),	 . ..,(S_1),SØ)	 (4.6)

We define a cycle to be a complete search of all the neighbourhood N,(S). These

neighbours are generated by the A —interchange mechanism in the order of a permutation

aover all pairs of agents without repetition. Note that, for the descent and TS

algorithms, the permutation a is of a fixed order, a(i) = 1, Vi = 1,2, ...,m for all cycles.

However, for the case of the SA algorithm, a new permutation a

(a(i) ^ i, for some i = 1,.. .,m) is generated at the end of each cycle. Since the SA

decision on whether to accept a change or not is made after each move, in which case

the sets of agents S,,11 are updated and the Equation 4.6 is affected.

Furthermore, for a given pair (S,,,, Sn.), we must define the order of search ofjobs,

to be exchanged by the A —interchange mechanism. We consider the A —interchange

with A = 1 for the descent, SA, and TS and use A =2 only for the descent algorithm.

There are two types of processes which are found to be successful for searching the

neighbourhood of the given pair of jobs (S, and S):

(a) A shift process: the shift process is represented by the (0,1), (1,0), (0,2) and

(2,0) operators. The (0,1) and (1,0) operators denote the shift of one job from one set

(say S,,,) to another set (say 5,,,). The (0,2) and (2,0) operators similarly denote the shift

of two jobs from one set to another set of jobs. Figure 4.2a illustrates the shift process

of a job j2: Initially, the job j2 is assigned to agent i2 (this assignment is represented by

a doted line). Subsequently, the shift process changes the assignment off 2 to i1 (the new

assignment is represented by a solid line). In a given set of jobs, the shift process attempts

to shift sequentially every single job in a sequential manner and checks for improved

feasible solutions.

Chapter 4	 141



I,

(b) An interchange process: the interchange process is represented by (1,1) operator

for ). = 1, and by (1,2), (2,1) and (2,2) operators for ?. = 2. We define S,,,1 to be a subset

of the set of jobs S,.1 (Sm1 S,,1) of size IS,,,IE {1,2}. Let S,,to be a subset of the SCt

ofjobs S,,. (	 S,,..) of size IS,, JE { 1, 2]. The interchange process exchanges a subset

of jobs with another subset of jobs S, to generate feasible solutions. Figure 4.2b

shows an illustration of a (1,1) exchange process. There are two jobs j andj2 which are

assigned to two agents i1 and i2 respectively. This assignment is represented by two

dotted lines (to denote the assignment before the interchange process is carried out). The

interchange process involves removing the two doted lines and adding two heavy lines

(to depict the new assignment, in which job j1 is assigned to agent i2 and job

j2 is assigned to agent i1). An attempt is made to interchange every job in the setS,,, with

another job in the set S in a sequential manner in a bid to obtain improved feasible

solutions.

o

	

o----------

J
	

ii
	 -,

	

ii

(a)
	

(b)

Figure 4.2 The shift and interchange processes.

Chapter 4	 142



The search process which we use for a given pair of sets in the case of = 1 is a

sequence of the shift and interchange processes selected in the following operation order:

(0,1), (1,0) and (1,1). After all the processes are performed, a new pair of job sets is

selected until the cycle of search is completed.

4.2.4 Selection strategy of alternate solution

Given a solution S for the GAP and its neighbourhood N(S), we propose two selection

strategies for choosing an alternate solution S' from N,(S):

(i) The best-improve (BI) strategy which examines all possible feasible solutions

in the neighbourhood and selects that 5' E N,(S) which yields the largest improvement

in the objective function.

(ii) The first-improve (F!) strategy which selects the first solution 5' E N,,(S) that

satisfies the acceptance criterion.

The B! strategy uses an aggressive orientation towards a near optimal solution,

possibly at a high computation time. The F! strategy follows a less aggressive orientation.

4.2.5 Long term strategy for initial solutions

A formal definition of the LT, long term strategy is given in Section 2.3.5. The main

objective of the long term strategy is to generate different starting solutions using a single

constructive heuristic. This strategy uses a long term memory function which collects

information about the assignment of jobs to agents during the search. This information

Chapter 4	 143



is used to penalise jobs by adding the LT memory function values to the actual costs.

The adjusted costs are then used by the heuristic method to generate different starting

solutions.

The long term memory function is represented by an n x m matrix, denoted as LTM,

that records the number of times each job remains assigned to an agent during the run

of an algorithm. According to these numbers, jobs are then penalised by adding the

LTM values to the original cost matrix [ci. The COST, new cost matrix (COST= LTM+

[cu]), is used to generate a new different starting solution using the MT heuristic of

Section 4.2.2. The objective function value for the new solution is calculated from the

original cost matrix. Each time the current solution is improved, the LTM function is

updated in the following way:

Let a solution be represented by S (S 1 ,S2, . . .,S,,) and let e1 be a job in S1 . Then

the long term memory function is updated using Equation (4.7).

LTM(e1 ,S1) = LTM(e1,S)+ 1, V e, E S1 , V i € I,	 (4.7)

4.2.6 Evaluation of the cost of a move

A move is defined as a transition from a solution, S. to another solution, 5' E N,(S),

generated by the X-interchange mechanism. A move is identified by attributes. Such

attributes could be, for example, the index of jobs involved in a move that produced that

solution or the set S containing the above jobs. The cost of a move is the difference

in the objective values of both solutions: A= C(S')—C(S).

Chapter 4	 144



Let S be the set of jobs assigned to agent i, and let j be the job to be added (or

deleted) by the 1-interchange mechanism either produces 5', =S, u{J} ( shift add

operation) or 5', =5, - U } (shift delete operation). The cost of the new assignment C(S')

is computed as follows:

Shift delete operation: 	 C(S',) = C(S,) - c	 (4.8)

Shift add operation.	 C(S',) = C(Sj+ c	 (4.9)

The cost of a move, A = C(S') - C(S), can be done by a simple calculation using

Equations (4.8) and (4.9). Similar principles are used for the evaluation of moves

generated by the 2-interchange mechanism.

4.2.7 The A-interchange descent algorithm

The ? -interchange descent algorithm is an iterative improvement method. It starts with

a solution chosen by the application of the constructive heuristic, MT. The iterative

descent method selects a neighbouring solution S'E N,(S) using the 1-interchange or

the 2-interchange mechanism according to the H or BI selection strategies and with or

without LT, the long term strategy. Then, it evaluates the objective function value,

C(S) and C(SD, and computes A = C(S') - C(S). If A <0,5' is accepted as the current

solution. Alternatively, if A ^ 0, S is retained. The search usually continues until a

cycle of search is completed without any improvements. At this point, the algorithm

stops, and declares S as the -optimal solution. We also use the LT strategy in the

descent algorithms with the 1-interchange mechanism and the Fl and BI selection

strategies. The resulting algorithms are denoted by LT1+FI and LT1+BI respectively.

The descent algorithms which do not uses the LT strategy are represented by 1+FI, 2+FI

and 1+BI. The 2^FI descent algorithm produces its solution by starting from the final

solution of the 1^FI algorithm. This is similar to what is proposed for the CCP in Section

Chapter 4	 145





Else Set r, - r + 1.

If rb,,, >	 Then go to Step 6,

Else; Set COST= COST + LTM and go to Step 1.

Step 6. Stop the algorithm and output all the solutions.

4.3 Simulated annealing

4.3.1 Simulated annealing implementation

The SA metastrategy algorithm is an iterative improvement approximate method. SA

attempts to overcome the disadvantage of poor local optima inherent in a local descent

method, by employing random acceptance strategies. The random acceptance strategy

allows occasional uphill moves to be accepted in a controlled fashion. Downhill moves

are always accepted. In this sense, SA resembles the descent method. For any SA

implementation, it is necessary to specify: (i) the method by which a starting solution

is selected, (ii) a neighbourhood generation mechanism, (iii) how the neighbourhood is

searched, (iv) a cooling schedule which, specifies an initial and a final value of the

control parameter, defines a decrement function for decreasing it, indicates the number

of iterations to be performed at each temperature, and defines a stopping criterion that

terminates the algorithm.

In this section, we will describe a SA implementation for the GAP. In Chapter 3,

we concluded that for the CCP a combination of SA with a heuristic starting solution

would reduce the computation time without scarificing the quality of the solution. Thus,

in this implementation, we start the SA algorithm with the MT heuristic of Section 4.2.2

and use the 1-interchange neighbourhood generation mechanism. Pairs of jobs to be

searched by the 1-interchange mechanism are selected systematically according to

Chapter 4	 147



Equation (4.6). A new random permutation a is generated after each cycle of search is

completed. This is then used in Equation (4.6). For the GAP, we adopt the same

non-monotonic cooling schedule which is introduced for the CCP in Section 3.4.2. This

cooling schedule is a general approach in that the generic cooling schedule parameters,

(Section 2.2.3) do not need a manual change. They are obtained automatically from the

problem specific choices (Section 2.2.2) and their suggested values are explained in

Section 3.4.2.

In this application, we introduce two possible avenues for exploration. The first

possibility is the introduction of the LT, long term strategy to generate different initial

solutions (Section 3.4.5). The LT strategy is an alternative approach to changing the

initial acceptance seed for the random generation function, thereby enabling us to use

the MT heuristic for several runs. The simulated annealing algorithm with the LT strategy

is denoted by SA". The SA algorithm which uses different seed values is represented

by SA'. The second possibility is a slight modification of the SA algorithm of Section

3.4.2. In this modification, the moment the temperature is reset, we also reset the current

solution with the best solution found so far. In the previous scheme, only the temperature

is reset and the current solution is remained as it is. The modified scheme is represented

by SA

A stopping criterion can be arbitrarily chosen to reflect the amount of time to be

spent on solving the problem. The stopping criterion, we used, is based on R, the number

of temperature resets since the best solution is found.

Chapter 4	 148





(ii) Selection and acceptance of generated neighbours.

Step 3. Select a solution S' E N1 (S) in sequential and systematic search (see Section

4.2.3, and Section 4.2.4).

Compute the move value = C(S')— C(S), (Section 4.2.6).

Step 4 If i ^ 0, or e'> 6, where 0 is a uniform random number 0<6< 1, Then

accept S' and set S €- S'.

If C(S') < C(S,) Then Set: Sb,,, - S', r,,,1 €- 0, and update T1.

(iii) Temperature updates.

Step 5. Evaluate the temperature decrement ratio as in Equation (3.11), and update

temperatures according to the rule (3.12) or the conditions for occasional

increase Equation (3.13) of Section 3.4.2.

If the rule (3.13) is used, then	 4-- r + 1.

Setk *—k+1.

Step 6. If r, >	 Then, go to Step 7,

Else go to Step 3.

Step 7. If C(S,,,,,) < C(S,) Then Set: S,, - S,, r - 0, COST= COST ^ LTM and

go to Step 1;

Else; SetrfrE—rh+l.

If r,, > R,, Then go to Step 8,

Else Set COST= COST + LTM and go to Step 1.

Step 8. Stop the SA algorithm and output all the generated solutions with the total

computation time.

Chapter 4	 150



4.4 Tabu search

Tabu search (TS) is a metastrategy procedure. TS methodology and applications were

introduced in Section 2.3. In this section, we will explain a TS implementation to solve

the GAP. Tabu search shares with SA, the ability to guide local search methods in such

a way as to prevent the occurrence of bad local optima. As a result, near optimal solutions

may be produced. The TS algorithm seeks to transcend local optima by employing the

following strategies:

(i)	 Forbidding andfreeing strategies that forbid tabu moves from selection and free

them when their tabu tenures have expired. In other words, they manage what

comes in and what goes out of the list of tabu moves;

(ii) A short term strategy which manages the interplay between different TS strat-

egies (see Section 2.3.7);

(iii) A learning strategy based on a long term memory function that gathers infor-

marion during the algorithm run to improve the choice of an initial heuristic

solution (see Section 4.2.5).

The TS algorithm follows the same basic steps of the 1 -interchange descent method.

One major difference is in the decision making of selecting alternate solutions. The TS

algorithm examines all moves in the neighbourhood N 1 (S) and chooses the best

admissible move (whether improving or not) at each iteration. This choice is guided by

above strategies in order to continue the search when local optima are encountered. The

TS algorithm is also different to the SA algorithm which selects and accepts moves with

random strategies. The success of TS algorithm depends on the components of the above

strategies which we will identify in greater detail for the GAP. Details of other possible

strategies and successful applications can be found in Glover [1989a, 1989b].

Chapter 4	 151



4.4.1 The forbidding and freeing strategies.

The forbidding strategy constrains the search by classifying certain moves as tabu (or

forbidden). The goal of classifying certain moves as tabu is to prevent cycling and to

induce the exploration of new regions.

For the GAP, we define a set of attributes which characterize a move using the two

pairs (e1 ,S,, 1) and (e2,Sm2). These pairs are sufficient to identify that a job e 1 from the

set S,, is interchanged with a job e2 from the set "2 These attributes (e 1 , Smi ) and (e2, ",2)

are stored in a tabu list and are used to check the tabu status of future moves. Thereby,

providing a crude but effective way to prevent cycling. We will consider two tabu

conditions based on the above attribute to identify a tabu move:

(1) If e1 is returned to S and e2 is returned to S,,2. This is denoted by criterion B.

(2) If either e 1 is returned to S,, 1 or e2 is returned to S1,,2. This is denoted by criterion

E.

A move is considered tabu if it satisfies one of the above tabu conditions depending

on which condition is used in the TS algorithm. Tabu condition (2) is more restrictive

than the tabu condition (1).

The set of forbidden move is recorded in a data structure for a tabu list denoted by

TABL. The TABL is a matrix of size (n+ l)xm (n rows one per job e 1 , one extra for the

null job involved in the (0,1) and (1,0) operators and m columns for subsets Sm 1). The

entry, TABL(e 1 , S,,) records the iteration number at which job e 1 is removed from the

set Smi of jobs assigned to agent m1. A move remains on the tabu list for a tenure of

I Ts iterations, starting from the moment that the move was selected by the TS algorithm.

I Ts I is called the tabu list size. After Ts I iterations are lapsed, the tabu status is updated

Chapter 4	 152



by the freeing strategy and the move is allowed to be re-selected again. By preventing

the selection of a previously performed move during a sequence of I Ts I iterations, the

likelihood of a return to a solution that was previously obtained diminishes. The

advantage of this data structure is that we can easily determine the tabu status of a given

move by a simple check. This can be of great importance when the problem and the

tabu list size are very large. More clearly, if we are at iteration k, a move is classified

"tabu" according to condition (1) when Equation 4.10 is satisfied, i.e.,

k—TABL(e 1 ,S,,, 1)^I Ts I

and	 k—TABL(e2,S,2)^ITs I	 (4.10)

By storing in the tabu list, and the iteration number when a move is made, the tabu

status of such a move will be updated automatically as the number of iteration increases.

Hence, the move is freed from its tabu status when its tabu tenure expires. Therefore,

there is no need to use any freeing functions with this data structure. This is different

to the classical circular update data structure, in which the pointer returns to the beginning

of the tabu list to update the status of the tabu moves each time the end is reached (FIIFO

procedure Section 2.3.3) to update the status of the tabu moves. The freeing strategy is

needed when the circular update is used and this adds another advantage of the tabu list

data structure.

4.4.2 The short term strategy.

The short term strategy is the core of any TS algorithm. It is based on a short term

memory function. This strategy is an overall strategy which manages the interplay among

all TS strategies (see Section 2.3.7). It records more information about the past moves

in a flexible memory structure designed to permit the evaluation of the best admissible

move in the neighbourhood. A move is considered admissible if it is not a tabu move

or if its tabu status is overridden by aspiration criteria. Aspiration criteria are measures

Chapter 4	 153



mainly designed to override tabu status of a move if a move is good enough and sufficient

enough to prevent cycling. Such criteria are necessitated by our use of approximations,

based on move attributes, to prevent cycling.

Tabu restrictions and aspiration criteria play a dual role in constraining and guiding

the search process (Glover [1989a]). Tabu restriction allows moves to be regarded as

admissible only if they do not hold, while aspiration criteria allow moves to be regarded

as admissible regardless of their tabu status. This strategy also decides the selection

strategy for a candidate move and a stopping criterion.

(i) Aspiration functions

Two aspiration functions are used in our implementation. The underlying motive of

these functions is to demonstrate that different aspiration criteria can have different

influences on the quality of solutions. Aspiration functions are based on criteria that

allows a tabu move to be accepted if Equation (4.11) or Equation (4.12) are satisfied.

Let S, S', S be the current, the potential and the best obtained solutions so far,

respectively. Let i = C (S') - C(S) be the change in the objective function value of the

current move. The two different criterion can be formulated as follows:

The first aspiration function which is denoted by criterion B, is:

C(S)+A < C(S)	 (4.11)

The second aspiration function which is denoted by criterion M, is:

C(S)+A < Mm {ASP(e 1), ASP(e2)}	 (4.12)

where, ASP(e 1), and ASP(e2) are the objective function values of corresponding jobs

involved at the time their moves have been made tabu. The aspiration level of each job,

ASP, is initially set to a large value and subsequently updated. This criterion is more

flexible and allow more moves to be accepted than the first criterion in Equation (4.11).

Chapter 4	 154



(ii) Move selection strategies

There are two strategies for move selections. At each iteration, the first strategy is the

best admissible strategy which chooses the best admissible (BA) move which has the

minimum (greatest improvement or least disimprovement) value in N1(S), the whole

neighbourhood of the current solution, S. The corresponding TS algorithm which uses

this strategy is denoted by TS+BA. The BA strategy is a generalisation of the best

improve (BI) selection strategy in the descent improvement method of Section 4.2.3.

However, as the neighbourhood increases with the problem size, the (BA) strategy

becomes more expensive to execute and a sampling strategy that shrinks the set of

admissible moves is recommended. This approach also requires more effort to store and

compare the moves. The second strategy which we suggest is called the FBA strategy.

This strategy accepts the first admissible move which gives a reduction in the objective

value of the current solution. Then, as in the descent method, the search starts in the

neighbourhood of the new solution. If we search the whole neighbourhood of the new

solution without any improvements, then the best (least disimprovement) admissible

move is accepted. This strategy combines the first improve strategy with the BA strategy

in a more dynamic selection strategy for sampling the neighbourhood. In this strategy,

we update the tabu list more frequently in regions of good solutions and less in others.

This strategy is denoted by FBA and the TS algorithm which uses this strategy is denoted

by TS+FBA. Further details on these strategies can be found in Section 2.3.7.

(iii) The stopping criterion, we use in the TS algorithm is based on a maximum number

of iterations (MAX!) elapsed since the iteration at which the best solution was found.

However, other alternative criteria can be used such as a total pre-specified number of

iterations before terminating the algorithm.

Chapter 4	 155



TS algorithm steps

Step 0 Initialisation of the long term memory function LTM. This is similar to that

of the descent and SA algorithms.

Step 1. Generate an initial heuristic solution S by the MT heuristic. In the case of a

long term memory function where it is not possible to find different starting

solutions other than those previously generated and where no random starting

solutions are possible, go to Step 5. Otherwise, initialise the short term memory

function TABL, Tabu list size, and MAXI iterations number.

Step 2. Choose an admissible move according to the BA or the FBA strategy to

generate a new solutionS' E Ni(S). Update the current and best solutions; the

tabu list; the short and long term memory functions. This is pictorially

illustrated in Figure 2.10 - Figure 2.11 of Section 2.3.7.

Step 3. If a maximum number of iterations (MAX!) has elapsed since the best found

solution, then go to Step 4,

Otherwise, go to Step 2.

Step 4. If the TS algorithm is restarted for at least three times from different starting

solutions (generated with the LT memory function) without improving upon

the best tabu solution, then go to Step 5.

Otherwise, invoke the long term memory function. Replace the cost matrix

with the penalised cost matrix as in SA algorithm and go to Step 1.

Note: For test problems from the literature, since the optimal solution is

known, an additional stopping criterion terminates the algorithm as

the optimum is obtained.

Step 5. Display the final TS and initial MT solutions of every start together with their

computation time.

Stop.

Chapter 4	 156



4.5 Computational Experience

4.5.1 Test Problems

The algorithms we developed are tested on twelve sets of test problems with

m € {5,8,10} and € {3,4,5,6} generated by Cattrysse [1990]. Every set contains

five randomly generated problems, thus yielding a total of 60 test problems. For each

problem, a, cq are integers generated from the uniform distribution U[5, 1 5], while
08 Z

=	 , according to Fisher eta!. [1986].

Our algorithms are designed to solve minimization problems. However, since the

data provided corresponds to maximization problems, it is necessary to effect a trans-

formations so that comparisons are possible. The problems are known to be the more

highly capacitated problems of type C. The generic notation we give for a problem is

Tm-n-i, where T is the problem type, m is the number of agents in the problem, n is the

number of jobs in the problem, and i is the index of the problem instance, (i=1,...,5). For

example, a set of five problems with m=1O, n=60 from Type-C is denoted as C 10-60,

and the ith problem instance from this set is represented as C10-60-i.

The data from Cattrysse [1990] are for maximization problems, in which the costs

in a minimization problem are replaced by profits (revenues). The problems are

transformed into equivalent minimization problems as follows: if p is the profit from

assigning job jto an agent i in the maximization problem of size n jobs, the costs in a

corresponding minimization problem are calculated using: c =35 —pu, where 35 is an

upper bound on p Vi,j. Then, Z,,. the objective value of the maximization problem

is given by: Z,,, =35 x n - Z., where Z, is the objective function value of the trans-

formed minimization problem.

Chapter 4	 157



Computational results are evaluated using the ARPD (average relative percentage

deviation) of solution Z from the optimal solution Z01,,, where Z is a heuristic solution,

i.e. ARPD = 100 The ACT (average CPU time) in seconds of the actual execution

is reported excluding input and output time. The algorithms are programmed in FOR-

TRAN 77 and run on a VAX 8600 computer.

4.5.2 Descent Methods

This section discusses the k-interchange descent methods with E { 1, 2}, and studies

the effects on solution quality and computing time of employing different strategies.

Computational results are listed in Table 4.1, reporting the ARPD of the best solutions

from optimal ones and the ACT. We make a number of observations: Firstly, the 1+FI

descent algorithm significantly improves the initial starting solutions of the MT heuristic

in that the ARPD is reduced from 2.56 % to 1.42 % with only a doubling of the ACT.

The 2+FI algorithm which starts from the solution of 1+FI algorithm requires eleven

times more CPU seconds than that of the MT and five times more than the 1 ^FI algorithm

with only a slightly better ARPD of 1.33 %.

From Table 4.1, we notice that the 2+FI algorithm produces improved ARPD

compared to that of the 1+FI only in the case of the first half of problem sets; where the

problems axe of small sizes. However, both of them have exactly the same ARPD in

the case of large-sized problem sets. Consequently, the 1-interchange neighbourhood

mechanism is preferred as it is powerful enough to generate good solutions without the

need of exploring larger neighbouring solutions thereby increasing the computational

time.

Chapter 4	 158



Table 4.1: Average relative percentage deviation for the A.-intervhange descent
methods over 60 test problems.

	

Prob.'sets	 MT	 (	 1+FI	 2+FI	 1+B!	 LT1+FI	 LT1+BI

C5-15	 5.43	 2.69	 2.32	 1.91	 1.74	 1.61

	

C5-20	 5.02	 1.64	 1.54	 1.13	 0.89	 0.75

	

C5-25	 2.14	 1.58	 1.51	 1.51	 1.26	 1.51

	

C5-30	 2.35	 0.72	 0.66	 1.00	 0.72	 1.01

	

C8-24	 2.63	 1.85	 1.74	 1.63	 1.42	 1.53

	

C8-32	 1.67	 1.05	 0.79	 1.05	 0.82	 0.85
	C8-40	 2.02	 1.26	 1.11	 1.20	 1.22	 1.18

	

C8-48	 2.45	 1.13	 1.13	 1.11	 1.13	 1.11

	

C1O-30	 2.18	 1.73	 1.73	 1.73	 1.48	 1.48
	C1O-40	 1.75	 1.27	 1.25	 1.21	 1.19	 1.13

	

dO-SO	 1.78	 1.25	 1.25	 1.15	 1.17	 0.84
	C10-60	 1.37	 0.88	 0.88	 0.88	 0.81	 0.83

	

ARPDb	 2.56	 1.42	 1.33	 1.29	 1.15	 1.15

	ARPD'	 2.56	 1.42	 1.33	 1.29	 1.38	 1.34

ACV	 0.04	 0.09	 0.45	 0.22	 0.10	 0.16

	

NOVF°	 0	 2	 2	 2	 3	 3

a : Average relative percentage deviation of all solutions.
b : Average relative percentage deviation of best solutions.
c : Average CPU time in seconds of one start per problem.
o : Number of optimal solutions obtained.

Secondly, the 1 +BI descent algorithm has an ARPD of 1.29%. Thus, it out-performs

both the 1+FI and the 2+FI algorithms in solution quality. However, it has an ACT

which is double that of the former and a half that of the latter. To investigate this issue

further, we embedded the two algorithms, the 1+FI and 1+BI into a long term LT strategy

discussed in Section 4.4.2 so that we could generate different starting solutions using

the MT heuristic. We find that the LT1-f-F1 and LT1^BI algorithms produce the same

number of optimal solutions, NOPT, the same ARPD of the best solutions, and are

comparable in the ARPD of all solutions generated. However, the LT1+FI requires a

total of 18.5 CPU seconds while the LT1+BI needs a total of 28 CPU seconds. Hence,

Chapter 4	 159



the LT1+FI, which follows a less aggressive orientation in the search for an improved

solution than the LT1+BI is recommended for large-sized problems, as it requires less

ACT.

4.5.3 Simulated Annealing

Although, our SA algorithm is generally flexible and robust, the parameters a and 'yneed

a little tuning and a careful choice when applied to new problems. The values of a andy

are set after an analysis with respect to quality of solution and CPU time. The SA

algorithm is executed by starting with an initial solution from the MT heuristic. The

random generator is varied with different seed values at the beginning of each run, so

that we obtain different final solutions. The SA is restarted at least three times and the

algorithm is stopped when there is no improvement on the best solution obtained during

the restart process.

Computational results for the same test problems are reported in Table 4.2. The

SA algorithm gives the user control over balancing the trade-off between running time

and solution quality through the number of temperature resets parameter R. This is

illustrated by the ARPD improvements and the number of optimal solutions found, as

R increases. In particular, by changing the value of R from 1 to 3, the ARPDb drops

from 0.11% to 0.04% (an improvement of 63%) at an increase of 45% in the total

computation time (since we know that the ARPD of MT starting solution is 2.56%).

Consequently, NOPT, the number of optimal solutions rises from 30 to 39 out of 60.

We tested two more schemes. The first, SAk, restarts from the best solution obtained

each time the temperature is reset. Results are not as good as SA for R =3. This can

be explained by the fact that we are returning to local minimum rather than carrying on

Chapter 4	 160



from where we were in the previous scheme. The second scheme is SAk, which invokes

the LT strategy. In this respect , this scheme is similar to tabu search. The results from

this scheme are better than those of the SA scheme. However, they are not better than

that of SA scheme in term of the best ARPD and in the number of optimal solutions

found. This is because the SAk algorithm stops earlier than the SAT algorithm as it is

not able to generate different starting solutions.

Table 4.2. Average relative percentage deviations of SA algorithms.

SAt	 SA	 SA

R1	 2	 ____

	

ARPDV	 0.56	 0.46	 0.40	 0.48	 0.36

	

ARPDb	 0.11	 0.07	 0.04	 0.11	 0.10

	

ARPD	 0.32	 0.26	 0.21	 0.29	 0.22

	

NOPT°	 30	 35	 39	 29	 31

	

RUNS'	 219	 193	 177	 211	 148

	

ACTC	 7.91	 12.14	 14.26	 16.11	 14.56

br: SA algorithm with a scheme that starts from best solution found when temperature is reset.
it: SA algorithm with long term strategy.
r: SA algorithm with different seed values for restarts with a temperature

reset only.
t: Total number of runs executed by SA to solve the 60 problems.

w: Average relative percentage deviation of worst solutions from optimum.
Other legends are the same as in Table 4.1.

Cattrysse [1990] suggested SA algorithms for the GAP (The best of them called

FSA) in which the temperature is held fixed for a number of potential randomly chosen

moves before being dropped. Thus, the cooling takes place in a series of stages (stepwise

temperature reduction scheme). In addition, the algorithm crosses infeasible regions by

accepting infeasible solutions during the search process. The FSA algorithm which

utilises a reduction heuristic in the initial stage produces a best ARPD of 0.72 % at a

much higher computation time - twenty times more of ACT when compared with our

quickest SA scheme (R=1) in which the ARPD of worst solution is 0.56%. The FSA

algorithm also utilises ten times more ACT than that of the SA scheme with R=3 where

Chapter 4	 161



the ARPD of the worst and best solutions are 0.40 % and 0.04 % respectively. The FSA

algorithm performs poorly due to the following reasons: (a) the cooling schedule which

is classified as stepwise reduction type - we have shown in Osman & Christofides [1989]

we show the superiority of this cooling schedule over such types of schedules; (b) the

random selection might miss good solutions; (c) the infeasibility permission requires

more time for checking. Full results of these comparisons are presented in Section 4.6

where we compare the different algorithms.

4.5.4 Tabu Search

This subsection addresses three aspects concerning the choice of TS parameters. First,

the need for tabu restrictions and the effects of tabu list size are illustrated on the problem

C5-20-4. The initial solution from the MT heuristic for the problem is 400. Note that,

we are dealing with data of a maximization problem. The TS+FBA algorithm is applied

to the MT solution with a tabu list size Ts =0 and a MAX! = 80. The results are plotted

in Figure 4.2 and show cycling in which the solution value oscillates in the range of 409

to 414. However, if the I Ts is chosen reasonably well, the optimal solution would be

obtained. Figure 4.3 shows the progress of the TS+FBA algorithm for this problem with

I Ts = 6 and MAXI=4 x n= 80. The optimal solution of 419 is obtained first at

iteration 104 and is repeated at later iterations as indicated. We observe that, a small

tabu list size will result in cycling, while a larger tabu list size could drive the search

process away from the global optimum. This would, thereby, require more iterations in

addition to the need of other sophisticated corrective techniques to achieve good sol-

utions. The effect of a large tabu list size is illustrated in Figure 4.4, in which I Ts 1= n =20

and MAXI= 80. The TS+FBA algorithm was embedded into a long term memory function

so that the optimal solution is attained only in the third run.

Chapter 4	 162



U

U

Iterations

Figure 4.2. The TS+FBA algorithm with a tabu list size Ts =0.

Figure 4.4 also illustrates the effect of the LT memory function which enables us

to generate different initial solutions by the same constructive heuristic. The TS+FBA

algorithm with a LT strategy starts with an objective vaiue of 400 in the first run and

terminates with a near optimal best value of 416. In the second run, another initial value

of 406 was generated by the MT heuristic. Again, the algorithm fails to find the optimal

solution due to the large tabu list size. In the third run of the algorithm, the optimal

solution of 419 is obtained with an initial starting solution of 404. A compromise has

to be reached and experiments are conducted to find out a reasonable range of the tabu

list sizes for different tabu conditions. This is discused at a later stage in this section.

Chapter 4	 163



Iterations

- objective values

Figure 4.3. The TS+FBA algorithm with a tabu list size, I Ts =6.

We experimented to identify the best selection strategy to be used. An FBA

selection strategy that provides a dynamic detection of regions for search intensification

and diversifications is compared to the classical BA selection strategy (discussed in

Section 4.4.2.). Both strategies are embedded into two long term TS algorithms, which

use the same tabu restrictions, aspiration level and stopping criterion of MAXI=4xn. A

move is considered tabu if both attributes are tabu. Its tabu status is overridden if the

objective value of the new solution is less than the best objective value (Equation 4.11).

Computational results are listed in Table 4.3 for different values ofi Ts I. We observe

that for all values of I Ts I the TS+FBA algorithm yields better quality solutions in less

ACT than the TS+BA algorithm. The best ARPDb of the TS+FBA with I Ts I =11
(integer part of plus 1) is 50 % smaller at 17 % less ACT than that of the best of the

Chapter 4	 164



U

U

TS+BA algorithm with I Ts =[ . Moreover, the quality of the TS+FBA solutions

seems to be relatively stable and show only slight deteriorations when used in conjunction

with smaller or larger values of I Tsl.

Iterations

- objective values

Figure 4.4. The TS+FBA algorithm with an embedded long term strategy, and a tabu

list size, I Ts =20.

Second, we also investigate the dual role of tabu restriction and aspiration level in

constraining and guiding the search. Computational results in Table 4.4 demonstrate

that tabu restrictions must be coupled with the right aspiration level to serve their pur-

poses. We notice that the algorithm with BB combinations (both of move attributes are

tabu using criterion B and aspiration criterion of using criterion B of Equation 4.11)

provides the best results when compared to those produced by other algorithms, which

range from the very bad results of the BM scheme (Both of move attributes are tabu and

Chapter 4	 165



the most flexible aspiration criterion E) to the most restrictive EB scheme that imposes

a stronger tabu restriction using criterion E. The BB scheme also better than the BN

scheme (tabu condition using criterion B with no aspiration level is used).

Table 43. Computational results comparing long term TS^FBA algorithms against
the TS+BA algorithm using different tabu sizes 1.1 and MAXI= 4 x n.

Ts	 [1	 [1	 11	 11	 {1

TS FBA BA FBA BA FBA BA FBA BA FBA BA

ARPD 0.12 0.21 0.11 0.13 0.09 0.16 0.13 0.21 0.18 0.23
w

ARPDb 0.05 0.06 0.07 0.06 0.03 0.07 0.07 0.09 0.07 0.08

ARPD' 0.09 0.13 0.09 0.10 0.07 0.12 0.10 0.15 0.12 0.15

	NOPT° 40	 38	 40	 40	 45	 40	 36	 34	 33	 32

	

118	 114	 105	 116	 122	 117	 115	 119	 139	 137
RUNS' _________ _________ _________ ________ _________

AT 14.19 16.30 12.17 15.66 12.94 16.46 12.47 14.01 11.97 14.09

FBA: Tabu search scheme with the combined first and best admissible move strategies
BA: Tabu search with the best admissible move strategy only.

All legends are the same as in previous tables.

From Table 4.4 we observe that, by using the long term strategy in the LT+BB

scheme, the solution quality has improved upon the scheme MT+BB, which is a single

run that does notinvoke the long term memory function. The number of optimal solutions

found has risen from 32 to 45 and the ARPD of best solutions has dropped from 0.08%

to 0.03% with a percentage improvement of 62% obtained at an extra increase of 80%

in the total CPU time and 11% less of the ACT per problem. We therefore observed

that the TS algorithm with LT, FBA and BB strategies is the best. Figure 4.5 is a pictorial

representation of the changes in the ARPD and the ACT as the MAX! increases in the

stopping criterion. From this figure, we draw two conclusions: The first is that the

ARPD of best solution decreases in a sequence, of 27%, 37%, 40%, 13%, with increases

in the ACT of 92%, 55%, 29%, 19% as the values of MAX! varies from lxn to 5xn. The

Chapter 4	 166



percentage improvements of ARPDb reaches a peak of 40% with only 29% increases in

the corresponding computer time and then declines to 13% with 19% increases in the

ACT. This gives us an indication of a good estimate value of MAXI= 4xn. This is

because, beyond MAX! =4xn, there are little improvements to justify the extra increase

in the ACT.

Table 4.4. Average relative percentage deviations of the TS^FBA algorithm using
cerent tabu restrictions, aspiration levels, with MAXI= 4xn and I Ts 1=

LT+TS	 MT+TS

BB	 BM	 BN	 EB	 BB

ARPDW	 0.09	 1.56	 0.12	 0.36	 0.08

ARPDb	 0.03	 1.09	 0.05	 0.16	 0.08

ARPD	 0.07	 1.30	 0.08	 0.26	 0.08

NOPT°	 45	 5	 39	 27	 32

RUNS'	 122	 155	 103	 151	 60

ACV	 12.94	 7.04	 13.49	 11.17	 14.66

BB: Tabu conditions using criterion B; and aspiration criterion B (in Equation 4.11)
BM: Tabu conditions using criterion B; and aspiration criterion M (in Equation 4.12)
BN: Tabu conditions using criterion B; and No aspiration criterion is used.
EB: Tabu conditions using criterion E; and aspiration criterion B (in Equation 4.11)

Other legends are the same as in previous tables.

The second conclusion is that the error bars that represent the differences between

the ARPDW and ARPDb decrease as the value of MAXI of increases and level off at a

value of MAXI= 4xn, Sxn. This reflects the stability of TS if it is let to run with a

reasonable estimate of its parameters.

Chapter 4	 167



AC!
16

14

12

10

8

6

4

2

ARPD
03

0 25

0.2

0.15

0.1

0.05

0	 1	 2	 3	 4	 5	 6

MAXI as multiple of n
*• Av.rsje - 9.ut —4— Wont -€— Tim.

Figure 4.5. Effects of stopping values, MAX!, on the quality solution and computing
time using the LT+FBA+BB tabu search algorithm with I Ts I = F 1

4.5.5 Comparison of algorithms

Having discussed and found the best parameters for the descent, SA and TS algorithms

in previous sections, we now compare their performances against one another and with

FSP, the set partitioning heuristic and the FSA, simulated annealing of Cattrysse [1990]

and with MAM, the tree search with multiplier adjustment method of Fisher eta!. [1986].

Table 4.5 shows the ARPDs and ACTs for the relevant algorithms. We observe that,

LT1 +FJ generates better quality solutions than MT at a reasonably extra time. However,

the LT1+FI algorithm has the advantage of requiring much smaller computation times

when compared to other more sophisticated algorithms such as the SA orTS algorithms.

The LT1+FI descent method could only be used when computation time is a limiting

Chapter 4	 168



resource.

Table 4.5. Average relative percentage deviation ARPD and average computing time
ACT for most of discussed algorithms.

Prob.'sets MT LT1+FI 2+FI	 FSA	 SA	 FSP	 BA	 FBA MAM

	CS-iS 5.43	 1.74	 2.32	 0.00	 000	 0.00	 0.00	 0.00 0.000
	C5-20 5.02	 0.89	 1.54	 0.19	 000	 0.19	 0.24	 0.10 0.00

	

C5-25 2.14	 1.26	 1.51	 0.00	 000	 0.03	 0.03	 0.00 0.00.1

	

C5-30 2.35	 0.72	 0.66	 0.06	 000	 0.21	 0.03	 0.03 0.83

	

C8-24 2.63	 1.42	 1.74	 0.11	 0.00	 0.07	 0.04	 0.00 Ø•Ø7+1

	C8-32 1.67	 0.82	 0.79	 0.85	 005	 0.05	 0.00	 0.03 0.58

	

C8-40 2.02	 1.22	 1.11	 0.99	 002	 0.00	 0.02	 0.00 1.5

	

C8-48 2.45	 1.13	 1.13	 0.41	 0.10	 0.19	 0.14	 0.09 2.48

	

C10-30 2.18	 1.48	 1.73	 1.46	 008	 0.14	 0.06	 0.06 0.61

	

C10-40 1.75	 1.19	 1.25	 1.72	 0.14	 0.19	 0.15	 0.08	 1.29

	

dO-SO 1.78	 1.17	 1.25	 1.10	 0.05	 0.00	 0.02	 0.02	 1.32

	

C10-60 1.37	 0.81	 0.88	 1.68	 0.11	 0.03	 0.07	 0.04	 i.37

	

ARPDb 2.56	 1.15	 1.33	 0.72	 0.04	 0.09	 0.06	 0.03	 0.84

	

ARPtt 2.56	 1.15	 1.33	 0.72	 0.21	 0.09	 0.10	 0.07	 0.84

	

ARPD' 2.56	 1.38	 1.33	 0.7	 0.40	 0.0	 0.13	 0.09	 0.84
ACTC	 0.04	 0.10	 0.45	 520	 14.26	 68	 15.66 12.94	 86

	

Adj. ACT 0.04	 0.10	 0.45 157.57 14.26 20.60 15.66 12.94	 86

*: ACT in seconds on an IBM Model 80 PS/2 with Math. coprocessor 386, based on benchmark
runs, the VAX 8600 is about 3.3 times faster than the IBM. To obtain comparable times
entries under FSA and FSP are divided by 3.3 to get the adjusted ACT.

+p: Number of problems unsolved within the time limit of 250, 750, 1000 seconds form =5;
8; 10 respectively

BA: TabusearchBAalgorithm with tabusize={ j andMAXI=4 xn

FBA: TabusearchFBAalgorithmwithtabusize=andMAXJ=4xn

FSA: Fixing-simulated-annealing algorithm of Caurysse [1990]
FSP: Fixing-set-partitioning algorithm of Canrysse [1990]

MAM: Tree search with multiplier adjustment method of fisher eta!. [1986]
MT: Martello & Toth [1981] constructive heuristic

LT1+FI: Long term strategy embeded with the 1-interchange descent heuristic
2^FI: The 2-interchange descent heuristic

SA: Our simulated annealing denoted SAT with number of resets R=3

Our SA algorithm produces beuer ARPDs than that of the FSA and the MAM

algorithms in a total of 2524 seconds compared to 9454 seconds for the FSA and 5160

for the MAM algorithm. Note that the average and total times of MAM are based only

on the average computation time of those problems which are solved optimally. We

exclude the time limit terminations which transform the tree search into a heuristic. The

Chapter 4	 169



SA algorithm also has an ARPDb of 0.04% which is better than the corresponding value

of 0.09% produced by FSP, the set partitioning heuristic. Further, the FSP has a total

computation time of 1236 seconds, which is 44% more than that of the SA algorithm.

Our final tests compare tabu search algorithms with the SA and FSP algorithms.

The ARPD's of the TS+FBA algorithm are better than the ARPD's of the SA algorithm.

In addition, the TS+FBA is 10% faster than the SA algorithm with respect to the ACT.

The TS algorithm produces more stable results due to the small gap of 0.06 between the

worst and the ARPDs compared to the SA algorithm, which has a relatively huge gap

of 0.36. Simulated annealing solution quality deteriorates as the problem size increases

while the Ts exhibits a steady behaviour in this respect. Tabu search is also better than

the FSP with respect to quality of solutions and computation time. The best and worst

ARPD of the TS+FSA algorithm are 0.03% and 0.09% respectively compared to an

ARPD of 0.09% of the FSP. Moreover, the average computation time ACT of the

TS+FSA is equal to 60% of the ACT of the FSP algorithm.

4.6 Conclusion

In this study, we have developed X-interchange descent methods, metastrategy simulated

annealing and tabu search algorithms for the generalised assignment problem. We

compared their performance with other existing methods with respect to solution quality

and computation time. The major conclusions of this study are as follows:

1.	 The constructive method of Martello & Toth [1981], Ml', generates solutions

which deviate significantly (2.56%) from the optimum. Further, these solutions

were improved to 1.42% by the introduction of k-interchange neighbourhood

generation mechanism into descent methods. Due to the power of the neigh-

Chapter 4	 170



bourhood mechanism, we find a value of ?. = 1 is sufficient to produce good

solutions. Increasing the value of . would require more computation time with

little improvement. Finally, the first-improve selection strategy produces the same

quality solution of 1.15% as the best-improve strategy at half the computation

time when both are incorporated into algorithms that use long term memory

functions.

2. Our simulated annealing SA gives the user control over the trade-off between

running time and solution quality through the number of temperature resets. The

SA algorithm always finds better or equal solutions as the time increases holding

constant other cooling schedule parameters. However, this obviously most

important is not provided by many other SA schemes. Our SA that uses a random

permutation of the set of agents with a systematic search, out-performs the FSA

algorithm of Cattrysse [1990] in quality of solution and computation time. It also

out-performs MAM, the tree search heuristic with a modified multiplier adjust-

ment method both in solution quality and computation time. The SA algorithm

produces better solutions than FSP, the set partitioning heuristic but a slightly

higher computation time.

3. The tabu search algorithms, TS+FBA and the TS+FBA with the LT memory

function (LT+TS+FBA) fairly consistently out-performs the SA algorithm and

the FSP algorithm with respect to execution time and solution quality. In addition,

its solution quality is much more stable than the SA algorithm where a large

variation in the quality of solutions is found by different runs. The dynamic

selection in the LT+TS+FBA algorithm provides an automatic sampling of the

variable-sized neighbourhood so that many neighbourhoods can be examined in

good regions. This is not the case in the classical LT+TS+BA algorithm. Tabu

search conditions and aspiration levels play a dual role and must be chosen

adequately. Tabu size is found to be a function of problem sizes but does not have

Chapter 4	 171



a major effect if its value is within a certain range. Tabu search algorithms share

with simulated annealing the trade off between quality of solution and compu-

tation time thereby giving the user an opportunity to optimize his/her imple-

mentation according to the computing budget.

In both the TS algorithms all the entire neighbourhood of a current solution, generated

by m(m-1)/2 combinations of sets of agents, is re-evaluated after any acceptance, while

only 2xm sets are affected. Hence for m ^ 4, we can always save computational effort,

by storing the unchanged sets in an additional data structure so that these move will be

used if necessary in the subsequent iteration, without the need of move re-evaluation.

This extra data structure is implemented in the next Chapter (Section 5.3.2). It has

produced a further reduction in the CPU time especially for large problems without

sacrificing solution quality. It is worth investigating the strategic oscillation and different

candidate list strategies suggested by Glover [1989c]. In these infeasible solutions are

accepted with penalties added to the objective function value. This would help in

oscillating between feasible and infeasible regions, with the hypothesis that the optimal

solution would be found quickly. Further, with recent rapid developments in computer

technology, we feel that parallel versions of SA and TS further enhance the performances

of our SA and TS implementations. In conclusion, the findings in this study are supported

by our results obtained from other applications; in particular, the vehicle routing problem

and the capacitated clustering problem and the maximum planar graph.

Chapter 4	 172



Chapter 5

SIMULATED ANNEALING AND TABU SEARCH

FOR THE VEHICLE ROUTING PROBLEM

5.0 Introduction

The vehicle routing problem (VRP) involves the design of minimum cost delivery routes

for a fleet of vehicles, originating and terminating at a central depot, which services a

set of customers. Each customer is supplied by exactly one route. The total demand of

the customers on each trip must not exceed the vehicle capacity. A pictorial represen-

tation of the problem is given in Figure 5.1.

1 Depot	 Customers

Figure 5.1. The vehicle routing problem.

Chapter 5	 173



The VRP is in an extremely active research area that has seen an exciting interplay

between theory and practice. In the last decade, the VRP stands out as one of the great

success stories ofoperations research. If vehicle routing does constitute a major success

story, a share in this must be contributed to effective modelling and efficient methods

for handling physical distribution problems as well as to the intriguing nature of the

underlying combinatorial optimization models.

Practical applications of the VRP are numerous, and many companies and

organizations have achieved major economic benefits by implementing vehicle routing

algorithms to control daily fleet operations. Brown eta!. [1981] reduced the transpor-

tation costs of petroleum products for Chevron by 13%; Fisher eta!. [1982] developed

a system for Du Pont, that resulted in a 15% reduction in delivery costs; Bell eta!. [1983]

implemented a distribution of industrial gases system for Air Products and Chemicals

Inc. that helped to produce savings of 6-10% in operating costs; Evans et a!. [1985]

reported savings of 10.7% in food service delivery for Kraft, Inc.; Golden et.a!. [1987]

implemented a system in the soft drink industry. An extensive list of other applications

has been identified by practitioners such as school-bus routing and scheduling, design

of dial-a-ride systems, collection of mail (coins) from mail (telephone) boxes, etc. are

only a few of the many applications arising in practice. The interested reader may consult

a number of useful surveys of the fields including Christofides [1985], Golden et a!.

[1988].

Operational Researchers's interest in the VRP's is due in part to their practical

importance, but also to their intrinsic difficulties. The VRP is a generalisation of the

travelling salesman problem (TSP) - easy to describe but difficult to solve. It belongs

to the class of NP-hard problem Lenstra et. al. [1981]. Computational complexity theory

has provided strong evidence that any optimization algorithm for the VRP's solution is

Chapter 5	 174



likely to require a number of computations that grows exponentially with problem size.

Hence, there have been few attempts to solve the VRP optimally, notably by branch and

bound procedures adopted by Christofides et al. [1981a, 1981b]. The bounds for the

tree search were obtained from the shortest path, spanning tree or state space relaxations

of the VRP. Laporte et a!. [1985] reported exact algorithms which are based on a TSP

formulation involving sub-tour breaking constraints and on cutting plane techniques;

the largest problems that were solved contained 50 and 60 customers in the Eucidean

and Non-Euclidean case respectively. However, the problems were of a special simple

structure. Agarwal et al. [1989] proposed an exact algorithm based on a set partitioning

formulation. Although, these approaches can address small VRP's adequately, there

does not appear to be any way of incorporating other real-world constraints within these

approaches. The largest general VRP that could be solved optimally is of size up to 50

customers with 8 vehicles, Christofides [1985]. Laporte etal. [1987] provide an excellent

review of exact methods.

Although the VRP is difficult to solve in an optimizing sense, it is solved in an

operational sense. The world's economies could not operate if it were not for the fact

that VRP's and their extended variations have readily available practical solutions.

Researchers have recognized early the importance of approximate methods (or heuris-

tics) which can provide near optimal solutions for large sized problems. Research efforts

have resulted in the development of a large number of heuristic algorithms which are

able to solve the VRP of several hundred customers. Some of the well-known heuristic

approaches are classified as follows:

Insertion or savings heuristics, Clarke & Wright [1964], Gaskell [1967], Mole et a!.

[1976], Paessens [1988];

Two-step methods, Gillett er a!. [1974], Christofides er a!. [1979], Fisher et a!. [1981],

Chapter 5	 175



Beasley [1983];

Improvement methods, Christofides eta!. [1969], Russel [1977];

Exact but incomplete tree search methods, Christofides et al. [1979].

Useful surveys and other classifications of heuristics are given in Paessens [1988] and

Bodin et a!. [1983], Golden er a!. [1986].

The aim of this chapter is to develop, and investigate the algorithmic performance

of the metastrategy SA and TS in a new area, namely the vehicle routing problem under

capacity and distance constraints. This Chapter is organised as follows: Section 5.1

introduces the definition of the VRP problem with these constraints. Section 5.2 dis-

cusses aspects of iterative improvement methods and introduces descent —interchange

algorithms based on first-improve and best-improve selection criteria of neighbours, as

well as introducing different move cost evaluations. Section 5.3 presents SA algorithm

methodology and discusses its implementation based on the cooling schedule in Osman

and Christofides [1989], (see Section 3.4.2). Section 5.4 describes details of TS meta-

strategy aspects and different implementations based on a new dynamic tabu list, and a

new data structure that has resulted in a substantial speed up of the algorithms.

Computational experiences are given in Section 5.5, comparing TS, SA and Descent

algorithms against the best published results for all bench-mark problems reported in

the literature, in addition to some new randomly generated problems. Section 5.6 contains

some concluding remarks.

5.1 Problem definition and solution representation

The vehicle routing problem under capacity and distance restrictions is defined as fol-

lows: Let the customers be indexed i=1,...,n and i= 0 refers to the depot. The vehicles

are indexed k=1, ..., v. A customer i has a demand of q1 and a service time of 6. We

assume that q0 =0, 30 = 0. The travel time (distance) between customers i and j is

Chapter 5	 176



SkrS½=ø, Vk1 ,k2 E V,

>..q^Q, Vk€V,

(5.1)

k-i 
= N,

C(Sk)=	 (cJ)+6)^L,
I S 'i{O}

C(S)=	 C(S,)
k V

c. The total demand of vehicle route k may not exceed the vehicle capacity Qk with

Q = Q1 = Q2 = ... = Q . The length (duration) of vehicle route k which is made up of

inter-customer travel times and service times (6k ) at each customer i included on the

route must not exceed a pre-specified bound L.

Solution representation

A feasible solution for the VRP is represented by S = (S 1 , S2, . . .S), where each S defines

uniquely the subset of customers of N = { 1, . . ., n) routed by a vehicle k from the set of

vehicles V= (1,...,v) such that,

C(Sk) is the length of an optimal (or approximate) TSP tour over the set of customers in

Sk u{O} delivered by a route k. This tour length must be less than a given bound L. It

consists of the travel distances of the route given by the permutation Ic and the service

times of customers in 5k• C(S) is the total length of all routes.

5.2 Iterative improvement methods

An iterative improvement method has a strong relationship with the metastrategy SA

and TS. Hence, a number of common aspects must be elaborated in more detail, as they

play a major role in the success of the above metastrategy algorithms. Most iterative

improvement methods invoke the successive application of two modules: a construction

method that produces a feasible initial solution S with a cost value C(S), and an

Chapter S	 177



improvement technique that maintains feasibility whilst reducing the cost iteratively.

The latter consists of: a generation mechanism to alter this initial solution; selection

strategies of alternate solutions; and a stopping criterion (see Section 2.1.6).

5.2.1 An initial solution (saving method)

An initial solution can be obtained by the savings procedure of Clarke & Wright [1964].

It is the most widely known heuristic for the VRP. A survey of its variations can be

found in Paessens [1988]. At each step, the procedure exchanges one set of routes with

a better set. Initially, we suppose that every customer is supplied by a separate route

(Figure 5.2 a).

S =(2c +2c,)—(c +cq +c01)= c +c0 —c	 (5.2)

Initial routes 1 and 2. 	 A single saving route of routes 1 and 2.

(a)	 (b)

Figure 5.2. Saving routes

Instead of using two vehicles to service customers i andj, if we use one only, then

we obtain a savings of S in the travel distance. The savings are given by Equation (5.2)

assuming symmetric distances. An illustration is shown for two customers in Figure

5.2b. We order these savings from the largest to smallest and starting from the top of

the list. We link nodes i andj with the maximum savings unless the problem constraints

are violated.

Chapter 5	 178



The saving heuristic steps can be summarised in the followings:

Step 1.	 Compute the savings S4, = c0, + c, - c for all pairs of customers i and j.

Step 2.	 Order the savings in descending order.

Step 3.	 Starting at the top of the list and moving downwards and do the following:

(i) Find the first feasible link in the list, which can be used to extend

one of the two ends of the currently constructed route.

(ii) If the route cannot be expanded due to the constraints, or no route

exists, choose the first feasible link in the list to start a new route.

(iii) Repeat (i) and (ii) until no more links can be chosen. At the end of

the procedure, the connected links are picked to form a feasible

solution for the VRP.

5.2.2 The ?. —interchange generation mechanism

The generation mechanism, we use for the VRP, is already defined in Section 3.3.1. It

is one essential component of the generic choices of any iterative improvement algo-

rithms. In this section, we only give an illustration on how the generation mechanism

would work using the VRP specific choices. A natural neighbourhood generation

mechanism for the problem is as follows:

Given a solution S (S 1 ,S2, ...,S) for the VRP, that consists of the sets of routes

S . . A ?. —interchange between a pair of route sets S 1 and Sk2 is a replacement of a subset

ç S, of size ISA, I^ ? with another subset Sb c S, of size IS 1 ^ , and vice versa,

to get two new route sets. These sets become represented as

s i-. (s —)u, ; . (s½-)L). Hence, a new neighbouring solution, S',

becomes S' (Se, .., S, .., S,, .., Se). Furthermore, the neighbourhood, N,(S), of a given

solution S is the set of all neighbours S' generated by the A. —interchange mechanism.

Chapter 5	 179



In addition to defining the neighbourhood, we must also specify the order in which

neighbours are searched.

First, an ordered search is usually adopted in which all possible combinations of

a pair of route sets S, and S, 2 in S are considered systematically without repetition (see

Section 3.3.2). An ordered search of the interchange neighbourhood would typically

examine a total number of v(v-1)12 combinations of pair of routes (SA1 ,S) according to

the order specified by a permutation a. Each time a cycle of search is completed a new

permutation a is generated. The search continues with the new combination order,

defined as follows.

(S 1 S 2 , . . .,(Si),SV)), (SØ(2),SØ(3)), .. .,(SO(V_l),SV))	 (5.3)

It has to be pointed out that the permutation a does not change in the descent and

the tabu search algorithms. It takes a fixed order throughout the search, say

{a(i) = i V i = 1,. ..,v}, whereas this order would change in simulated annealing algo-

rithm. At the end of each completed cycle of search, a new permutation a is generated

and the search continues selecting pairs of routes in the order specified in Equation 5.3

until the SA algorithm terminates.

Second, for the given pair of routes chosen above, we consider the ? —interchanges

with A. = 1. Thus, there are two processes to search a given pair of routes S and S11: a

shift process is represented by (0,1), (1,0) denoting the shift of one customer from one

route to another, and an interchange process represented by (1,1) denoting the exchange

of one customer in the first route with another customer in the second to generate all the

possible feasible solutions. The neighbours are generated systematically searching for

improved solutions in the shift and the interchange processes.

Chapter 5	 180



For example, let S1 = { 1, 2,3, 4} and S2 = 5, 6,7, 8} be two set of vehicle routes.

In the case of a (0,1) shift process, we attempt to shift every customer 5, 6, 7, 8 one at

a time from S2 and add it to the set of customers in S 1 . At each attempted move, we

check the feasibility and take the appropriate decision according to the adopted

acceptance criterion. Figure 5.3 (a) shows an example of a (1,0) shift process which

removes a subset of one customer (index 4) from S and inserts it in S 2. The new routes

afterthe shiftare showninFigure5.3 (b), andbecomeS 1 = { l,2, 3}andS2 = {5,4,6,7, 8].

(a) Before the shift	 (b) After the shift

Figure 5.3 A (1,0) shift process

Note that, if set S 1 (say) contained only one customer then the (1,0) shift process

would produce the solution (S1 ,S2, .. . , Sj with S1 =0. This is illustrated in Figure 5.4

(a) and Figure 5.4 (b). As a result, one vehicle route is reduced, i.e., the route corre-

sponding to S =0 and the total number of routes is reduced by 1. This is of great

practical importance and is an important property of the generation mechanism.

Chapter 5	 181



lol

(a) Before the shift 	 (b) After the shift

Figure 5.4 A shift process with one vehicle reduction

In the case of a (1,1) interchange process, we attempt to exchange each customer

in S1 = { 1, 2, 4} with every customer in 2 = {3, 5,6,7, 8}. We refer to Figure 5.5.

LII Depot	 0 Cudow.r.

(a) Before the move	 (b) After the exchange

Figure 5.5. A (1,1) interchange process

Forexample, we try toexchange systematicallycustomer number 1 E S1 with every

possible customer 3, 5, 6, 7, 8 E S2 and similarly for 2 and 4 to generate feasible moves

Chapter 5	 182



according to the acceptance criterion. Figure 5.5 (a) and Figure 5.5 (b) show an example,

where a customer number, 4, from route S is exchanged with customer number, 3, from

S2 to generate a new pair of routes.

5.2.3 Selection strategy of alternate solutions

We are proposing two selection strategies for selecting alternate solutions in the

neighbourhood N,(S) of a given solution S.

(i) Best-improve (B!) strategy, which examines all solutions S' € N(S) in the

neighbourhood of S and accepts the one which yields the best admissible solution

according to a given acceptance criterion.

(ii) First-improve (F!) strategy, which immediately accepts the first solution in the

neighbourhood that satisfies the acceptance criterion upon its

first discovery.

The BI and Fl strategies would be used in the descent algorithms as well as in the SA

algorithms. However, these are generalised and extended for the case of tabu search

algorithms. In tabu search, a move is considered admissible, if it is a non-tabu move,

or a tabu move which passed the aspiration level criterion. The best-improve selection

strategy selects that admissible move which yields the highest evaluations (i.e, the

greatest improvement or the least disimprovement in the objective function), subject to

the tabu restriction and aspiration criterion being satisfied, see Section 2.3.6b. This is

then denoted by the BA strategy. However, the first-improve strategy is modified for

tabu search as follows: The first and best-improve strategies are combined in a new

strategy denoted by the FBA strategy. The FBA strategy selects the first admissible

move in the neighbourhoods that provides an improvement over the current objective

Chapter 5	 183



value. If there is no such an improving move, the move with the highest evaluated which

is recorded in the searched neighbourhood is then selected. In this case, the FBA

resembles the BA strategy. For further details on this strategy, we refer to Section 2.3.6c.

5.2.4 Evaluation of the cost of a move

A move is a transition from a solution S to a solutionS' E Nh(S). The value of the move

is the difference in the objective function values, t = C(S') - C(S). This requires the

evaluations of f(S) ,f(S) which are the costs of the TSP tours over customers in routes

S, S respectively generated by the ? —interchange mechanism of section 5.2.2. These

functions are very complex, and cannot be written down explicitly at each move.

Consequently, iterative improvement methods become cornputationally expensive to

implement. However, if we use approximate methods to obtain f(Sk)'s, a substantial

saving of computer time would result and solving of the VRP becomes more effective.

We propose two approximate evaluation methods and show their evaluations for the

case of A, = 1. First of all, we need the following:

Let 5k be the set of customers in route k, and i be the customer to be added (or

deleted) from 5k by the 1-interchange to obtain the new S' k = S u{i} (added) or

= Sk - {i} (deleted) case.

(a) Insertion (deletion) cost evaluation procedure

Recall that the length of the tour over the set of customers in 5k is denoted byf(S,3.

Let i be the customer to be inserted (or deleted) between two consecutive customers

rand s of S, and define:

l(r, ․ ) = c,,, + c1, - c,, be the cost of inserting i between r and s,

Chapter 5	 184



11 (Sk)= Minhnwn(l,(r, ․ )}
	

(5.4)
ri.

then the cost of the new generated route over S'k becomes:

Insertion case: f(S'k) = f(Sk) +lI(Sk)
	

(5.5)

Deletion case: f(S'k)= f(S)—l1(r, ․ )
	

(5.6)

(b) 2-opt cost evaluation procedure

Perhaps the best known heuristic for the TSP is the arc exchange heuristic of Lin

et al. [1974]. The procedure works as follows:

(i) Find an initial random tour over the set of customers in S.

(ii) Improve the tour using an arc exchange procedure.

(iii) Continue (ii) until no additional improvement can be made.

(a)
	

(b)

Figure 5.6 A 2-change of a tour

The arc exchange procedure used in this work, involves exchanging just 2 arcs. A

2-change of a tour consists of the deletion of 2 arcs in a tour, e.g., arcs (2,3) and (5,6)

in Figure 5.6 (a), and their replacement by 2 other arcs, say, (2,5) and (3,6) to form a

new reduced cost tour in Figure 5.6 (b). Note that, the arcs between customers 3 and 5

Chapter 5	 185



have reversed their order in the new tour. A tour is called 2-optimal (2-opt), if it is not

possible to improve the tour via any 2-change. Thus, we have used a 2-opt tour S k to

evaluate approximately the function f(S,3.

(c) Combination of procedures (a) and (b)

This cost combination is used only in the case where a decision is made to accept

a move. Each move is evaluated by insertion/deletion; if it is accepted then a 2-opt

procedure is invoked. The reason for this evaluation is depicted in Figure 5.3 (b)

where criterion (a) may produce crossing arcs in the new tourin which case criterion

(b) is necessary to produce the 2-opt tour of Figure 5.4 (b), (See also Figure 5.6).

Thus criterion (c) provides a fast way to approximate exchanges which are then

evaluated more thoroughly (and slowly) if they seem worthwhile. Evaluation

method (a) works alone if only the condition of the following theorem 1 is held.

Theorem 1. (Agarwal et al. [1989])

Given a set of customer points 5, T*(S) is the optimal TSP tour, and a customer i not in

S; if the insertion cost of i in the best position in the tour T(S) is equal to the best

insertion cost between any two customers in the setS, then the tour obtained by inserting

i in T*(S) will be the optimal TSP tour for the setS'=S u{i}

Proof

Recall that the length of tour T(S) is denoted by f(s). After inserting i in its best

position, let the new tour be T1 (S') with lengthf1. Then according to Equation (5.5)

11 =f(S)+l,(T)

or

Chapter 5	 186



f(S) = f1 - l,(T)
	

(5.7)

where 11 (T)= Minimum{l,(r, ․ )}
(r,:)E T

Let T(S') be the optimal tour over the set S' with lengthf(S. Suppose stop I appears

between stops r and s in this tour. Then, we can create a tour T2(S) by deleting i from

T(S') and joining r and s directly. Letf2 be the length of this tour. Then

f2 =f(S D — l(r, ․ )

Since l(r, ․ ) ^ l,(S) = l(T) by definition and assumption respectively, we have

f2 
^f(SF)_l(T*)	 (5.8)

Since f(S) is the length of the optimal tour over S, we must have f2 ^f(S). The last

inequality with Expressions (5.7) and (5.8) yields

f(S')-11(T) ^f(S) =f1—1,(T)

or

f(S') ^ f1

Sincef1 is the distance of the feasible tour T1 andf(S') is the length of the optimal tour,

the above relation must hold with equality. Hence, T1 is optimal for 5'.

5.2.5 The A. —interchange descent algorithm

The —interchange descent algorithm is an iterative improvement method. It starts either

with a solution chosen at random or by the application of a constructive heuristic such

as the savings heuristic. The latter approach is sometimes adopted either to reduce the

computing time or when a random feasible solution is difficult to generate. The descent

Chapter 5	 187



method selects its starting solution S and chooses a neighbouring solution 5' E N(S)

according to F! or B! strategies, evaluates the cost function C(S) and C (5') and computes

A = C(S') - C(S). If A <0 then 5' is accepted as the current solution. Alternatively,

when A ^ 0, S is retained as the current solution. The search usually continues until a

(local minimum) A—optimal solution is found (see Section 2.1.6).

Definition 5.3

A solution S is called locally optimal with respect to N (or A —opt for short) if and only

if:

C(S)^C(S') VS'€ N(S)

The A—interchange descent algorithm steps for the VRP are summarised below

Step 1. Generate an initial heuristic solution S by the savings method (Section

5.2.1).

Step 2. Choose a solution S' E N,(S) according to Section 5.2.2 and Section 5.2.3.

Step 3. If 5' is better than S (A < 0), replace S by S', and go step 2.

Step 4. If a complete cycle of search - the neighbourhood N(S) of S - has been

searched without any improvements then, stop with a 2-opt solution, else

go to step 2. Since at least one route set has changed in the latter case, the

search is restarted with the new solution for a new cycle.

The above descent algorithm is simple to implement and flexible to handle any

additional aspects of a problem. Several descent algorithms can be derived according

to the neighbourhood generation mechanism (Section 5.2.2), and the selection strategy

(Section 5.2.3). As a result, we develop the following descent algorithms: 1+FI, 2-i-Fl

and 1+BI algorithms, which use the 1-interchange mechanism with the first-improve

Chapter 5	 188



selection strategy and the 1-interchange mechanism with the best improve selection

strategy, respectively. All these algorithms use the move cost evaluation of Section

5.2.4c. Despite the excellent performance of these heuristic algorithms, there is a major

limitation that the local optimum achieved may be far from the global optimum. Also,

the quality of the final solution depends critically on the initial starting solution. Many

techniques have been devised to deal with the above limitations and allow the local

search algorithms to continue its exploration beyond the local optimum region to find a

near optimum solution. In the next section, we will focus on and explain in more detail

SA approximate algorithms that overcome local optimality by embedding a randomised

search and acceptance strategy into the local search methods.

5.3 Simulated annealing implementation

In the following, we shall adopt the same SA cooling schedule that we have introduced

and implemented in Section 3.4 for the CCP, and in Section 4.3 for the GAP. This

section explains the SA implementation to the VRP. We have discussed earlier the

relationship between the SA algorithm and the local search method. The SA algorithm

uses procedures that are identical those discussed in Section 5.2 such as: the initial starting

solution, the 1-interchange mechanism, and the move cost evaluation. However, the

differences are in the search of the neighbourhood, the acceptance of alternate solutions

and the algorithm stopping criteria.

The neighbourhoods are searched according to random permutations, a, of the

route order (1,...,v). These permutations are generated each time a complete cycle of

search is completed. Each of the v(v-1)12 possible pairs of route combinations is con-

sidered in turn according to the order of the permutation a. More precisely, the

neighbourhood is searched by selecting systematically pairs of sets (routes), (S 1 , S) in

the order indicated by the Expression (5.3) according to the permutation

Chapter 5	 189



{a(1),a(2),..,a(v)}. This is in contrast to the local search descent methods where a is

fixed to an order of (1,2,..,v) throughout the descent algorithm run. Furthermore, the

search for a given pair (S, S 1) is systematic for all potential customer moves as in the

descent methods (Section 5.2.2). This implementation is in contrast to classical SA

schemes that recourse to random neighbourhood search, which can lead to pockets that

remain unexplored for undesirable lengths of time. Hence, those methods may miss the

few good moves at lower temperatures. This implementation of the SA algorithm keeps

the best solution found during the search rather then the one at which it stops. The SA

algorithm performs a single iteration (one attempted feasible move) at each temperature.

In any SA implementation, we must additionally define a cooling schedule. We adopt

for the VRP the non-monotonic SA cooling schedule which was introduced in Section

3.4.2. This cooling schedule require the following:

(i) The starting temperature T,, the final temperature T1.

(ii) The decrement rule for updating the temperature after each iteration k.

(iii) The condition for the temperature reset variables, Trust , the value to which T is

reset after the system freezes - a complete search of the neighbourhood (a cycle)

is completed with no change. The temperature reset variable itself needs an

update rule.

(iv) The total number of temperature resets R to be performed since the best solution

was found. This parameter R is, therefore, the stopping criterion.

We will sketch briefly our cooling schedule parameters as follows:

(I) The initial and final temperature values.

The initial temperature, T5, is given the largest change in the objective function value,

8. The final T1 is assigned the smallest change in the objective function value, L.

Chapter 5	 190



The T1 parameter is used only to show the relationship with Lundy & Mees [1986] and

Connolly [1990]. It is no longer used to detect the algorithm stopping as our cooling

schedule uses another stopping criterion which does not depend on T1.

(II) The decrement temperature rule.

After each iteration k, the temperature is decreased according to a parameter 13k which

depends on the number of iterations. Let us define

T1—T,
(5.9)

where a and y are constants. Then, the temperatures are updated according to the rule

Tk
Tk+1=(lT)	 (5.10)

Note that, if in Equation (5.9), y =0 then 13k becomes a constant, and this cooling schedule

without the temperature resets is similar to the cooling schedules of Lundy & Mees

[1986], and that of Connolly [1990]. There is a trade-off in the choice of the a and 'y

values. This trade-off can be determined experimentally as explained in Section 3.4.2.

The aim of these settings is to provide fast reductions in the value of the temperatures

at the beginning, and ideal slower reductions near the end of the search. The reasons

are to spread the SA search and to concentrate on good regions.

(iii) The condition for occasional temperature increase

if a cycle of search is made without accepting any k-interchange move then it is likely

that with the current temperatures dropping even further there will be no accepted moves

(if such a cycle has occurred, we say that the reset condition is satisfied). Therefore, the

current temperature Tk needs to be reset to a higher value where we do not deviate much

from the current solution but allow for some further moves to be made. The reason is

to escape from the current local optimum. The temperature at iteration k+1 is then reset

Chapter 5	 191



to a temperature value of T,,,41, i.e. ( Tk+l = T,.,) . We define how T	 is updated.rw*

Initially, the T, is set to the initial value of T,. The value of T,, is updated first

before its value is passed to T +1 in the following way.

T,j1f

Tr =	 provided that T,, > T

T,=T1j	 otherwise	 (5.11)

where T1 records the temperature value at which the current best solution is found,

and 5 is a constant equals to 2. After this reset, the temperatures are updated as normal

using the above rules Equation (5.10) and (5.11) until the algorithm stops.

(iv) The Stopping Criterion.

A stopping criterion can be arbitrarily chosen to reflect the amount of time one wants

to spend on solving the problem. The stopping criterion we used is based on the number

of temperature resets, R, since the best solution was found.

5.3.1 Simulated annealing algorithm

The SA algorithm steps are as follows:

(I) Initialisation.

Step 1. Generate an initial heuristic solution S by the savings method of Section 5.2.1.

Step 2. Initialisation of the cooling schedule parameters:

perform a test cycle of search over the neighbourhood, N 1 (S), of the initial

solution (but without performing the exchanges themselves) in order to obtain

the largest and smallest 5 change in objective function values, and an

estimate of the total number of feasible exchanges Nfeas.

SetT-8, T1 4-8, andT,,—T, aE—nxNfeas, y—n, R —3.

Set the counters k - 1

Chapter 5	 192



(ii) Selection and acceptance of generated neighbours.

Step 3. Select a solution S' E N1 (S) systematically as explained in Section 5.2.2.

Compute = C(S') C(S) (Section 5.2.4).

Step 4 If ( ^0 or e'*)> 9) where 9 is a uniform random parameter 0<9< 1,

then accept the new solution S' and set S - 5'.

If 5' is better than the best so far then

keep 5' and update Td.

(iii) Temperature updates.

Step 5. Evaluate the variable decrement ratio 13k as in (5.9), and update temperatures

according to rule (5.10) and the conditions for occasional increase in Equation

(5.11)

Setk 4—k+1

Step 6. If the stopping criterion (R resets were performed since the best was found)

is met then stop and report the best found solution and the computation time,

otherwise, go to Step 3.

Due to the temperature resets, we are able to continue the search beyond the freezing

point. Thus, increasing the available computation of the above SA algorithm could lead

to a better solution. This obviously most important property is not provided by many

other cooling schedules in the literature.

5.4 Tabu search implementation

In this section, we implement tabu search (TS) algorithms for the VRP. It follows a

similar approach which we used for the GAP (see Section 4.4). However, we present,

here, some new ideas and modifications. Tabu search shares with simulated annealing,

the ability to guide the search of iterative descent methods. In this context, TS provides

Chapter S	 193



a guiding framework for exploring the solution space beyond points where an embedded

heuristic would become trapped in a local minimum. The process by which TS seek to

transcend local optimality is based on an evaluation function. This function selects the

highest evaluation move which produces the most improvement or the least disim-

provement in the objective function at each iteration. The best admissible (not in the

rabu-list) move is the highest evaluation move in N 1 (S), the 1 -interchange neighbourhood

of the current solution S, in terms of the objective function value and tabu restrictions.

The reason for introducing a tabu-list is to store in that list characteristic of accepted

moves so that these characteristic can be used to classify certain moves as tabu in future

iterations. By accepting disimproving moves, it becomes possible to return to solutions

already visited. Hence cycling may occur and the purpose of the tabu list is to prevent

such occurrence. Thus, it is necessary for any implementation to define the following:

(i) A forbidding strategy which manages what goes into the tabu list. A freeing

strategy which manages what goes out off the tabu list.

(ii) A short term strategy which is an overall strategy that manages the interplay

between the above strategies including: (a) an aspiration strategy which ignores

tabu conditions of certain moves; (b) selection strategies which choose trial

solutions from N 1 (S) based on the best-admissible, BA, or the first-best-

admissible FBA strategies of Section 5.2.3.

(iii) A stopping criterion

A principal contribution of this implementation, is the construction of special data

structures for the tabu lists and for the candidate list of moves. A candidate list is a

sublist of the possible admissible moves in the neighbourhood. The second contribution

is the identification of an initial value for the tabu list size, I Ts I and a way to update

subsequently its value. This initial value of I Ts I is determined statistically from the

problem characteristics.

Chapter 5	 194



5.4.1 The forbidding and the freeing strategies

(a) The forbidding strategy

This strategy constrains the search by classifying certain moves forbidden (or tabu) based

on tabu conditions which are identified by attributes of a move. A move is a transition

from one solution to another generated by the 1 -interchange mechanism which identifies

the attributes of the move. In order to avoid cycling which involves preventing the move

from a solution to other solutions S' E N1 (S). It is clearly sufficient to check that

previously visited states are not revisited. Ideally, the tabu-list should store all such

states and the list would be checked prior to any new move. However, the process of

checking the tabu status of a move based on the above generally requires a great deal of

memory and computational effort. This is so because we have to store attributes of a

solution that are needed to check the tabu status of future move. A crude but reasonably

effective way is instead to store instead a partial range of these attributes. Hence a

special data structure for the tabu-list must be identified.

A tabu-list data structure is represented by a matrix which stores a simpler set of

move attributes. This set consists of the two pairs (e,,S,) and (e1,S). These attributes

are sufficient to identify that a customer e1 from the set S . of customers on route i has

interchanged with a customer e1 from the set S of customers on route], and vice versa.

These attributes (e1 , S1 ) and (e1 , S1) are used to specify the tabu restrictions that forbid a

move from being performed. A move is deemed tabu, if e, is returned to S, and e is

returned to S,. The same attributes could be used instead to forbid moves if either e, is

returned to S, or e1 is returned to S,. The advantage of this approximation is that more

states can be represented and check those states faster. However, in this approximation

some of non-tabu solutions are also prevented as they share some of these attributes

which are stored in the tabu list. The set of forbidden moves is recorded in a tabu list

for a period of I Ts I iterations.

Chapter 5	 195



Figure 5.7. A tabu list data

structure, which is repre-

sented by an (n+1)xv

TABL matrix.

Route sets

cl

E

	

S I 	 S2	 S3

0	 80	 75	 100

1	 1	 •	 5

2	 -999	 -999	 -999

3	 .	 5

4	 100

5	 .	 -999

6	 80	 75

7	 -999

8	 .	 1

TABL matrix

Implicitly, we define the data structure, TABL, to take the form of an (n +1)xm

matrix (n rows one per customer e and one extra for the null customer involved in the

shift process (0,1) or (1,0) and m subsets S1 . The TABL(e1 ,S1 ) records the iteration

number at which a customer e, is removed from the set S 1 , similarly for TABL(e,S1).

The TABL matrix is drawn in Figure 5.7 for an example of 8 customers and 3 routes.

In this Figure, a high negative number value means that the corresponding customer has

not been used in any previous moves (either a customer is in its best route or it is not

feasible to be exchanged). Precisely, this negative value is to avoid false identification

of customers as tabu during the initial iterations. Entries which have the same values

Chapter 5	 196



mean that these customers are interchanged by a (1,1) interchange operation e.g.,

customer 1 from S 1 is interchanged with customer 8 from S 3 at iteration number 1, whereas

the (1,0) shift operation of customer 4 from S2 and adding it to S3 at iteration 100 is

represented by putting 100 in entries TABL(4,S 2) and TABL(0,S3) respectively, and a

similar representation is made for the (0,1) operations.

(b) The tabu list size functions:

We believe that the tabu list size, I Ts I should be a function depending on the problem

characteristics (dimensions, ratio of required demands to available capacity, p. given in

Table 5.1. It also depends on the selection strategies FBA or BA that is employed.

Through observation of the tabu list sizes for various test problems, we have used a

multiple regression analysis using to find an estimate for the I Ts I value. A statistical

package, MINITAB, is used to find an equation fit for I Ts I using the data in Table 5.4

and Table 5.5. Based on the analytical results, we propose that a tabu size should take

the following values. These Equations (5.12) and (5.13) have produced high R-squared

statistical values.

For the case the TS^FBA algorithm:

Let us define p to be the capacity ratio of the required demands to the available vehicle

capacity. The tabu list size, I Ts I which we use in the TS+FBA algorithm is estimated

from the data as follows:

ITs 1= 8+(0.078-0.067 x p)xn xv	 (5.12)

For the case of the TS+BA+DS algorithm:

The tabu list size which we use in the TS+BA+DS algorithm is estimated similarly as

follows:

ITsI=Max{7, —40+9.6xln(nxv)}	 (5.13)

Chapter 5	 197



Since, the I Ts I value is statistically estimated, an error might occur. To avoid such an

error, an interval with its end-points are the 10% around the estimated value (say ts) i.e.,

these values are 0.9 x ts, and 1.1 x rs. The value of I Ts I is varied in a systematic order

to take each of the three values 0.9 x ts,, :s, and 1.1 x ts. I Ts I retains each of the assigned

value for 2 x Ts I iterations before its assigned another value. If all the three values are

chosen a random permutation is obtained and the assignment continues in the same

manner. Similarly, experiments of Taillard [1990] show that varying I Ts I randomly to

take a value inside a given interval has an advantage.

(c) The freeing strategy

This strategy is concerned with the management of what comes out of the tabu list. The

attributes of a tabu move remain on the tabu list for a duration of I Ts I iterations. If this

tenure has elapsed, then the tabu restrictions imposed are removed so that those move

can be reconsidered as admissible in any future search. The proposed data structure

(Figure 5.7) which stores the iteration number of those attributes updates automatically

the tabu status. Also, with this data structure we can easily determine the tabu status of

a potential move. A simple and fast check for tabu status is of great importance, especially

when the problem and the tabu size increase. More clearly, if we are at iteration k then

a move is classified as tabu if

k —TABL(e4 ,S1 )	
I 
Ts I

and	 k —TABL(e,,S) . 
I 
Ts	 (5.14)

In other words, neither e, should return to S, nor e1 should return to 5, during the

following I Ts I iterations. By storing in the tabu list the time (iteration number) when

a move is made tabu, tabu status can be checked in two simple operations in Equations

Chapter 5	 198



(5.14). This data structure provides a better and fast way to check the tabu status of a

move than that in the classical circular approach explained in Section 2.3.3 which needs

more input control for the freeing strategy.

5.4.2 The short term strategy

The short term strategy is an overall strategy and the core o(the TS algorithm. It manages

the interplay between the forbidding, the freeing, the aspiration, the move selection

strategies, and the stopping criterion. It is also designed to permit the evaluation of the

best admissible move in the neighbourhood based on tabu restrictions and aspiration

criteria. Aspiration criteria are measures mainly designed to override the tabu status of

a move if this move is good enough and sufficient to prevent cycling. The tabu restrictions

and aspiration criteria play a dual role in constraining and guiding the search process,

Glover [1989a]. Tabu restrictions allow a move to be regarded admissible, if these

restriction are not violated. A tabu move is also admissible if aspiration criterion apply

regardless of the tabu status (see Section 2.3.4).

(a) The aspiration function:

This function can have different influences on the quality of solutions (Section 2.3.4).

Based on experience, we have learned in the early applications, only the following

aspiration function will be used. Let S1,,,, be the current best solution found so far, during

the search. LetS' be a tabu solution in N 1 (S) and A= C S')—C(S) be the value of the

move. The solution S' is admissible by the aspiration criterion if Equation (5.15) is

satisfied.

C(S)+A < C(S 1)	 (5.15)

Chapter 5	 199



In other words, a tabu move considered admissible if it only improves the best

solution found rather than the current one. This move provide a new direction of search

and guarantees that cycling would not occur.

(b) The move selection strategies.

We consider, here, two selection strategies to select admissible move from the candidate

list of moves. The first strategy is the best-admissible selection strategy, BA. The BA

strategy selects the admissible move from the current solution which yield the greatest

improvement or the least disimprovement in the objective function, subject to the tabu

restriction and the aspiration criterion (see Section 2.3.7b). The corresponding TS

algorithm which employs this strategy is denoted by TS^BA. The second strategy is

the first-best-admissible strategy, FBA, which is based on the combination the first and

best improve strategies of Section 5.2.3. This strategy uses a greedy approach which

selects the admissible move that provides an improvement over the current solution in

the objective value. If all moves in the candidate list are tried without any improvement,

the FBA strategy selects the best disimproving move (see Section 2.3.7c). Similarly,

the TS algorithm which uses this strategy is represented by TS+FBA.

The candidate list for the TS+FBA algorithm is the whole neighbourhood N1(S)

generated by the 1-interchange mechanism. The size of the candidate list is dynamic

and determined automatically by the search itself. The dynamic sampling is a desirable

way to search a large neighbourhood. The candidate list for the TS+BA algorithm is

the set of the best admissible moves in the neighbourhood. This list is very expense to

compute especially for large-sized problems. The reason is that the whole neigh-

bourhood must be re-evaluated to select the best move after each iteration.

(c) A special data stru cture for the BA selection strategy:

Candidate lists occupy an important practical role in tabu search by balancing the

Chapter 5	 200



computational efficiency against the goal of obtaining a highest evaluation move, subject

to satisfying the associated tabu restrictions. The computational effort to find the highest

evaluation move is notably reduced by the use of the proposed data structures. The data

structure we propose pennit only a small number of evaluations to be recalculated (in

order to identify a new best move) from one iteration to another. The need for a data

structure is that the neighbourhood increases with the problem size, the BA and B!

strategies become more expensive to execute, when implemented in any descent or Any

TS algorithms. It also requires more computation effort to store and compare moves.

We have designed a special data structure, that provide the reduction in the computation

time without shrinking or sacrjficing the quality of solution.

(b) RECM matrix

Figure 5.8 A data structure representation for the BA selection strategy.

Chapter S	 201



This data structure needs two matrices: Let BSTM be matrix of size vxv, and RECM

be the othermatrix of size (v(v-1)/2)x5. The top triangularpart of the matrix BSTM(i,J)

stores the objective value of the best move obtained by the 1-interhange mechanism

between a given pairs S, and S1 if such a move exists, otherwise a high value is stored

instead. The lower triangular part BSTM(J,i) stores the index 1 of this combination

S, and S in the set (1,...,v(v-1)/2) (see Equation 5.3); this index is then used to indicate

the position in which we store the attributes of the highest evaluation move obtained

from the two route sets i.e. RECM(l,1)= S1 , RECM(1, 2)= S,, RECM(l, 3) e,

RECM(l,4)= e1 , RECM(l,5)= b with b = as the move value. This data structure is

illustrated in Figure 5.8 with an example of v= 6 vehicles and undefined number of

customers, as the data structure is independent of the customers number. There are

6(5-1)12= 15 possible pair combinations, which represent the number of rows in Figure

5.8b as well as the number of entries in the lower and upper matrices in Figure 5.8a.

The arrows show the chronological mapping order between the two matrices BSTM and

RECM. The columns in RECM represent the two pair route sets, the two interchanged

customers and the move value b. During the search, the b and the corresponding index

1 of the route sets are first identified from the BSTM then the 1 value is used to get the

attributes of the move from the data matrix RECM.

This data structure evaluates all moves in the neighbourhood N 1 (S) once at the

first iteration. At each iteration, the upper matrix of BS1'M is scanned and the best stored

move is identified and accepted. Then after an accepted move, only the two corre-

sponding route sets are affected, and the others remain intact. Thus, only the moves in

2 x v pair combinations of route sets ((SI ,Sk) Vk ^ i and (SJ,Sk) Vk ^j) need to be

evaluated rather than all moves in the whole neighbourhood considering the v(v-1)12

pair combinations. As a result, the time requirement for this data structure to evaluate

the neighbourhood is 0(v) rather than 0(v2) 
ofO (( fl. 

The 
0 (( 

)2) 
order is the number

Chapter 5	 202



1

160

.140

F20

.jlOO

80

160

moves examination checked inside a given pairs of route sets. This data structure will

save a lot of computation for any value of v ^ 5 as illustrated in Figure 5.9 without

sacrificing the quality of the solution.

200

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
vehicle numbers

Figure 5.9. Computational requirements with and without the data structure per one

iteration of the BA strategy.

The TS+BA algorithm which uses this data structure, DS, for move selection is denoted

by TS+BA+DS algorithm. Also, the descent algorithm which uses the best improve

selection strategy, B!, and this data structure is denoted by BI+DS algorithm.

Note that, the TS+FBA algorithm can not use any special data structure for its move

selection strategy. The TS+FBA algorithm accepts the first admissible move, which

gives a reduction in the objective value of the current solution say S. The search is then

Chapter 5	 203



starts from N 1 (S) as in the search by the descent method. As a result, the neighbourhood

size is not generally fixed. It is, however, of a variable size, which is determined

automatically by the search. Furthermore, the FBA algorithm records and updates the

best admissible move during the search, for the following reason. If we search the whole

neighbourhood, N 1 (S), without finding any improved solution over the current one, then

the best admissible move is accepted. At this moment, the TS+FBA is similar to the

TS+BA algorithm. Moreover, the TS+FBA algorithm accepts more moves in good

regions, hence that tabu list is updated more frequently and as a consequence a larger

part of the solution space is finally searched.

(d) The stopping criterion.

The stopping criterion, we used in the TS algorithms is based on a maximum iterations

number (MAX!) elapsed since the iteration at which the solution is found. This has the

advantage of relating the stopping criterion to the problem solution changes. However,

the MAX! iterations at the end of the search are a loss of computational effort, and it is

good to estimate a total number of iterations to be performed so that such a loss can be

saved.

We have used a statistical method based a multiple regression analysis to analyse

the iteration numbers during which a significant improvement in the objective value

occurred. A fitted equation to get an approximate value for the total number of iterations,

M, based on problem characteristic is similarly estimated like the I Ts I value. This is

merely a guidance so that extra time can be saved and good solutions can be obtained

with a reasonable computation time. This estimate, for the TS+BA+DS is obtained with

an R-squared value of 8 1.8%, and its value is computed by:

M=340+O.000353xpx(nxv)2	 (5.16)

Chapter 5	 204



where p is a measure of a problem tightness called capacity ratio in Table 5.1.

5.4.3 Tabu search algorithm.

In this section the general tabu search steps will be presented.

(a) Initialisation.

Step 1. Get an initial heuristic solution S. e.g by applying the savings algorithm of

section 5.2.1.

Initialise, the tabu list size I T, I;

Set the initial tabu list TABL(ij)*— —oo Vi,j;

Perform a cycle of search to initialise the data structure matrices BSTM and

RECM if the BA strategy is used;

Set a value for MAX! (a maximum iteration number to be elapsed since the

best solution is found) or a total number of iterations M, according to Equation

(5.16);

Set counters k +— 1, and ku,, 4— 0.

(b) Selection and acceptance of generated neighbours.

Step 2. Choose an admissible moveS' E N1 (S) (feasible and not tabu or tabu status is

overridden by aspiration criterion) according to the BA or FBA selection

strategy.

Update as follows:

-	 Storing the attributes of the newly accepted move in the tabu list matrix

TABL.

-	 Update the curint solution S.

Set k4—k+1.

Chapter 5	 205



If current solution is better than the best solution found so far then update

the latter and set k,,,, - k.

- If we are using the BA strategy, then update the BSTM and RECM

matrices. (Data structure for the selection the best move).

(c) The stopping test.

Step 3. If (k - k > MAXI) then go to Step 4, otherwise go to Step 2.

Step 4. Display the TS final and initial solutions together with the computation times.

Stop

5.5 Computational experience

5.5.1 Test problems

The set of test problems we used in this work for comparing the solutions of the SA and

TS methods with the best solutions reported in the literature, are to be discussed in this

section. In the literature some data with customer locations defmed by coordinates are

published and the calculation of Euclidean distances is assumed between the customers.

This could be done as a real floating point operation or as an integer-operation with

truncation. Hence, different results were reported in the literature for the same problems.

Our distance data is calculated in a real floating point operation point. Descent, SA and

TS algorithms are compared to solution methods that gave the best published routes.

These methods are summarised in Paessens [1989].

The test problems are of two types according to the existence (or absence) of

maximum route time limits. They are the 17 classical problems in the literature ranging

from tight or loose capacity, with or without time constraints to some geographically

Chapter 5	 206



C

2

0
C.)

.
CF)

4I
C.)

C.)

c

0
4-

C.)

U
.1)

3 0 0 cl	 N N — 0 00 r 00 0 00 — C1	 0 00	N 0. O O. 0. O 0 0. O 0' 00 00 00 00	 00 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0

E 0	 0	 , • • ,	 • 0 0 0 0 0 0 0
—	 — — — 0 V — —

Cd,

I	 I	 I	 S	 S	 I	 I Nr

III
I.

— — c.,l c'I e.1	 I .-'8

I

El

I
Cn N — — _ — —	 N — — — _

N N 0 0' 0' 0' 0' 0' 0' 0' 0 0' 0' 0' 0'0 O'O'O'OONNN N
.	 0' 0' 0' 0' 0' 0' 0' 0' 0' 0' 0'. 0'. 0'. 0' 0 0 0'
.0 • — — — — — — — — — — — — — — — —

OQQQ0000QU 000000L)

—	 . 

ir 'O N 00 0'	 —	 ''QQQQQQL)
'S

L)



_. —'. 0'	 N
'ON

- - - -

u000z

In

I-

-
C.

00

0 0 0 0 0 0 0 0

0
C.)

C.)

C.)

0

C.)

C.)

If)

C)

E
C)

E	 I

j

__	 l

I

	0 	 m 0 0	 I

IC.)

	

I N 0' \0 '.fl	 CM — C1 .O I
C) I CM — —	 CM CM	 CM I

I&

I

I-

I__	 l
UI

El
00 si vi vi

I

vi vi r-. r N — — —

C)	 C) C)	 C)	 C)	 C)	 C) C)	 C)
zzzzzzzzz

— CM	 vi '.0 N 00 0'.
EZ ZZ Z Z Z ZZ Z

L—--	 .
00

E

000QZ



clustered problems. Their sizes range from 29 to 199 customers. In addition, we gen-

erated randomly 9 new problems, 3 each of sizes 50, 75 and 100. Their coordinates

points are taken from the uniform distribution between U[1,100], while the depot

coordinates are chosen from the U[45,55]. The customer demands are generated in

the interval U[20,40], while vehicle capacity are fixed so that ratios of the required

demands to the available supplies are in [0.90,0.92]. More details on problem char-

acteristics are summarised in Table 5.1.

Computational results are evaluated using the RPD relative percentage of a sol-

ution, Zk , generated by a heuristic h from the new best solution Z,, i.e.
RPD = '°°. 

The average computation time, ACT, in CPU seconds of the actual

execution is reported excluding input and output time. The algorithms are

programmed in FORTRAN 77 and run on a VAX 8600 computer.

5.5.2 Descent algorithms

In order to design good approximate algorithms, we need to equip them with the right

choice of: a neighbourhood generation mechanism; a selection strategy of alternate

solutions and a cost evaluation function. We varied these parameters in order to examine

not only their effect on running time, but also their effect on the solution quality. More

specifically, we tested the effect of the neighbourhood size such as produced by the

1-interchange and the 2-interchange mechanisms. The descent method using these

neighbourhoods are implemented using a first-improve selection strategy of section

5.2.3(i) in the 1 +FI, 2+FI with 2-opt TSP procedure of Section 5.2.4(b). The best-improve

selection strategy BI of Section 5.2.3(u) is only implemented using 1-interchange in the

1+BI descent procedure with the same 2-opt TSP for route calculation. Furthermore,

the best-improve strategy is implemented using the data structure of Section 5.4.2(c)

with cost evaluation criterion of Section 5.2.4(c) in the BI+DS descent algorithm. The

Chapter 5	 209



BI+DS also uses the 1-interchange neighbourhood mechanism. The objective of these

variations is to establish the best combination of strategies from the experiment, and use

them in the metastrategy SA and TS algorithms for further research analysis.

Computational results are listed in Table 5.2, reporting the obtained solutions and

their computation time in CPU seconds. In evaluating the results, we seek to answer

several questions. First, how big the neighbourhood should be? We have used the

A.-interchange descent algorithms with ?. e { 1, 2} embedding the first-improve selection

strategy of Section 5.2.3(i), with the 2-opt route cost evaluation criterion of Section

5.2.4(c) at each attempted move. We observe that the resulted algorithms namely, the

1+FL and the 2+FI, improve significantly the initial starting solutions of (C&W), Clark

& Wright [1964]. The average relative percentage deviation, (ARPD), is reduced from

26.65% (C&W) to 10.07% and 4.87% for the 1+FI and 2+FI algorithms, respectively.

Their corresponding average computation time ACT increases from 1.51 to 141.22 and

2941.22 seconds. The 2+FI algorithm improves over the solution of 1^FI algorithm by

106.77% at an extra AC!' (a factor of about 20). However, the latter 1+FI improves the

C&W by 164.64% at only 92.5% increases in ACT. The rate of improvement of the

1+FI algorithm is better than the 2+FI algorithm with respect to computation time and

solution quality. Although, the 2+FI found the best known solution for problems 01

and G2, it shows a great variability in computing requirements, it takes 0.89 seconds for

problem (CL) of size 30, and 14,886 seconds for (C5) of size 120 but 4,274 seconds for

(Cl) of size 199, although the last two problems have the same capacity ratio of 0.98.

The reason for this variability is partially due to the large neighbourhood search with

=2 if at least one improvement has occurred over the 1+FI solutions.

The li-FI algorithm has started from bad C&W solutions with RPD's of 24% and

28% for problem CS and Cl respectively. This means a large number of steps were

Chapter 5	 210



00N 0 - N00 N 00 I( 00-
0% N	 %Q	 00
-	 e V© \O %O	 -0000	 0% 0000	 - '- - -	 - - -

I

I V N 0%	 0 - 0 0 0 N 'Fi 0 N 0 "0
I d 0 0 .- N '( n 0 e' 0	 o I- N	 0%

El	 NN	 N'l

N - N N 0%

10% N 00 I1I 00 0% 00 - - V 11I 0% 0% 00 %Ø N
I — — —

+1-I

00 0 N 0'. 00 '0	 0 0 0 '' N fl 0NNN•N0%00%'.C1N
Ir0	 00 N	 0 ' 0W V) - V	 N I1 N

- - O '1% N - 0 "0 %f 0'. © ' N NE	 - 00	 N	 N N

00NN'000Orfl
Ir Ie fl 00 N '.0 N 00 V N N '1 %000	 0%a%N00v000'.00©	 V0%0%00'0N V'

— —	 — — —	 — — —

+

I'.00——o

V N	 fl CON N N
N	 0\N

N 00 0 N	 - '0 V) N 0 -

I•	 ii ..., 00 0% 0	 '% N —I	 v ' 00	 — . Ir N N

	

— — —	 — — —100	
V 00 0 00 0	 V) 0'. 0'. 00	 N V

NI

I N N - 0'. 0 C -	 N	 N - 0
-	 Vvfl0	 NO\0\N00E I	 - V - N	 -	 N	 N

II( Ill fl 00 '.0
I 0% N 00 Ifi 00 0' 00 - - lr '0 0% 0% 00 '0 N V
I —	— — —	 — — —

+1
—I

) 100 N - '.0 0 00	 N ('1	 N 0 0 00 0% 00 NElo — — N N —

_ ,-' '	 '-'	 _ _	 _	 _ '-SN 'r Vs 0 00 0 N N '.0 '.0 N 0 - - V
S.-.	 S S..' - S..' — '' — — S. — — — — —

'-' N 00 00 %1 ' N '' -.	 0 ''	 ''- lea 00 N V1 00 0% 0'. 0'. N N 0'. V N '.0 1 -0 N 00 '0 Q 0'. fl N 0'. 0 '0 00 'ea lea	 00 N
a' '.	 - -	 0	 0'. - N N	 0'. 0 0' '.0 fl '.0

	

—	 — —	 — — — —

I-IOINI	
I

idiQIdILI0IIIdiiui0l0

US.-,
N

.0

In

L)



0

2

It.

rd)

I

I

.5.5
o) U
EE

.
4)4)

n

.	 .

I

C.

	

l,- —	 ' I

	

—	 C'	 —	 00	 I

	

31 r- 00	 0 o	 —	 I
3I

C..,'

c'	 1
- -U -

E
I-

- c e.i N	 ',b - 1 00 'O
- e' C'1 00 I'I 0	 - w
00 O. -	 Cfl cfl	 'O

- - - - - - - -

+

	0 e'l o - m N 8	 00 • N

	

I N O O 0	 N	 C

E I	 -	 N	 I0	 00

	

-	 I

	• 0 wI	 I

	

8 Q	 N "0

	

I N O\ - C	 - -	 I- I	 - - - - - - - 

I

	

I	 8 0 l.s "0 0 0I	 I

	

Ir — — 00 rr)I	 .
—

	

- I ' c — 00 fl 0 N — '' I	 .j'I —	 0'. ie	 © 001	 C'.

	

0'. '.0 0 —	 N I
	N — 0'.	 fl 0'. 0'. 00

N 00 0 0'. — 0 - — c'— — — — — —
+

1 N N 00 C"l	 0'. fl — r'i •
	N00• 0• 	 ei

cn 0'. cfl N	 00	 00 00
—	 00 C" - 00 00E—

I-

N — c N 0'. N C' 0 N
It 0'. '.0 N N '.0	 — 00 0
N 00 0 0 C'l — —

— — — — — — — —

+

U —	 V1 '.0 V 0 %fl 00 fl	 —
E

0 0 0 0 0 0 — — — —

_	 .-' -' .-' .-'	 ' .-' v-	 S
'.0000 N0S00 0' '-, —	 '-, — . — —

'' 00	 '' '.0	 '	 0'. '' ''
'	 N C e N

0'. — 00— ('4 — — V — N._ -	 _	 —	 — —

I_I ('.IIenI '.0 I N I 00 IIIzlzIzIz z z z z z
I	 I	 I



needed to find good solutions. The C&W also produces very baLl initial solutions for

the random data with the relative percentage deviations, RPD, varying form 28% to

59% and from 0.87% to 28% for the published data. This demonstrates that descent

algorithms depend heavily on good initial starting solutions to save computation time,

for acceptable quality solutions, in addition to, a good neighbourhood search

mechanism.

Second, which selection strategy - a best-improve or a first-improve - is best?

Table 5.2 shows that the 1+FI has an ARPD of 10.07%, which is almost the same as,

9.91%, of the best improve descent algorithm 1+BL The latter requires an ACT of

582.42 seconds which is 312% more than the ACT of 1+FI algorithm.

Last, what effects does the approximate route cost evaluation criterion (c) and

the use of a special data structure have on solution quality and computation time? Not

surprisingly, an examination of Table 5.2 reveals that the best-improve with a data

structure algorithm, BI+DS, improves the ACT of 1+BI by 2390% and that of the

1+FI by 504%. However, its average relative percentage deviation is 14.36% which is

worse than the 1+BI value by 44%. Consequently, we are left with two competing

algorithms: 1+FI which gives better results than the BI+DS; however the latter

requires less computation time.

5.5.3 Metastrategy algorithms

In this section, we evaluate the performance of the SA andTS algorithms. Computational

results are reported on the same test problems. First, we discuss the implementation of

SA and its cooling schedule parameters. The C&W solution is used as a starting solution.

The cooling schedule is used as explained in Section 5.3.1. It is superimposed on the

1^F1 descent algorithm with a cost evaluation criterion of Section 5.2.4(c). From our

Chapter 5	 213



experience with SA on the CCP and GAP, we found that the cooling schedule parameter

values are related to the problem size and estimated from one run of SA on a cycle of

the initial solution without move replacements. We suggest that a is set to be the product

of the number of customers n and the size of the neighbourhood - the number of feasible

solution; the number of customers n to 'y; the largest, and smallest increases in solution

costs are given to v':' and T1 respectively. A value of three is given for the stopping

criterion parameter (R) of Section 5.3.1 (iv).

Computational results ofSA are listed in Table 5.3. Results show that the simulated

annealing finds 10 new best (or previously known) solutions as marked with * for the

equal best and b for new best in Table 5.3. SA fails to reach the previously best known

solutions for tight capacity problems Cl and C5. However, SA solutions quality is not

robust and varies with the problem making the 2+FI solutions better in some cases e.g.,

SA solution for CS is about 13% away from the best solution compared to 1.05% of

2^FI, and SA were worse than the 2-i-F1's for 6 out of the 9 random problems. The

algorithm that performs the best, uses the longest computation time. However, simulated

annealing solutions can be improved by further tuning its parameters forproblems where

running time is short. The ACT to the best solutions together with the ACT to the end

of runs are reported in Table 5.3. This is to indicate how early a solution can be found,

as extra time is spent to prove that we can not improve over the best solution obtained

so far by the algorithm. The overall ARPD of SA is 3.27% which is better than 4.87%

of 2-i-FL, with an ACT of 3275 seconds for SA compared to 2941 seconds for the 2-i-Fl

algorithm. This presents a percentage improvement in solutions for SA of 48.92% over

2-i-Fl at only an 11.35% percent increase in ACT. Furthermore, the SA algorithm

generates a reduction in the total number of vehicles used and finds new reduced numbers

for 4 problems marked with ' in Table 5.3. However, this was not the case for the 2-i-Fl

where no such reductions occurred.

Chapter 5	 214



%1)

c1

E
—a
0

—a

a a a
II fl 	 2

— — —

I	 ©	 0 00 fl —

	

— — — — c•4	 0—	 0	 C	 N

	

I O C'1	 0 O CS OS	 00 0	 SO	 N 0
01	 —	 — - 00 —	 00 If V en	 SO If SO0

— Vi 00 N — 0 C 0 0 e N 0 '0 05 50 50 N
•• ('1 00	 — 00 0 en en N —	 0 0' N N—	 '0 N	 SO 0' N Cs — 50 0 50 — —

	

—	 ei ei en SO en en en n 0

	

ensO	 —

N 00 0 50 0	 50 C'1 05 — N 00 0 N	 — 00— — — 50 —	 — lF'a	 en e N — ui 50 00
00 05 en Vi 0 C1 Vi	 00	 —
— Os	 50 Cs — C' Cs	 0 N 05 50 CS 0' Vi

c un	 so en — —	 en en
N

0000000—en000000

0 00 o b SO Vi NI N	 —	 en en	 — 0 en
100 — 

00	 00 00 00 — — —

o_Iri1enLt
kluIQIc' UQQQQQQQQQQ

I - I - I -:i	 I	 I	 I

en
Ir

.0

I-

C.



0
10
• 00
i.
5<

).' .

—

00

n— 0

0
2 •

00

-	 .
to

:

4

I.

U

U
I C

4

— -

• U

I-

0.

E

0

-S

00 cv 000 O — c
0 — C 0 oOei en

(•	 ".5	 . "0 11s
— — — en en

len	 en — — ei ". 00I	 en N 0 en 'r I—	
——	 -IoI	 I

I	 en — %0 — "0 0 N 11.5100
INva\ — r-I -
Ien—-00l'r

N	 0 — — v) I N

r-	 0 en rI•
11.51lo	 en en 0

=I cn 00	 en —ci

00 9 N 0	 00 2

I N	 r1 C N —	 01 NIr-00000s

Ik	
00 — ".5

— — — — — — — I

DI	 I I I I I
U

I	 I	 I	 I	 I	 I	 I	 I



Second, we analyse the behaviour of two tabu search algorithms namely: the

TS+FBA algorithm and the TS+BA+DS algorithm. Both schemes follow the imple-

mentation discussed in Section 5.4 with a cost evaluation criterion of Section 5.2.4(c),

and a value of 5xn is given for the stopping parameter (MAX!). They were run with

different tabu list sizes taking integer values from [ J i ... to [ 1 and the best of

computational results are reported in Table 5.4, and Table 5.5 for the TS+FBA and the

TS+BA algorithms respectively, and the use of Equations (5.12) and (5.13) for the

large-sized problems. Computational results in Table 5.4 show that The TS+FBA

algorithm provides the new (or previously) best known solutions - marked by b the new

best or • for the equal best - for 15 problems, and gives solution costs that do not exceed

1.96% with respect to the best solutions found by the others. On the other hand, looking

at the results of TS+BA+DS listed in Table 5.5, we see that the algorithm finds the new

best (or best) known solutions for 11 problems. The solutions for the other do not go

beyond 2.67%, except for the case of problem, N8, where the solution is obtained with

an RPD of 2.02% compared to an RPD of 0.94% for the 2+FI solution. However, the

2-i-FL algorithm takes 5010 CPU seconds and only 888 seconds for the former.

Both tabu search schemes find the 4 new best reduced vehicle numbers marked

with' in each Table. Average performance analysis demonstrates the superiority of the

TS+FBA over the TS+BA+DS algorithm with respect to solution quality. The ARPD

is 0.43% compared to 0.66% with an AC!' of 966 seconds for the former associated with

an ACT of 499 seconds for the latter. This reduction in ACT is mainly due to the special

data structure we have used.

Finally, an excellent regression fit is observed for Equation (5.13) with R-squared

equals to 82.5%. The coefficient values of the equation are significant with a 99%

confidence level. The error in regression is due to some case where either a small (or

Chapter 5	 217



00

4-

0
4-C.)I)

..	 ir 0' 00

. 100	 00	 00 00 00

0%

I	 Ci 0	 cn	 %O	 —. 00 N	 W —00 %O — N	 r'	 N N C' 0 1 00 C

I"	 —	 00	 0	 —	 N.—	 —	 .

10	 — N C' 0 0 V IF 0 N	 00 O 0 N
I C C'	 0% 00 — 00 Cfl N NI	 —	 c'	 — r' —	 el cl — — — —

0% VI 0% N	 0% VI Cl 0 — 00 0%	 VI %0 0 VI

• .	 — —	 —	 — C.'; '

IN VI "00% N	 0% VI C.fl VI Cfl '' — eI —	 0010 O 0% C'	 N 0%	 VI	 r'4 0% "0I.—. en	 VI C'l C'1 CnN en 00 ("1 "0 "0 VI 00000%I —	 —	 —	 — —_.01

C)
— — —

.

100	
00 V•)	 00	 — —	 Vl 0% 00 00 — — —

I_I•Ic..lI_enflH00	 hhQQQL)
I	 I	 I

VI

I,)

c)



•	 I.

0.

U
0

4

C
4

C)

•00—

•	 U

0
10

bC

0

;

V0

3

3

U

0
0 —

a

11)

'I

.

t)

I	
Cnr- — e1 —	 c

I '	 V3	 — r-. '0e 00 N N I1•

_ U I Ce) Ce) '0
IC C C	 g

m E —	 — 0% — %O 0

i2I	
—	 Ce)	 —

I
I	 Q\	 00 Ce) '0	 N II	 —	 — — — e1	 c' I

I!	
0 C re) .011r

'0 N ce) cn 00
I v•)I Ce)	 00	 fl	 I

E	
—	 V) N Ce) ' 0% N I 0%

Ce) N — N	 00
C C'I Ce) — '.0	 00

— N Y00 ci N N. N 00
— — — —-o

00 9 N 0'	 00 2

C — 0 0 C 0 0 0 0 0

•	 .	 •	 • I

— Ce) 00o o —— — — — — I
II

II
IzIzIzIzIzIzfzIziz
— C'l Ce)	 If) '0 N 00 0'.

I	 I	 I	 I	 I	 I	 I	 I

-4

.0



0

I)

0

I-

4-

I
I

I

0
CM
CM

a	 0\ 009	 00 0
en en —

. 1 00 — 00 W 00 00 00 — — — V	 00 00 — —

. 19	 — — 00 0 en	 —	 — 00
en	 — — ei	 en en en

00 N	 I( N r-	 0

• I — — —	 . .

	

—	 r4en

Ici — it e4 '.0

	

c' N — W Vi C4 N N CM	 C 0'. iei en c'l 0 c

	

,.	 .	 —

N

	

r-. N	 00 — o — — — c' u, V
IVi0

CM — — —

	

—	

en CM	 — —	
— 00	 N

CM —	 — —

Vi 0	 00 0 0 0'. 0'.	 — — en Vi	 —
N — CM N 0'. en	 en Vi 00 0'. N CM

CM — N CM CM	 00 en Vi 0	 't'. — —
en en	 —	 — —

.0

N	 v 9 00 9 N	 '.0	 0'. — — — —

C/	 I

CM —	 en —

+ 1 00 — 00	 00 00 00 — — — Vi 0'. 00 00 — — —

I en I, v L0 l I00IIoI.-IeIenI.er

i i uIoIuIuI 6 Ic)I I°III°I

Vi
In

.0

U)

4-

C.

.



0.

n

C)
C

-1
4

—

U4

C)

•0 C
C
— -

• S

C

7.5

5C)
:

C)
C

iii

In

0.

0
E

'-a

I
I

I

c1

It

	

—	 — ci	N 00	 — — — —

I N N	 0% 00 —	 N
— — N — cfl	 —

	

v. vi 0000	 vi n	 C' N
fl I1 Vi C' tfl — 00 00

	

00	 00	 00 fl V)
	C1	 (	 N0%

—	 vi 00 00 C•

I —	 —	 — —

—	 %O C'l	 00 c — —
en V —	 C N — — —

——OONCen-00%en
— 0 — C C C N 00 0 N

E	 —	 —	 C'1 (' 00 Vi

I '.0 e1 —	 0 Cfl 00 c'l enlvi vi o c-
I	 N Cl C1	

© N —— —

:iI

I '.o 002 — — o0N — — —

Cl)	 I

+ N 00 — — — — — —

-	 —een.- vi%0 N000%-E z z z z z z z z z

I

v-I

ir
.



large) number of iterations are needed to obtain a good solution. Similarly, a good fit for

Equation (5.12) with an R-squared value equals to 67% which is not as good as the

previous one. However, the error in the estimated tabu list sizes can be reduced as

suggested in Section 5.4.2b. The alternate tabu list size values are used for the large sized

problems as the idea has emerged after analysis on relatively small problems is made.

5.6 Comparative analysis and conclusions

In this study, we have developed ?.-interchange descent methods, and superimposed

metastrategy simulated annealing and tabu search algorithms on the best of descent

methods for the vehicle routing problem. The objective is to compare their performance

with respect to solution quality and computation time. We tested these approaches on

classical routing problems with capacity and maximum distance constraints, and on

randomly generated data with capacity constraints only. The results of our investigation

is listed in Table 5.6, and can be summarised as follows:

1. The constructive method of Clark er al. [1964] produces solutions with an ARPD

of 26.65% and a total number of 170 vehicles which is about 4.3% away from

the optimal number. X-interchange descent methods with ( = 1, and 2) improve

substantially the C&W results in that the 1-i-F!, the 2+FI and the 1+BI algorithms

have an ARPD of 10.07, 4.87 and 9.9 1% respectively. The best improve with

approximate cost and special data structure BI+DS has reduced immensely the

average computation time (ACT) of the 1-i-B! algorithm by 2390% with a little

sacrifice in solution quality of an ARPD of 14.36%. Unfortunately, descent

methods fails to reduce the vehicle numbers and uses the same published vehicles

number of 167.

Chapter 5	 222



Table 5.6. Average relative percentage deviations, ARPD, of the starting and old best

results over the new best found by metastrategy methods.

Problem Clark & wright	 published best	 New obtained best

number solution vehicle # solution RPD vehicle # solution vehicle #

01	 1017	 5	 875	 0.00	 4	 875	 4

CL	 1258	 7	 1214	 0.74	 7	 1205'	 7

G2	 888	 5	 810	 0.00	 4	 810	 4

Cl	 625	 5	 524	 0.00	 5	 524	 5

C2	 1005	 10	 844	 0.71	 10	 838'	 10

C3	 982	 8	 832	 0.24	 8	 830'	 8

C4	 939	 10	 829	 1.22	 10	 819e	 10

C5	 1291	 7	 1051	 0.86	 7	 1042'	 7

C6	 1299	 12	 1082	 3.63	 12	 1044'	 12

Cl	 1707	 16	 1387	 3.97	 17	 1334'	 16'

C8	 670	 6	 560	 0.90	 6	 555'	 6

C9	 989	 12	 916	 0.77	 12	 909'	 11'

ClO	 1055	 10	 885	 2.19	 9	 866'	 9

Cli	 952	 11	 876	 1.15	 11	 866'	 11

C12	 1646	 11	 1567	 1.42	 11	 1545'	 11

C13	 1383	 15	 1211	 3.59	 15	 1169'	 14'

C14	 1671	 20	 1494	 5.35	 19	 1418'	 18'

ARPD	 26.65 4.29 (170)	 -	 1.58	 2.45 (167)	 0.00	 0.00(163)

Indicates a new best route length or a new vehicle number is found.
(x):	 Shows the total vehicle number used by the algorithm.

2.	 Simulated annealing leads to 163 vehicles, and some of the new best know sol-

utions. However, simulated annealing shows big variabilities with regard to

solution quality and computation time. The ARPD is 3.27% with an ACT to the

best of 3275 seconds.

Chapter 5	 223



3.	 Both tabu search schemes with a first admissible strategy TS+FBA and a best

admissible strategy TS+BA+DS, out-performs the SA algorithm in solution

quality and computation time. Tabu search results are also more robust than SA.

TS+FBA produces an average relative percentage deviation (ARPD) of 0.44%

which is better than 0.66% of that of TS+BA+DS, but at a double of the ACT.

This time reduction is due to the sophisticated data structure which can not be

applied at the moment for TS+FBA. Since the difference in the ARPD's of TS

schemes is not huge, we recommend the TS+BA+DS to be used rather than the

dynamic tabu version of TS+FBA when the computer time is a scarce resource.

4. Good estimates for the tabu list size and the total number of iterations for tabu

search schemes is established and found to depend on the characteristic of the

problem data (customers, vehicles, ratio). A new dynamic approach for tabu size

is introduced to reduce the error of the estimated tabu size value.

5. The published vehicle numbers of 167 (in total) is substantially larger than the

new vehicles number of 163 with an RPD of2.45%. Also, the ARPD of solutions

is worse by 1.58% on average. Best solutions are found for 14 out of the 17

classical problems, and are equal in the other three as they seem to be optimal due

the VRP's small sizes. A summary of results is found in Table 5.6. The largest

improvements are found for problems of medium and large sizes with (and

without) time constraints, e.g. the RPD of problem C14 (199 customers) is 5.35%

and the new vehicle number is 18 rather than 19 for the best published and 20 for

the C&W, and in problem C9 (75 customers) there is a reduction of one vehicle

in addition to cost reduction. This reflects the fact that the old methods

are not able to handle efficiently large sizes and extra real-life constraints.

It should be pointed out that in all developed algorithms there was extra running time

involved to handle the vehicle distance constraints. The vehicle service times are

Chapter 5	 224



evaluated in 0(n) operations at each attempted move assuming that the service time

would change according to the vehicle sequence visits. This is not the case here as the

service time is constant throughout, and the vehicle service time can be updated in one

addition and one subtraction after each move. Hence, a further reduction in the CPU

can be made. Further more, it is not necessary to confine ourselves to a feasible starting

solution if they are difficult to obtain. The metastrategy SA and TS would find feasible

solution as shown for problems where Clark and wright initial solutions were infeasible

in terms of the optimal vehicle numbers.

Chapter 5	 225



Chapter 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 Conclusion

This thesis sets out to design, develop and analyse the performance of metastrategy

simulated annealing (SA) and tabu search (TS) algorithms on three, theoretically and

practically, important combinatorial optimization problems: namely the capacitated

clustering (CCP), the generalised assignment (GAP) and the vehicle routing (VRP)

problems. These problems appear in many business applications of strategic, tactical

and operational nature. They arise in situations involving location, resource allocation,

logistics and distribution management systems. They have attracted extensive studies

in the last two decades in an effort to provide practically applicable and theoretically

sound solutions. The result is a variety of exact optimization and heuristic methods.

Heuristic methods provide fast solutions for large-sized problems, with solutions that

can sometimes be quiet bad. Exact optimization methods can solve only small-sized

problems, and are often unable to handle any additional constraints. For the CCP, the

largest problems solved with heuristic methods are of sizes up to one hundred customers.

For the GAP, a few exact algorithms are available. Problems with 50 jobs can be solved

exactly. Heuristic methods exist for solving problem with instances of sizes up to 500

jobs. For the VRP, (which is the most practically useful of the three) the situation is

very different. VRP' s involving thirty to fifty customers can be solved exactly. Heuristics

exist solving VRPs with up to several hundred customers.

Chapter 6	 226



This thesis constitutes an effort to bridge the gap between the two extreme solution

methods and presents metastrategy SA and TS algorithms, able to deliver near optimal

solutions for realistic size problems within reasonable amount of computational

requirements. SA and TS approaches have attracted the interest of many researchers.

Many successful applications to combinatorial optimization problems were reported in

the literature. However, a few comparisons regarding their relative performances were

conducted objectively. In cases where such a comparison exists, the superiority of the

TS algorithm over SA is claimed, but this is partly because of the use of poor annealing

schemes in their trials. We think that both algorithms deserve further attention. We

propose a comparison of the SA, TS and descent algorithms with the available existing

methods, on the CCP, the GAP and the VRP. To our knowledge, these methods have

not been applied to the above problems apart from a poor application of SA to the GAP.

The main contributions of this thesis are as follows. First, the neighbourhood

structure and its best size are investigated. Different selection and search strategies,

such as a first-improve, a best-improve, and a long term memory are implemented for

the descent (local search) algorithms. Their best combinations are integrated in the

metastrategy algorithms. Second, a number of interesting modifications are made to the

basic SA technique. Hence, a new SA annealing scheme is developed which performed

well on a wide range of problems. It easily out-performs all the other annealing algo-

rithms known in the literature. The scheme has improved solutions to some of the largest

problems available in the literature. The cooling schedule parameter values are derived

from the problem characteristics. The best neighbourhood size and search strategies are

defined. Third, tabu search algorithms are considered. A new TS algorithm, TS+FBA,

is developed. The TS+FBA algorithm is based on a combined first and the best admissible

search strategy (BA) rather than the best admissible strategy. The TS+BA algorithm

which is more faithful to the original TS philosophy uses the BA strategy. For both TS

Chapter 6	 227



algorithms, the tabu list size,I Ts , is statistically defined with a good confidence interval,

in relation to the problem characteristics. A way to vary I Ts I during the search is

indicated. In addition, an estimate for the minimum number of iterations required to

obtain good results is also estimated. The TS+FBA algorithm out-performed the TS+BA

algorithm in both solution quality and computer time for all the three types of problem.

The introduction of a good data structure for the tabu list and the search processing into

the TS+BA algorithm has reduced its computational requirements by half. This data

processing makes the TS+BA more competitive as it requires less CPU time with no

substantial difference in solution quality.

Both metastrategy SA and TS algorithms are flexible in handling changes (con-

straints, objective function) in the models. They are generally applicable to any new

area without problem specific knowledge requirements. They out-perform other existing

methods for the above problems. The 1-intercharge l+FI descent method improves the

initial starting solutions significantly at little extra CPU time. They are only recom-

mended if computer time is a scarce resource. The 2-interchange descent methods 2+FI

require more CPU time than that of the l+FI algorithm with a marginal improvement

over the 1+FI solutions. This demonstrates the power of the proposed generation

mechanism. Long term memory function has improved the starting heuristic solutions

and enabled us to use the same constructive methods to generate different initial solutions.

How do TS and SA compare with each other?

For the CCP, our simulated annealing scheme and tabu search were compared on

20 test problems of sizes up to 100 customers. The SA algorithm, HSS.00, produces

solutions with an average relative percentage deviation, ARPD, of 0.08% compared with

0.28% that of the TS+FBA algorithm. Each of the SA and TS algorithms requires a

similar amount of the average computation time, ACT, of 179 and 181 CPU seconds,

Chapter 6	 228



respectively.

For the GAP, the situation is reversed. Sixty test problems were solved of size up

to 60-jobs and 10-agents. The ARPD of the best solutions of SA is 0.04% with an ACT

of 14.26 seconds, compared to an ARPD of 0.03% with an ACT of 12.94 seconds for

the TS+FBA algorithm. The TS^FBA algonthm uses a long-term strategy. However,

the TS+FSA algorithm produces ARPDs of all trials (and of the worst) solutions of

0.07% (and of 0.09%) while the corresponding SA figures are 0.21% (and 0.40%). This

demonstrates the robustness of the TS and the variability of SA algorithm. Both SA and

TS algorithms have outperformed the results obtained by the set partitioning and SA

algorithms of Cattrysse [1990] in solution quality and computation time.

For the VRP, results are reported on 26 test problems, 17 from the literature and 9

new randomly generated. The ARPD of SA is 3.37% with an ACT of 3275 seconds,

compared with 0.43% and 966 seconds obtained by the TS+FBA algorithm, and with

an ARPD of 0.66% and an ACT of 473 seconds for the TS+BA algorithm with the special

data structure. We found 14 new best known solutions out of the 17 test problems taken

from the literature. Both SA and TS algorithms have reduced the number of vehicle and

the total mileages. For example, the number of vehicles used in our algorithms are 163

vehicles compared to 167 (the best published in the literature), and 170 the initial vehicle

number by Clarke & Wright [1964]. The ARPD of the best published solutions is 1.58%

away from the new best solutions. Most improvements have happened in large-sized

problems with capacities and distance restrictions (e.g., one instance of size 199 cus-

tomers with capacity and maximum distance limit has been improved by 5.35%, in

addition to a reduction in the number of vehicles). The best known solutions for the

other three of sized problems seem to be optimal and can not be improved.

Chapter 6	 229



The TS algorithms seem to be more robust. The ARPD's of the TS+FBA are always

less than 0.5%, but this is not the case for the SA algorithm. Although the SA algorithm

produces unstable results at a higher computation time, for some problem instances, it

finds solutions better than those produced by the TS algorithm. The SA and TS algorithms

are also able to deliver feasible solutions if one exits even if the starting solution is

infeasible. This is demonstrated in the reduction of vehicle numbers when the initial

solutions are infeasible. Both algorithms should not be looked at from a competitive

angle, and our feeling is that both need to be tried when encountered with a new problem

domain.

6.2 Future research

During the research reported in the thesis, new problems were encountered, and

improvements were envisaged. These surely deserve further investigation:

The special data structure, DS, for the TS+BA algorithm is implemented only to

the VRP. Since the results produced by this algorithm, TS+BA+DS, are similar

to that of the TS+FBA algorithm, the computation time of the TS+BA algorithm

for the CCP and the GAP can be reduced using the same data structure. As the

main objective is to solve large-sized problems, this saving becomes practically

important.

The computation time of the metastrategy SA and TS algorithms can be speeded

up using parallel computing machines, and hence, better quality solutions could

be obtained (See Aarts & Korts [1988], Malek er al. [1989] for further details).

Research along this line must be conducted.

Chapter 6	 230



Development of hybrid algorithms which can combine the best features of the

simulated annealing and tabu search algorithms should be investigated. Also a

combination of the metasirategy algorithms and exact procedures provides an

avenue for further research.

The SA and TS algorithms could be applied to extensions of the above problems.

In particular, the many extensions of the VRP (e.g., VRP with time windows,

etc.). Solving the VRP's in two stages: a cluster-first and a route-second approach

could be investigated. The clustering (assignment) stage can be solved with the

help of an appropriate approximation of the cost by using the CCP or the GAP

models. The second stage would involve solving a TSP for each cluster. Also,

problems related to the CCP such as the maximal covering location problem with

capacities (Pirkul & Schilling [1991]) can be attempted by these metastrategy

approaches.

Chapter 6	 231



References

Aarts, E. And Korts, J., (1988), Simulated annealing and boltzmann machines Wiley

& Sons

Aarts, E.H.L., and Van Laarhoven, P.J.M., (1985), Statistical cooling: A general

approach to combinatorial optimization problems, Philips Journal of Research, 40,

193-226.

Agarwal, Y., Mathur, K. And Salldn, H., (1989), A set partitioning based exact algorithm

for the vehicle routing problem, Networks, 19,731-749

Ahn S., Cooper C., Cornuejols G., and Frieze A., (1988), Probabilistic Analysis for the

k-median problem, Mathematics of Operations Research 13, 1-31

Aho, A., Hoperoft, J., and Uliman, J. (1974), The design and analysis of computer

algorithms, Addision-Wesley, London.

Ball, M., and Magazine, M., (1981), The design and analysis of heuristics, Networks,

11,215-219.

Barcelo, J., and Casanovas J., (1984), A heuristic lagrangean algorithm for the

Capacitated location problem, European Journal Of Operational Research, 15,

212-226

Barcia, P., and K., Jornsten, (1990), Improved Lagrangean decomposition: An appli-

cation to the generalised assignment problem, European Journal of Operational

Research, 46, 84-92

Beasley, J., (1983), Route first-cluster second methods for vehicle routing, Omega, 11,

403-408

References	 232



Beasley, J., (1990), OR-library: distributing test problems by electronic mail, Journal

of Operational Research Society, 41, 1069-1072.

Beasley, J.E., (1984), A note on solving large P-medians, European Journal of Oper-

ationalResearch, 21, 270-273.

Bell, W., Dalberto, L., Fisher, M., Greenfield, A., Jaikumar, R., Mack, R. And Prutzman,

P., (1983), Improving distribution fo industrial gases with an on-line computerized

routing and scheduling systems, Interfaces, 13, 4-23

Benders, J.F., and Van Nunen, J.A., (1983), A property of assignment type mixed linear

programming problems, Operations Research Letters, 2, 47-52.

Bodin, L., Golden, B., Assad, A. And Ball, M. (1983), Routing and scheduling of vehicles

and crews, The state of the art, Computers & Operations Research, 10, 69-211

Bohachevsky, I., Mark, J., and Stein, M., (1986), Generalized simulated annealing for

function optimization, Technometrics, 28, 209-217.

Bonomi, E., and Lutton, J., (1984), The N-city travelling salesman problem: Statistical

mechanics and the Metropolis algorithm, SIAM Review, 26, 55 1-568

Bookbinder, J.H., and Reece, K., (1988), Vehicle routing considerations in distribution

system design, European Journal of OperationalResearch, 37,204-213

Brandeau, M.L., and Chiu, S.S., (1989), An overview of representative problem in

location research, Management Science, 35, 645-674

Brown, G. And Graves, U., (1981), Real-time dispatch of petroleum tank trucks,

Management Science, 27, 19-32

Bryant J., (1978) On the clustering of multidimentional pictorial data, proceeding of

LM4CIE symposiwn, Johnson-space centre, Houston, Texas, 647-659

Burbank, F., (1972), A sequential space time analysis of cancer mortality in united states:

etiologic implementations, American Journal of Epdemology, 95

References	 233



Burkard, R., and F., Rendel, (1984), A thermodynamically motivated simulated pro-

cedure for combinatorial optimization problems, European Journal of Operational

Research, 17, 169-174

Campell, H., Dudek, R., and Smith, (1970), A heuristic algorithm for the njob, m machine

sequencing problem, Management Science, 16 B, 630-637.

Cattrysse, D., (1990), Set partitioning approaches to combinatorial optimization

problems, Ph.D dissertation, Katholieke Universiteit Leuven, Department Werk-

tuigkunde Afdeling Industrieel Beleid, Belgium.

Cemy, V., (1985), A thermodynamical approach to the travelling salesman problem: an

efficient simulated annealing algorithm. Journal of Optimization Theory and

Applications 45,41-51

Chaffray, J., and Liien, 0., (1973), A new approach to industrial market segmentation,

Sloan Management Review, 18, 41-54

Chams, M., Hertz, A., And Dc Werra, D., (1987), Some experiments with simulated

annealing for colouring graph, European Journal of Operational Research, 32,

260-266.

Christofides, N., And Eion, S., (1969), An algorithm for the vehicle dispatching problem,

Operational Research Quarterly, 20, 309-318

Christofides, N. (1979), The travelling salesman problem. Christofides, N., Mingozzi,

A., Sandi, C. (eds). Combinatorial Optimization, Wiley, Chichester, 13 1-149.

Christofides, N., Mingozzi, A., And Toth, P., (1979), The vehicle routing problem, in:

N. Christofides et a!. (eds), Combinatorial Optimization, Wiley, 315-338.

Christofides, N., Mingozzi, A., And Toth, P., (1981a), Exact algorithms for the vehicle

routing problem, based on spanning tree shortest path relaxation, Mathematical

Programming, 20,255-282

Christofides, N., Mingozzi, A., And Toth, P., (198 ib), Space state relaxation procedures

for the computation of bounds to routing problem, Networks, 11, 145-164.

References	 234



Christofides, N., and Beasley, J.E., (1982), A tree search for the p-median problem,

European Journal of Operational Research, 10, 196-204

Christofides, N., (1985), Vehicle routing, In: Lawler, E., Lenstra, J., Rinnoy Kan, A.

And shmoys, D. (eds.), The travelling salesman problem: A guided tour of combi -

natorial optimization, Wiley

Clarke, G., And Wright, J.W., (1964), Scheduling of vehicles from a central depot to a

number of delivery points, Operations Research, 12,568-581

Collins, N.E., Eglese, R.W., and Golden, B.L., (1988), Simulated annealing - An

annotated bibliography, American Journal of Mathematical and Management

Sciences, 9, 209-307.

Connolly, D., (1990), An improved annealing scheme for the QAP, European Journal

of Operational Research, 46,93-100.

Connolly, D., (1991), Private communication.

Cornuejols, G., Fisher, M.L, and Nemhauser, G.L., (1977), Location of bank accounts

to optimize float: an analytical study of exact and approximate algorithms, Man-

agement Science, 23, 789-810

Cornuejols, G., Sridharan, and Thizy, J.M., (1991) A comparison of heuristic and

relaxations for the Capacitated Plant Location Problem, European Journal of

Operational Research, 50, 280-297.

Cullen, F., Jarvis, J., and Ratiff, D., (1981), Set partitioning heuristics for interactive

routing,Neiworks, 11, 125-143.

Darby-Dowman, K., and Lewis, H.S., (1988), Lagrangean relaxation and the single-

source capacitated facility-location problem, Journal of Operational Research

Society, 39, 1035-1040

De Amorim, S.G., Barthelemy, J.P., And Ribeiro, C. (1989), Clustering and clique

partitioning: Simulated annealing and tabu search, Departamento de engenharia

eletrica, Catholic Universi'ty of Rio de Janeiro.

References	 235



De Bont, F., Aarts, E., Meehan, P., And O'brien, C., [1988], Placement of shapeable

blocks, Philips Journal of Research, 43, 1-22.

Drexi, A., (1988) A simulated annealing approach to the Multi-constraint zero-one

knapsack problem, Computing, 40, 1-8.

Elgese, R., (1986), Heuristics in Operational research, Recent developments in oper-

ational research, (eds Belton and O'keefe), Pergamon Press.

Eglese, R.W., and Rand, O.K., (1987), Conference seminar timetabling, Journal of

OperationalResearch Society, 38, 591-598

Eglese R., (1990) Simulated Annealing: A tool for Operational research, European

Journal of Operational Research, 46, 271-281

Evans, S. And Norback, J., (1985), The impact of a decision-support system for vehicle

routing in a food service supply situation, Journal of Operational Research Society,

36, 467-472

Fiechter, C.N., (1990), A parallel tabu search algorithm for large travelling salesman

problems, ORWP 90/1, Ecole Polytechniques Federale de Lausanne, Departement

de Mathematiques, CH-1015 Lausanne.

Fisher M., and Jaikumar, R., (1978) A decomposition algorithm for the large scale

vehicle routing, Report 78-11-05, Department of decision Sciences, The Wharton

School, University of pennsylvania, Philadelphia.

Fisher, M., (1980), Worst-case analysis of heuristic algorithms, Management Science,

26, 1-15.

Fisher, M.L., And Jaikumar, R., (1981), A generalised assignment heuristic for vehicle

routing, Networks, 11, 109-124.

Fisher M., Greenfield, R., Jaikumar, R. And Lester, J., (1982), A computerized vehicle

routing application, Interfaces, 12, 45-52

References	 236



Fisher M., Jaikumar, R., and Van Wassenhove, L., (1986) A multiplier adjustment

method for the generalised assignment problem. Management Science 32, 1095-1103

Fisher M. (1987) Lagrangean optimization algorithms for vehicle routing problems. In

Operational Research'87, IFORS, 1988 ,(G.K. Rand Editor) Elsiver Science Pub-

ushers, North Holland,

Fisher, M.L, and Rinnoy Kan, A.H.G., (1989), The Design , Analysis and implementation

of heuristics, Management Science, 34, 263-265.

Garey, M.R., and Johnson, D.S., (1979), Computers and intractability: A guide to the

theory of NP - completeness, W.H. Freeman and company, San Fransisco.

Gaskell, T., (1967), Bases for vehicle fleet scheduling, Operational Research Quarterly,

18, 367-384

Gavish, B., Pirkul, H., (1985), Efficient algorithms for solving multiconstraint Zero-one

knapsack problems to optimality, Mathemaricaiprograinming, 31, 78-105.

Geoffrion, A.M., (1974), Lagrangean relaxation for integer programming, Mathematical

Programming Study 2: An approach to integer programming, editor M. Balinski,

82-114.

Geoffrion, A.M., and McBbride, R.C., (1978) Lagrangean relaxation applied to

capacitated facility location problems, AJIE Transactions, 10, 40-71

Gidas, B., (1988) Nonstationary Markov chains and convergence of the annealing

algorithm. Journal of Statistical Physics 39,73-131

Gillett, B., And Miller, L., (1976), A heuristic algorithm for the vehicle dispatches,

Operations Research, 340-349

Glover, F., (1986), Future paths for integer programming and links to artificial intelli-

gence, Computers and Operations Research.

Glover F. (1989a) Tabu search Part I, ORSA Journal on Computing 1:3, 190-206

References	 237



Glover, F., and Greenberg, H.J., (1989b), New approaches for heuristic search: A

bilateral linkage with artificial intelligence, European Journal of Operational

Research, 39, 119-130.

Glover F. (1989c) Candidate list strategies and tabu search, CAM research report,

University of Colorado, Boulder

Glover, F., (1990), Tabu search Part H, ORSA Journal on Computing 2:1, 4-32.

Glover, F., (1990a), Tabu search: A tutorial, Report, Centre for Applied Artificial

Intelligence, University of Colorado, Boulder.

Glover, F., And Dc Werra, D., (1991), The tabu search metaheuristic: How we used it,

to appear in Annals of Mathematics andArtifi cial Intelligence.

Goldberg, D.E., (1989), Genetic algorithms in search,Optimizarion, and Machine

Learning, Addison-Wesley.

Golden, B., And Stewart, W., (1985), Empirical analysis of Heuristics in: Lawler eta!.

(eds), The Travelling Salesman Problem, Wiley, 207-235.

Golden, B. And Assad, A. (1986), Perspective on vehicle routing: exciting new devel-

opments, Operations Research, 34, 803-8 10

Golden, B., And Skiscim, C., (1986), Using simulated annealing to solve routing and

location problems, NavalResearch Logistics Quarterly 33, 261-279.

Golden, B. And Watts, E., (1987), Computerized vehicle routing in the soft drink

industry, Operations Research, 35, 6-17

Golden, B. And Assad, A. (1988), Vehicle routing: Methods and studies , Elsevier

Science Publishers, North Holland

Guinard, M., and M., Rosenwein, (1989) An improved dual based algorithm for the

generalised assignment problem. Operations Research 17:4, 658-663

References	 238



Haines, L., (1987), The application of the annealing algorithm to the construction of

exact optimal designs for linear-regression models, Technomerrics, 29,439-447.

Hajek, B., (1988), Cooling schedule for optimal annealing. Mathematics of operations

research, 13, 311-329

Hansen, P., (1986), The steepest ascent mildest descent heuristic for combinatorial

programming, Presented at the congress on numerical methods in combinatorial

optimization, Capri, Italy.

Held, M., Wolfe, P., and Crowder, H.P., (1974), Validation of sub-gradient optimization,

Mathematical Pro grwnming, 6, 62-88

Hertz, A., And De Werra, D., (1987), Using tabu search techniques for graph colouring.

Computing, 39, 345-351.

Hoffman, K., Padberg, M., (1986) LP-based combinatorial optimization problem

solving, Annals of Operations Research, 4, 145-194.

Holland, J.H., (1975), Adaptation in Natural and Artificial Systems, The University of

Michigan Press, Ann Arbor.

Huang, M., Remeo, F., And Sangiovani-Vincentelli, A., (1986), An efficient general

cooling schedule for simulated annealing, iEEE, mt. Conf. on Computer aided design,

Santa clara, 381-384.

Ibraki, T., (1987), Combinatorial optimization problems and their complexity: In

enumerative approaches to combinatorial optimization, part I, Annals of Operations

Research, 11, 3-49.

Johnson, D.S., and Papidimiiriou, C.H., (1985), Computational complexity, in Lawler

er a!. [1985], The travelling salesman problem: A guided tour of combinatorial

optimization, Wiley, Chichester.

Johnson, M., (1988) Sinudated annealing and optimization: Modern algorithms with

VLSI, Optimal design. and Missile defense applications, a special issue of American

Journal of Mathematical and Management Sciences, 8, Nos. 3&4.

References	 239



Johnson, S., Aragon, C., Mccgeoch, L., and Schevon, C., (1989), Optimization by

simulated annealing: An experimental evaluation, Part I, Graph Partitioning. Oper-

ations Research 37, 8 65-892

Joneker, R., And Volgenant, T., (1982), Identifications of non-optimal arcs for the tra-

velling salesman problem, Operations Research Letters, 1, 85-88.

JOrnsten, K.O, and Nasberg, M., (1986), A new lagrangean relaxation approach to the

generalised assignment problem, European Journal of Operational research, 27,

3 13-323.

Karp, R.M., (1977), Probabilistic analysis of partitioning algorithms for the travelling

salesman problem in the plane, Mathematics of Operations Research, 2, 209-224

Kelly, J., Golden, B., And Assad, A., [1990], Using simulated annealing to solve con-

trolled rounding problems, ORSA Journal on computing, 2, 174-185.

Kernighan, B., And Lin, S., (1970), An efficient heuristic procedure for partitioning

graph, Bell System Techni cal Journal, 49, 29 1-307.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, P.M., (1983), Optimization by simulated

annealing, Science, 220, 671 -680.

Kirkpatrick S. (1984), Optimization by simulated annealing; Qualitative studies,Journal

of Statistical Physics, 34, 974-986

Kiastorin, T.D., (1979), An effective sub-gradient algorithm for the generalised

assignment problem, Computers and Operations Research, 6, 155-164.

Klincewicz, J.G., and Luss, H., (1986), A lagrangean relaxation heuristic for the

capacitated facility location with single constraints, Journal of OperationalResearch

Society, 37,495-500

Klincewicz J.G.,H. Luss, and Yu, C.S., (1988), A large multi-location capacity planning

model, European Journal of Operational Research, 34, 178-190

References	 240



Knox, J., And Glover, F., (1989), Comparative testing of travelling salesman heuristics

derived from tabu search, Genetic algorithms and Simulated annealing., Centre for

Applied Artificial Intelligence, University of Colorado (September).

Koontz Warren L.G., Narendra Patrenahall, M. and Keindsuke Fukunaga (1975), A

branch and bound clustering algorithm, lIE transactions on computers, 24,908-915

Krolak, P.D., Flets, W., And Marble, G., (1971), A man-machime approach towards

solving the travelling salesman problem, Communications ACM, 14, 327-334.

Krolak, P.D., flets, W., And Nelson, J.H., (1972), A man-machime approach towards

solving the generalised truck dispatching problem, Transportation Science, 6,

149-170.

Kuik, R., And Solomon, M., (1990), Multi-level lot-sizing problem: Ev1uation of a

simulated-annealing heuristic, European Journal of Operational Research, 45,

25-37.

Lagauna, M., Branes, J.W., And Glover, F., (1989), Scheduling jobs with linear delay

penalties and sequence dependent set-up costs using tabu search, Research report,

Department of Mechanical Engineering, The university of Texas-Austin.

Laporte, 0., Nobert, Y. And Desrochers, M., (1985), Optimal routing under capacity

and distance restrictions, Operations Research, 33, 1050-1073

Laporte, 0. And Nobert, Y., (1987), Exact algorithms for the vehicle routing problem,

Annals of Discrete Mathematics, 31, 147-184

Lawler, E.L. (1976), Combinatorial Optinnzatwn: Networks and Matroids, Holt,

Rinehart and Winston, New York.

Lenstra, J., And Rinnoy Kan, A., (1981), Complexity of vehicle routing and scheduling

problems, Networks, 11, 22 1-228

Lin, S. (1965), Computer solutions of the travelling salesman problem, Bell System

Technical Journal, 44, 2245-2269.

References	 241



Liii, S., And Kernighan, B., (1973), An efficient heuristic for the travelling salesman

problem, Operations Research, 21,498-516.

Lin, S., (1975), Heuristic programming as an aid to network design, Networks, 5,33-43.

Lundy, S., and Mees, A.,(1986), Convergence of an annealing algorithm. Mathematical

Programming 34, 111-124.

Malek M., Gunrunswamy, M., Owens, H., and Pandya, M., (1989), Serial and parallel

search techniques for the travelling salesman problem, Annals of OR: Linkages with

Artificial Intelligence, 21, 59-84.

Martello, S. andToth, P., (1981), An algorithm for the generalised assignment problemfn

proceedings of the 9th IFORS conference, Hamburg, Germany

Martello, S., and Toth, P., (1990), Knapsack problems: Algorithms and computer

implementations, Weily

Masson, E., Wang, Y., (1990), Introduction to computation and learning in artificial

neural networks, European Journal of OperationalResearch, 47,1-28.

Metropolis, W., Roenbiuth, A., Rosenbiuth, M., teller, A., and Teller, E., (1953),

Equation of the state calculations by fast computing machines, Journal of Chemical

Physics, 21, 1087-1092

Michael, 0., (1972), A review of heuristic programming, Decision Science, 3,74-100.

Mirzaian A., (1985), Lagrangean relaxation for the start-star concentrator location

problem: approximation algorithm and bounds, Networks, 15, 1-20

Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A., (1986), Convergence and Finite time

Behaviour of Simulated Annealing, Advance Applied Probability, 18, 747-77 1.

Muller-Merbach, FL, (1981), Heuristic and their design: a survey, European Journal of

OperationalResearch, 8, 1-23.

References	 242



Muller-Merbach, H., (1984), A five facets frame for the design of heuristics, European

Journal of Operational Research, 17, 313-316.

Mulvey, J.M., and Crowder, H.P. (1979), Cluster analysis: An application of lagrangean

relaxation, Management Science, 24, 329-340.

Mulvey, J.M., and Beck, M.P., (1984), Solving capacitated clustering problems,

European Journal of Operational Research, 18, 339-348

Nawaz, M., Enscore, E., And Ham, I., (1983), A heuristic algorithm for the rn-machine,

n-job flow-shop sequencing problem, Omega, 11,91-95.

Neebe, A.W., and Rao, M.R. (1983), An algorithm for the fixed charge assigning users

to sources problem, Journal Of Operational Research Society, 34, 1107-1113

Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial Optimization.

John Wiley, Chichester.

Nicholson, T., (1971), Optimization in industry, Vol.1, Optimization techniques, Chapter

10, Longman press, London

Orloff, C., (1976), Route constrained fleet scheduling, Transportation Science, 10,

149- 168.

Osman, I.H., (1987), Application of simulated annealing to flow-shop scheduling

problems, Msc dissertation in O.R., Faculty of Mathematical Studies, Southampton,

England.

Osman, I.H., and Potts, C.N., (1989), Simulated annealing for permutation flow-shop

scheduling, Omega 17, 55 1-557

Osman, I.H., Christofides, N., (1989), Simulated annealing and descetu algorithms for

capacitated clustering problems, presented at EURO X, Beograd, Yugoslavia.

References	 243



Osman, I.H., Christofides, N., (1990), Simulated annealing and tabu search techniques

for the generalised ossignment problem, presented at the 12th triennial conference on

operations research of the international federation of operations research societies,

IFORS'90, Athens, Greece.

Padberg, M., And Rinaldi, U., [1987], Optimization of a 512-city symmetric travelling

salesman problem by branch and cut, Operations Research Letters, 6, 1-7.

Paessens, H., (1988), Saving algorithms for the vehicle routing problem, European

Journal of Operational Research, 34, 336-344

Palmer, S., (1965), Sequencing jobs through a multistage process in the minimum total

time- a quick method of obtaining a near optimum, OperationalResearch Quarterly,

16, 101-107.

Papadimitriou, C.H., And Steiglitz, K., (1982), Combinatorial optimization: algorithms

and complexity, Prentice-Hall, New York.

Pirkul, H., and Schilling, D.A., (1991) The maximal covering location problem with

capacities on total workload, Management Science, 37, 233-248.

Polya, 0., (1948), How to solve it, Princeton university press, princeton.

Rao, M.R., (1971), Clustering analysis and mathematical programming, Journal of the

American Statistical Association, 66, 622-626

Ross, G.T., Soland, R.M., (1975), A branch and bound algorithm for the generalised

assignment problem, Mathematical Programming, 8,91-103.

Ross, G.T., Soland, R.M., (1977), Modelling facility location problems as generalised

assignment problems, Management Science, 24, 345-357.

Russel, R.A., (1977), An effective heuristic for the M-tour travelling salesman Problem

with some side conditions, Operations Research, 25,5217-524

Silver, A., Vidal, R., And De Werra, D., (1980), A tutorial on heuristic methods,

European Journal of OperationalResearch, 5, 153-162.

References	 244



Skonn-Kapov, J. (1990), Tabu search to the quadratic assignment problem, ORSA

Journal on Computing 2:1, 33-44.

Stanfel, L.E., (1986), A lagrangean treatment of certain nonlinear clustering problem,

European Journal of Operational Research, 27, 332-342

Taillard, E., (1990), Some efficient heuristic methods for the flow shop sequencing

problem, European Journal of Operational Research, 47, 65-74.

Tarajan, R., [1983], Data structures and network algorithms, CBMS-NSF Regional

Conference Series in Applied Mathematics, 44, Siam, Philadelphia.

Teitz, M., and Bart, P., (1968), Heuristic methods for estimating the generalised vertex

median of a weighted graph, Operations Research, 16, 955-961

Vakharia, A., And Chang, Y., (1990), A simulated annealing approach to scheduling a

manufacturing cell, Naval Research Logistics, 37, 559-577.

Van Laarhoven, P., And Aarts, E., (1987), Simulated annealing. Theory and applica-

rions, D. Reidel, Dordrecht

Whitaker, R.A., (1983), A fast algorithm for the greedy interchange for large scale

clustering and median location problems, Canadian Journal Of OperationalResearch

and Information Processing, 21, 95-108

White, S.R., (1984), Concept of scale in simulated annealing, IEEE international con-

ference on computer design, Portchester, (1984) 646-651

Widmer, M., and Hertz, A., (1989) A new heuristic for the flow shop sequencing problem,

European Journal of OperarionalResearch, 41, 186-193.

Widmer, M., (1991), Job shop scheduling with tooling constraints: a tabu search

approach, Journal of Operational Research Society, 42,75-82.

Wilhem, M.R., And Ward, T.L., (1987), Solving quadratic assignment problems by

simulated annealing, lIE Transactions 107-119.

References	 245



Wright, M.B, (1989), Applying stochastic algorithms to a locomotive scheduling

problem, Journal of Operational Researchn Society, 40, 187-1192.

Zanakis, H., and Evans, J.R., and Vazacopoulos, A., (1989), Heuristic methods and

applications: A categorized survey, European Journal of OperationalResearch, 43,

88-110.

References	 246



Appendix Al

This 1.2 MB diskette contains 3 subdirectories in which there are the input data for the

test problems, we use in the thesis. Also, there are the output files for the best obtained

solutions of these problems. These are produced by the algorithms which are developed

in different chapters.

Each subdirectory also contains input data files (called XXX.IN) and output results

files (XXX.RES) for each of the test problems.

1. Subdirectory \CCP.

"The Capacitated Clustering Problem ". There are 57 files in this subdirectory of different

types:

Input data files : CCPDXX.IN (for distance data).

Input data files : CCPXXX.IN (for coordinate points).

Output result file:	 CCPXXX.RES

2. Subdirectory 'CAP.

The Generalised Assignment Problem ". There are 60 files in this subdirectory.

Input data files: CXXXXXX.IN

3. Subdirectory \VRP.

The Vehicle Routing Problem". There are 57 files in this directory.

Appendices	 247



Input data files : CXX IN (for the test problem in the literatuie).

Input data files : NX.IN (for the new random problems).

Output result files:	 CXX.RES or NX.RES.

Appendices	 248



Appendix A.2

This appendix explains the data sets in the subdirectory \CCP for the CCP. They are the

20-test randomly generated problems which we use in Chapter 3. In the thesis, these

test problems are numbered from 1 to 20. On the diskette we add this number as a prefix

and suffix. For each problems say number i, there are three files: the first two are for

input data files: CCPDi.IN is a file for the inter-customer distances, CCPXi.IN is a file

for the (X,Y) coordinates, and CCPi.RES is an output result file which represents the

best solution obtained fo problem i.

We will explain the data storage of the CCPD 1 .IN file. The data in this file is

formatted as follows. We define a flag to take the value of 0 if the file stores the

inter-distances, or 1 if the file contains the (X,Y) coordinates. We define jto represent

ajob numberj.

0 50 5 120	 : (flag-0], [n= 50], [p=5], [Q1 = 120]

1 4	 :[j=1],[d1=4]

2 16 34	 : [1=2], [c21 = 16], [d2=34]

3 6 56 43	 :[j=3],[c32=6],[c31=56],[d3=43]

4 16 43 89 86

5 12 39 63 82 94

6 19 35 30 27 59 61

7 6 42 56 17 45 98 88

8 9 63 67 102 72 41 85 55

9 48410365 9095 60 930

1012177787487378461031

Appendices	 249



11 126426261235552243639

12949545729786410081385927

13 4 91 48 68 85 92 49 27 9 31 54 77 87

14 11 42 110 61 66 80 121 90 55 37 73 80 71 95

151275445028536848342053311264

55

16 14 21 86 62 29 26 45 56 35 52 35 71 52 9

54 36

17 2 19 29 102 73 30 45 64 74 19 49 48 83 55

22 72 49

18 7 24 6 18 80 57 34 20 41 54 42 51 30 65

49 6 51 37

19 3 52 74 58 46 28 23 84 35 49 65 93 65 26

25 49 51 57 73

20 5 15 67 88 73 60 16 26 99 50 61 77 107 74

40 22 57 66 68 87

21 168 585678606970 806541151191

103 62 84 93 62 6 39

22 15 83 22 37 89 111 96 83 13 44 121 72 79 93

130 93 63 37 75 89 84 107

23 11 33 57 12 7 57 80 63 53 22 28 88 39 49

65 98 72 33 29 55 57 56 75

241872964686082675421239344

56 72 101 70 34 22 53 60 63 81

25 12 57 59 80 94 61 52 47 51 50 29 77 36 78

53799568133144 5418984

261548848211384907629 6242910473

Appendices	 250



36 49 69 80 19 45 50 82 52 25 78 55

27 5 97 76 20 17 27 56 19 24 71 94 77 69 14

449951526611389504172725783

28 20 61 80 93 67 60 87 6 72 61 53 74 56 67

74 81 60 40 14 5 86 101 62 86 92 59 4 33

291074466230272952733122466251

334711803860788143162026427077

30 11 45 78 18 104 74 20 23 9 74 14 28 80 102

87 74 5 39 112 62 69 83 121 87 54 33 70 80 74

97

31 19 30 48 49 12 92 77 26 20 39 44 27 25 64

88 70 65 26 48 90 43 41 54 106 89 48 48 74 66

45 72

32 962753858673039555284616147

92713 97549422145604644225840

5 55 45

3319445245 7814867292832508032

26 52 67 57 38 48 6 87 45 67 85 86 42 23 15

25 49 77 84

34 14 41 14 48 64 34 48 54 43 45 44 41 73 49

513616402220634448 83450585318

52 45 17 44 43

35133229442431245624735313 841

5419 548715544312780314461 9065

25 30 50 48 52 68

3615 94026512624246422805446

33 62 10 4 56 78 62 50 25 22 89 40 53 69 97

Appendices	 251



67 30 23 50 55 60 77

37 9 68 60 28 67 24 71 91 60 49 80 31 62 72

68101547964 1525 12329071 20294048

37 64 44 80 64 20 48 24

38102089804886429111280611003477

93 89 122 67 99 84 34 28 28 49 111 91 2 49 56

59 27 76 64 100 80 37 61 29

39 13 28 13 65 55 28 69 30 63 86 62 36 73 44

69 68 63 96 41 75 60 22 38 22 39 84 72 27 25

27 35 50 74 46 79 70 28 35 15

40 14 63 87 67 1 8 39 26 49 26 25 23 64 23

785356346112355776149262287

3852689566292349546076

412068555344696541522887934887

9021287373101 897966332532229458

55 49 74 87 40 24 40 67 33 27 84 68

421087286189702825475361 33349

461591782821424130276387696529

50 88 42 38 51 105 90 48 50 75 65 42 70

43 16 23 67 31 38 66 46 32 23 26 48 40 25 49

42 33 35 69 65 35 28 59 31 40 28 40 65 46 45

47 48 65 19 21 37 81 75 33 52 63 43 29 48

44 13 50 35 89 23 85 111 90 21 30 62 40 72 32

5 41 80 21 101 70 17 22 11 76 11 26 78 100 84

71 10 34 110 61 70 85 119 83 51 28 65 77 76 97

45 11 18 54 47 77 23 84 106 86 22 31 58 25 65

442429873691541927278417267291

Appendices	 252



78 62 28 18 106 59 75 91 110 67 43 10 49 70 83

98

46 14 51 46 5 18 71 28 43 71 51 29 21 30 48

44 20 45 42 35 30 73 67 32 25 55 32 37 25 44

69 50 49 42 47 70 24 24 40 86 78 35 51 65 47

31 52

47 13 48 28 42 48 54 49 27 67 84 64 27 29 39

2415347 580506427303353793427

50 65 55 36 50 9 84 43 66 84 84 40 21 18 23

46 76 82

48 7 79 33 85 78 32 43 88 62 38 64 51 63 55

48 80 59 46 76 73 2 58 82 93 65 58 85 3 70

59 54 76 58 67 72 80 62 40 14 8 88 101 62 85

92 60 3 36

49 18 26 57 9 59 52 10 19 78 37 43 71 53 37

29 36 57 50 22 50 51 28 33 78 75 39 32 60 24

44 34 49 73 54 56 47 56 70 29 19 33 89 86 43

60 74 53 24 50

50 5 79 84 60 73 87 98 69 90 14 76 48 41 36

77 71 43 62 29 91 101 58 83 95 7 42 81 80 109

87 87 73 30 12 26 26 102 69 42 50 71 83 25 38

47 78 46 26 81 60

Note that, if more than fifty entries exist per customer, the data is continued on other

lines.

Appendices	 253



The file CCPX1.IN has the same first row as in CCPD1.IN. However, the coordinate

values start from the second row up to row number 51. Each row of data contains four

entries: first, the customer number i; second, the demand of the customer, third, the

X-coordinate and the fourth is the Y-coordinate.

The file CCP1 .RES is the solution representation of problem number 1. The content of

this file is shown below.

wpt= 552, wct= 600, RATIO 0.92, PR=

50

[E d,], [	 Q.], [p = LJ ], [i=l]
1=1

I-I

S	 820 (S is the best obtained solution with an objective value of 820 units)

cen,	 cost,	 num,

C(S1),	 I S1 ,

16
	

249
	

13

30
	

124
	

8

2
	

154
	

10

25
	

162
	

8

40
	

131
	

11

lwc,	 elements of clusters

-	 d, List of jobs j E S, assigned to cluster i.
JE S

10
	

383716173226181238503411

25
	

14 22 30 44 31 42 45 27

9
	

2910212848494339 1

3
	

7 4 25 47 33 41 6 15

1
	

46 5 23 19 36 40 13 35 24 29 20

Appendices	 254



Appendix A.3

This appendix is concerned with the set of data for the GAP in the subdirectory 'GAP.

There are 60 test problems on the floppy diskette under the GAP directory. These

problems were solved in Chapter 4. The problem notations are explained as follows:

c515-1 : denotes a problem of type c with 5-agents and 15-jobs, problem number 1 in

a group of 5 problems of the same sizes.

c1060-1 : indicates 10-agents, and 60-jobs, problem number 1 in 5 problems of the same

type.

The data of a problem is stored in the following order

3 7	 number of agents m, number of jobs n

21 25 23 10 29 34 21	 c (costs or revenues)

23132415231516	 c2

34 12 34 25 12 23 23 	 c,

10 23 12 21 21 20 12	 a11 (capacity requirements)

34123344121213	 a-2,

13 13 14 12 15 13 12	 a3,

120 120 120	 b1 b2 b3 (capacity of agents)

To transform a maximization problem into a minimization problem, we need to modify

the input data sets as explained in Section 4.5.1. This transformation is briefly sum-

marised as follows:

Appendices	 255



Let C, =35— c, (same distribution of coefficients [10,25]) where 35 is an upper bound

on the values of c,'s. The created minimization problem is then solved by the mini-

mization algorithms that were developed in Chapter 4. The maximization problem is

then has a maximum objective value, Z., which can be obtained by simply letting

=35 x n - Z. where Z. is the objective value of the minimization problem.

The maximum solution values (Z.,'s) of the 60 problems are given below for all

the 60 test problems. This is explained as follows: problem c5 15-1 with an optimal value

of 336 is written as c515-1 336:

c515-1 336

c515-2 327

c515-3 339

c515-4 341

c515-5 326

c824-1 563

c824-2 558

c824-3 564

c824-4 568

c824-5 559

c520-1 434

c520-2 436

c520-3 420

c520-4 419

c520-5 428

c832-1 761

c832-2 759

c832-3 758

c832-4 752

c832-5 747

c525-1 580

c525-2 564

c525-3 573

c525-4 570

c525-5 564

c840-1 942

c840-2 949

c840-3 968

c840-4 945

c840-5 951

c530-1 656

c530-2 644

c530-3 673

c530-4 647

c530-5 664

c848-1 1133

c848-2 1134

c848-3 1141

c848-4 1117

c848-5 1127

c1030-1 709

c1030-2 717

c1030-3 712

c1030-4 723

c1030-5 706

c1040-1 958

c1040-2 963

c1040-3 960

c1040-4 947

c1040-5 947

c1050-1 1139

c1050-2 1178

c1050-3 1195

c1050-4 1171

c1050-5 1171

c1060-1 1451

c1060-2 1449

c1060-3 1433

c1060-4 1447

c1060-5 1446

Appendices	 256



Appendix A.4

This appendix explains the files in the subdirectory\VRP. The input data files are used

in Chapter 5. There are the 17-test problems in the literature. In addition to, there is

also 9 problems of random data we have generated. The name of the problems in the

diskette, are exactly the same as in the thesis.

There are two types of input data files as in the case of Appendix A.2. We will

explain first one of the coordinate data file of the problem 01.114. The data in the file

are the following. Let i denote customer number i. We define a flag to take the value

of 0 if the file stores the inter-distances, or 1 if the file contains the (X,Y) coordinates.

We definej to represent a customer numberj. L denote the maximum distance limit and

6 be the drop time per customer number i. Here , we have all 3, have the same value.

1 29 240 4500 10	 : flag=l], [n= 29], [L = 240], [Q = 4500, [6 = 10].

162 354	 [X = 1 62], [Y = 354], (X,Y) coordinates of the depot "30".

1218382 300	 :[i=1], [X1=218],[Y1=382], [d1=300]

22183583100

3201370 125

4214371 100

5 224 370 200

6210382 150

7104354 150

8126338 450

9119340 300

Appendices	 257



10129349 100

11126347 950

12 125 346 125

13116355 150

14 126 335 150

15 125 355 550

16119357 150

17115341 100

18 153351 150

19 175 363 400

20180360 300

21159 331 1500

22188357 100

23 152349 300

24215 389 500

25212394 800

26 188 393 300

27207406 100

28184410 150

292073921000

The output data file of G1.RES is show below:

PROBLEM G1.RES (name of result file)

No. OF CUST.= 29, VEH. No.= 5, VEH CAP =4500, VEHDIST 240,

BEST COST 875.0 (the best obtained objective value)

Appendices	 258



1

2

3

4

5

7

1

9

6

11

1650

4500

125

1700

1775

30 26 28 27 25 24 29

30 One vehicle reduction

30 22 2 5 4 1 6 3 20

30 23 8 14 21 19

30 15 16 13 7 17 9 12 11 10 18

233.95

000.00

236.59

177.24

227.21

V.No BRCST LEFTW NLC RLIST

Note that, the empty route in row 2 is included. This is to show that a vehicle reduction

has occurred. The savings heuristic procedure produced a solution with 5 vehicles rather

than the optimal number of 4.

The column headings are:

V.No

BRCST

LEFTW

NLC

RUST

is the vehicle index

is the length of the corresponding tour

is the unused capacity of the vehicle

is the number of customer in the route including depot

is the list of customer assigned to the vehicle.

The other data files are for problems with the inter-customer distances are given.

Let consider the data in the input file N1.1N for problem Ni.

0 509999 275 0
	

[flag= 0], [n= 50], [L = 9999], EQ = 275, [5 = 0].

1 21 41	 .• i =1, [c151 = 21],	 [d1 = 41]

2 33 49 65
	

i= 2, [c 1 = 33], [cz51 = 49], [d2 = 65]

3 20 49 87 26
	

1= 3, [c32 = 20], [c31 = 49], [c351 87], [d2 = 26]

Appendices	 259



4 37 43 78 81 81

5 24 50 78 1 88 27

6 33 37 37 44 37 87 52

7 37 44 32 69 16 68 89 77

8 29 39 37 5 32 49 32 89 49

937165346496638654356

10 23 46 48 35 4 30 67 20 67 92 77

1139486264276432 673 68831

12 38 60 92 105 57 97 103 96 91 96 90 17 65

133527336672266570646664652345

14 28 31 6 31 72 74 26 70 71 68 72 65 71 18

52

15 24 42 53 55 82 85 42 30 65 38 60 88 23 88

65 84

16 39 50 92 62 56 75 27 81 65 50 82 54 22 87

21 75 10

17 28 42 72 48 72 69 102 52 10 48 25 12 20 57

27 57 90 69

18 30 37 74 76 45 14 20 37 83 74 26 77 71 74

84 61 83 20 66

19 29 17 24 49 65 30 25 25 56 65 50 1 54 47

50 67 39 66 42 56

20 33 47 61 85 26 55 70 78 73 105 30 36 60 8

39 11 36 53 36 97 55

21 24 26 57 18 39 38 76 16 43 43 74 69 35 17

51 32 46 72 21 72 59 68

223639136629454489 45254828138

Appendices	 260



28 61 34 56 85 19 84 66 81

232737736033547150227760548012

59 54 28 61 32 12 68 11 76 21

24 39 36 73 12 15 72 21 33 52 87 11 42 44 70

8249216645618531845478

25 33 55 23 92 33 38 95 38 32 75 103 29 46 51

67 102 71 38 88 67 84 105 52 104 50 93

26 21 50 105 85 15 83 71 30 68 86 53 28 87 75

69 95 3 63 67 28 65 33 6 75 7 91 33

27 25 50 97 37 44 82 56 52 97 37 13 87 84 55

22 28 30 94 87 39 89 84 87 94 73 93 14 74

28 28 59 89 36 110 95 32 99 85 64 74 82 82 10

1026862773591746092 643097 297917

29354131 86119677 4776433587552

2180645884 86158296333 871 780

23

30 31 67 89 81 35 101 72 76 86 88 80 111 62 42

109 79 88 37 39 6 98 111 64 103 109 103 96 102 95

22 70

31 39 36 31 62 62 27 74 56 52 59 62 52 81 33

23 78 58 63 10 8 24 71 81 35 73 79 72 70 73

69 18 47

32 30 26 11 42 51 54 36 62 59 50 47 58 47 69

29286848591483559723061706159

67 58 29 37

33 24 45 20 9 22 69 65 28 80 61 60 65 70 61

894329876271181815779044818881

Appendices	 261



76 82 75 15 52

34 35 49 54 51 49 66 90 103 31 99 7 20 86 32

349131257396293944619769328465

80 99 51 98 44 86

35 35 58 o8 103 84 94 125 61 92 103 59 90 67 60

57 53 28 66 90 16 82 61 88 85 118 58 19 64 32

23 28 64 39 64 106 80

36 32 39 97 54 6 13 5 28 62 60 30 74 61 57

59 67 57 83 38 28 81 56 68 15 13 22 71 85 39

75 83 74 70 78 69 19 46

37 30 36 74 32 56 79 62 70 100 61 88 74 65 58

35 58 26 22 42 37 61 18 78 30 62 61 93 63 13

36 39 10 33 68 10 67 79 72

38 23 37 45 68 42 84 75 55 67 97 19 50 86 20

896818655316537434406865609118

43 52 10 45 14 23 55 23 84 39

39 22 36 9 51 64 51 85 70 51 63 92 10 41 84

14917096957245373423173625786

12 51 52 19 53 23 16 62 15 80 30

40 26 50 83 85 77 25 105 37 22 33 23 29 84 85

69543488061559739158981602026

24 92 89 41 89 86 87 92 77 91 8 70

41 37 40 78 56 49 4 77 33 55 82 65 73 102 65

927569573563 242346396320 822864

64 96 67 14 38 43 10 37 72 6 72 81 77

42 27 48 25 95 45 36 23 87 10 78 93 74 84 115

55 86 93 55 81 58 54 49 44 26 56 80 6 76 53

Appendices	 262



78 75 109 54 11 54 27 15 22 60 31 59 97 73

43 26 44 6 19 90 45 37 17 83 15 72 89 70 80

110 55 85 88 56 75 52 53 43 38 29 50 75 3 75

47 73 71 104 55 7 49 28 10 23 61 25 60 91 72

44 20 55 75 74 84 89 29 38 80 65 80 102 71 56

66 88 19 13 92 23 109 92 21 93 80 52 71 84 72

99770648422817148825216891684

19

45 35 36 90 43 49 25 57 66 63 26 63 58 30 66

54 58 84 74 95 53 81 32 10 70 4 9 65 25 42

4486 6485078793924603555822181

62 78

46 26 38 62 65 82 87 76 25 63 68 73 1 96 53

712 4296260307360565866568237

278056671412237184387482736977

68 19 46

47 22 10 46 27 63 37 42 30 53 41 39 27 46 52

445234437348685156492944301747

14 38 36 59 33 36 34 67 53 38 13 40 36 36 56

33 55 54 51

483545434038957682622381826141

92 14 41 41 36 52 85 94 17 95 20 28 81 41 39

90 29 12 76 88 39 27 33 47 92 74 30 83 71 80

93 59 92 30 77

49 23 25 35 32 13 50 61 69 73 62 29 54 57 60

14834620510415559316653455154

43 71 25 23 67 53 55 9 3 35 63 70 26 63 68

Appendices	 263



61 63 64 62 26 43

50 22 51 26 34 56 18 65 83 94 99 84 12 80 84

82 18 108 48 12 29 17 18 80 77 18 91 54 57 76

69 62 98 44 24 92 74 69 20 24 13 88 94 46 89

92 88 87 84 86 4 64

The output file is N1.RES and its abbreviation are the same as in G1.RES file above.

PROBLEM Nol.RES

No. OF CUST.= 50 VEH. No.= 6VEH CAP = 275

BEST COST 709.0

V.No BRCST LEFTW NLC RUST

1 111.00 32 10 12 20 23 26 43 33 21 51 47 28

2 146.00 8 10 22 40 38 32 51 37 27 25 42 7

3 88.00 13 10 6 11 8 2 5 36 3 10 19 51

4 113.00 6 9 50 48 30 45 51 9 34 41 4

5 128.00 46 8 24 29 18 35 49 17 31 51

6 123.00 60 9 39 44 16 15 46 13 51 14 1

Appendices	 264


	DX196316_1_0001.tif
	DX196316_1_0003.tif
	DX196316_1_0005.tif
	DX196316_1_0007.tif
	DX196316_1_0009.tif
	DX196316_1_0011.tif
	DX196316_1_0013.tif
	DX196316_1_0015.tif
	DX196316_1_0017.tif
	DX196316_1_0019.tif
	DX196316_1_0021.tif
	DX196316_1_0023.tif
	DX196316_1_0025.tif
	DX196316_1_0027.tif
	DX196316_1_0029.tif
	DX196316_1_0031.tif
	DX196316_1_0033.tif
	DX196316_1_0035.tif
	DX196316_1_0037.tif
	DX196316_1_0039.tif
	DX196316_1_0041.tif
	DX196316_1_0043.tif
	DX196316_1_0045.tif
	DX196316_1_0047.tif
	DX196316_1_0049.tif
	DX196316_1_0051.tif
	DX196316_1_0053.tif
	DX196316_1_0055.tif
	DX196316_1_0057.tif
	DX196316_1_0059.tif
	DX196316_1_0061.tif
	DX196316_1_0063.tif
	DX196316_1_0065.tif
	DX196316_1_0067.tif
	DX196316_1_0069.tif
	DX196316_1_0071.tif
	DX196316_1_0073.tif
	DX196316_1_0075.tif
	DX196316_1_0077.tif
	DX196316_1_0079.tif
	DX196316_1_0081.tif
	DX196316_1_0083.tif
	DX196316_1_0085.tif
	DX196316_1_0087.tif
	DX196316_1_0089.tif
	DX196316_1_0091.tif
	DX196316_1_0093.tif
	DX196316_1_0095.tif
	DX196316_1_0097.tif
	DX196316_1_0099.tif
	DX196316_1_0101.tif
	DX196316_1_0103.tif
	DX196316_1_0105.tif
	DX196316_1_0107.tif
	DX196316_1_0109.tif
	DX196316_1_0111.tif
	DX196316_1_0113.tif
	DX196316_1_0115.tif
	DX196316_1_0117.tif
	DX196316_1_0119.tif
	DX196316_1_0121.tif
	DX196316_1_0123.tif
	DX196316_1_0125.tif
	DX196316_1_0127.tif
	DX196316_1_0129.tif
	DX196316_1_0131.tif
	DX196316_1_0133.tif
	DX196316_1_0135.tif
	DX196316_1_0137.tif
	DX196316_1_0139.tif
	DX196316_1_0141.tif
	DX196316_1_0143.tif
	DX196316_1_0145.tif
	DX196316_1_0147.tif
	DX196316_1_0149.tif
	DX196316_1_0151.tif
	DX196316_1_0153.tif
	DX196316_1_0155.tif
	DX196316_1_0157.tif
	DX196316_1_0159.tif
	DX196316_1_0161.tif
	DX196316_1_0163.tif
	DX196316_1_0165.tif
	DX196316_1_0167.tif
	DX196316_1_0169.tif
	DX196316_1_0171.tif
	DX196316_1_0173.tif
	DX196316_1_0175.tif
	DX196316_1_0177.tif
	DX196316_1_0179.tif
	DX196316_1_0181.tif
	DX196316_1_0183.tif
	DX196316_1_0185.tif
	DX196316_1_0187.tif
	DX196316_1_0189.tif
	DX196316_1_0191.tif
	DX196316_1_0193.tif
	DX196316_1_0195.tif
	DX196316_1_0197.tif
	DX196316_1_0199.tif
	DX196316_1_0201.tif
	DX196316_1_0203.tif
	DX196316_1_0205.tif
	DX196316_1_0207.tif
	DX196316_1_0209.tif
	DX196316_1_0211.tif
	DX196316_1_0213.tif
	DX196316_1_0215.tif
	DX196316_1_0217.tif
	DX196316_1_0219.tif
	DX196316_1_0221.tif
	DX196316_1_0223.tif
	DX196316_1_0225.tif
	DX196316_1_0227.tif
	DX196316_1_0229.tif
	DX196316_1_0231.tif
	DX196316_1_0233.tif
	DX196316_1_0235.tif
	DX196316_1_0237.tif
	DX196316_1_0239.tif
	DX196316_1_0241.tif
	DX196316_1_0243.tif
	DX196316_1_0245.tif
	DX196316_1_0247.tif
	DX196316_1_0249.tif
	DX196316_1_0251.tif
	DX196316_1_0253.tif
	DX196316_1_0255.tif
	DX196316_1_0257.tif
	DX196316_1_0259.tif
	DX196316_1_0261.tif
	DX196316_1_0263.tif
	DX196316_1_0265.tif
	DX196316_1_0267.tif
	DX196316_1_0269.tif
	DX196316_1_0271.tif
	DX196316_1_0273.tif
	DX196316_1_0275.tif
	DX196316_1_0277.tif
	DX196316_1_0279.tif
	DX196316_1_0281.tif
	DX196316_1_0283.tif
	DX196316_1_0285.tif
	DX196316_1_0287.tif
	DX196316_1_0289.tif
	DX196316_1_0291.tif
	DX196316_1_0293.tif
	DX196316_1_0295.tif
	DX196316_1_0297.tif
	DX196316_1_0299.tif
	DX196316_1_0301.tif
	DX196316_1_0303.tif
	DX196316_1_0305.tif
	DX196316_1_0307.tif
	DX196316_1_0309.tif
	DX196316_1_0311.tif
	DX196316_1_0313.tif
	DX196316_1_0315.tif
	DX196316_1_0317.tif
	DX196316_1_0319.tif
	DX196316_1_0321.tif
	DX196316_1_0323.tif
	DX196316_1_0325.tif
	DX196316_1_0327.tif
	DX196316_1_0329.tif
	DX196316_1_0331.tif
	DX196316_1_0333.tif
	DX196316_1_0335.tif
	DX196316_1_0337.tif
	DX196316_1_0339.tif
	DX196316_1_0341.tif
	DX196316_1_0343.tif
	DX196316_1_0345.tif
	DX196316_1_0347.tif
	DX196316_1_0349.tif
	DX196316_1_0351.tif
	DX196316_1_0353.tif
	DX196316_1_0355.tif
	DX196316_1_0357.tif
	DX196316_1_0359.tif
	DX196316_1_0361.tif
	DX196316_1_0363.tif
	DX196316_1_0365.tif
	DX196316_1_0367.tif
	DX196316_1_0369.tif
	DX196316_1_0371.tif
	DX196316_1_0373.tif
	DX196316_1_0375.tif
	DX196316_1_0377.tif
	DX196316_1_0379.tif
	DX196316_1_0381.tif
	DX196316_1_0383.tif
	DX196316_1_0385.tif
	DX196316_1_0387.tif
	DX196316_1_0389.tif
	DX196316_1_0391.tif
	DX196316_1_0393.tif
	DX196316_1_0395.tif
	DX196316_1_0397.tif
	DX196316_1_0399.tif
	DX196316_1_0401.tif
	DX196316_1_0403.tif
	DX196316_1_0405.tif
	DX196316_1_0407.tif
	DX196316_1_0409.tif
	DX196316_1_0411.tif
	DX196316_1_0413.tif
	DX196316_1_0415.tif
	DX196316_1_0417.tif
	DX196316_1_0419.tif
	DX196316_1_0421.tif
	DX196316_1_0423.tif
	DX196316_1_0425.tif
	DX196316_1_0427.tif
	DX196316_1_0429.tif
	DX196316_1_0431.tif
	DX196316_1_0433.tif
	DX196316_1_0435.tif
	DX196316_1_0437.tif
	DX196316_1_0439.tif
	DX196316_1_0441.tif
	DX196316_1_0443.tif
	DX196316_1_0445.tif
	DX196316_1_0447.tif
	DX196316_1_0449.tif
	DX196316_1_0451.tif
	DX196316_1_0453.tif
	DX196316_1_0455.tif
	DX196316_1_0457.tif
	DX196316_1_0459.tif
	DX196316_1_0461.tif
	DX196316_1_0463.tif
	DX196316_1_0465.tif
	DX196316_1_0467.tif
	DX196316_1_0469.tif
	DX196316_1_0471.tif
	DX196316_1_0473.tif
	DX196316_1_0475.tif
	DX196316_1_0477.tif
	DX196316_1_0479.tif
	DX196316_1_0481.tif
	DX196316_1_0483.tif
	DX196316_1_0485.tif
	DX196316_1_0487.tif
	DX196316_1_0489.tif
	DX196316_1_0491.tif
	DX196316_1_0493.tif
	DX196316_1_0495.tif
	DX196316_1_0497.tif
	DX196316_1_0499.tif
	DX196316_1_0501.tif
	DX196316_1_0503.tif
	DX196316_1_0505.tif
	DX196316_1_0507.tif
	DX196316_1_0509.tif
	DX196316_1_0511.tif
	DX196316_1_0513.tif
	DX196316_1_0515.tif
	DX196316_1_0517.tif
	DX196316_1_0519.tif
	DX196316_1_0521.tif
	DX196316_1_0523.tif
	DX196316_1_0525.tif
	DX196316_1_0527.tif
	DX196316_1_0529.tif
	DX196316_1_0531.tif
	DX196316_1_0533.tif
	DX196316_1_0535.tif
	DX196316_1_0537.tif
	DX196316_1_0539.tif

