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a b s t r a c t

The Police Districting Problem (PDP) concerns the efficient and effective design of patrol sectors in terms

of performance attributes such as workload, response time, etc. A balanced definition of the patrol sector is

desirable as it results in crime reduction and in better service. In this paper, a multi-criteria Police Districting

Problem defined in collaboration with the Spanish National Police Corps is presented. This is the first model

for the PDP that considers the attributes of area, risk, compactness, and mutual support. The decision-maker

can specify his/her preferences on the attributes, on workload balance, and efficiency. The model is solved

by means of a heuristic algorithm that is empirically tested on a case study of the Central District of Madrid.

The solutions identified by the model are compared to patrol sector configurations currently in use and their

quality is evaluated by public safety service coordinators. The model and the algorithm produce designs that

significantly improve on the current ones.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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1. Introduction

For most of the 20th century, police districts have been drawn by

police officers on a road map with a marker, just by following the

major streets in the area, without making too much of an effort to

accomplish geographic or workload balance (Bruce, 2009). Since the

seminal paper by Mitchell (1972), a number of mathematical opti-

mization models have been proposed and the Police Districting Prob-

lem (PDP) was born. The PDP aims at partitioning the territory under

the jurisdiction of a Police Department in the best possible way, with

respect to several time, cost, performance, and topological attributes.

Only after recent advances in Geographic Information Systems (GIS)

and computer technology, which have allowed reasonable computa-

tional times and ease of representation and manipulation, have au-

tomatic methodologies for the definition of police districts gained

popularity among practitioners (Wang, 2012). However, studies in-

tegrating GIS and sophisticated mathematical modeling for police

districting remain a rarity (Bruce, 2009), and the “map-and-marker

method” is still one of the most widely used redistricting procedures.

Nevertheless, the importance of a balanced definition of the police

districts is unquestioned and the implementation of tools for aiding
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E-mail addresses: mcamacho0007@policia.es (M. Camacho-Collados),

federico.liberatore@urjc.es (F. Liberatore), jmangulo@ugr.es (J.M. Angulo).

d

t

s

(

http://dx.doi.org/10.1016/j.ejor.2015.05.023

0377-2217/© 2015 Elsevier B.V. and Association of European Operational Research Societies (

All rights reserved.
n making the decisions about the allocation of police resources has

roven to be extremely beneficial, as shown by the substantial aca-

emic literature on this topic in the last decades (D’Amico, Wang,

atta, & Rump, 2002). In fact, all the works report a dramatic im-

rovement in workload distribution compared to hand-made dis-

ricts which, in turn, results in enhanced performance and efficiency.

In Spain, the security of towns is the responsibility of the Spanish

ational Police Corps (SNPC), usually sharing territory with other lo-

al security forces. The SNPC is an armed Institute of a civil nature,

ependent on the Ministry of Home Affairs. Among its duties are:

eeping and restoring order and public safety and preventing the

ommission of criminal acts. The SNPC is one of the country’s most

alued institutions and is located at the global forefront of the

ght against crime, with the aim of constant innovation. The socio-

conomic context in recent years in Spain has been that of a seri-

us crisis, which has reduced the resources and the number of po-

ice officers available to the SNPC. In order to continue providing the

ame level of security, the SNPC is taking cutting-edge steps to in-

rease its competitiveness. Under the current system, the distribution

f patrols is the responsibility of the inspectors who, under normal

onditions, locate the agents according to the neighborhood borders

efined more than 50 years ago. To improve the effectiveness of pa-

rolling operations and increase the efficiency in the use of scarce re-

ources, the SNPC has started to develop a Decision Support System

DSS) comprising tools and models to assist in various public security
EURO) within the International Federation of Operational Research Societies (IFORS).
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asks (Camacho-Collados & Liberatore, 2015). One of the main objec-

ives of the system is the implementation of a predictive patrolling

olicy to increase the presence of agents in the areas where they are

ost needed, to reduce the probability of the occurrence of crime.

o this end, the authors have developed, in collaboration with pro-

essionals from the SNPC, an optimization model for the definition

f patrolling sector configurations, tailored to suit the requirements

f the SNPC. As the model is to be included in the DSS and, there-

ore, should be sufficiently interactive, the authors implemented a

euristic algorithm that provides good solutions quickly. By com-

ining the proposed algorithm with a crime risk forecasting model

Perry, McInnis, Price, Smith, & Hollywood, 2013; Short, Bertozzi, &

rantingham, 2010), a predictive patrolling system is obtained. For

he SNPC, the implementation of a predictive patrolling system also

epresents a paradigm shift, from detention to prevention, resulting

n reductions in the costs of detention and in an improvement in the

ctual, subjective, and social level of safety.

The contributions of this article are the following. An extensive lit-

rature review on the PDP is presented. This review includes the iden-

ification of the main aspects revised in related reports and a catego-

ized description of methodological approaches. In summary, a broad

ange of references is classified to identify lacks in the literature.

he main contribution of this paper lies in the optimization model

or the PDP designed in collaboration with the SNPC. The model is

ulti-criteria in nature as it includes in the optimization process four

ifferent attributes. Also, the model allows the decision maker to

efine her preference between global optimality and workload bal-

nce among the patrol districts. The model is solved by means of a

ast local search algorithm, to comply with the strict time require-

ents given by its inclusion as a tool in a DSS. The model and the al-

orithm are tested on a case study on the Central District of Madrid.

e show empirically that the optimization methodology proposed

enerates solutions that outperform the current patrolling configura-

ions adopted by the SNPC. Finally, concluding remarks and research

uidelines are given.

The rest of the paper is organized as follows. In Section 2 we briefly

ntroduce the generic districting problem and we review more in de-

ail the literature on the PDP. In Section 3 we present the proposed

ulti-criteria PDP model and the algorithm devised to solve it. Next,

e test the algorithm on a case study of the Central District of Madrid

nd compare the quality of the solutions with the patrolling configu-

ations currently used in the district. We conclude with some insights

nd guidelines for future research.

. Literature review

This section presents the problem of defining the districts, and

ontextualizes it in the framework of police resource allocation. A

onceptual classification of previous research according to the at-

ributes considered and methodologies adopted is presented, and

hen some insights will be provided.

.1. The districting problem

District design can be seen as the problem of grouping elementary

nits (or atoms) of a given territory into larger districts (or clusters),

ccording to relevant attributes (or criteria). Depending on the prob-

em faced, the attributes considered might belong to different con-

exts, including economic, demographic, geographic, etc. In the last

ecades, the districting problem has been applied to a broad number

f fields, including:

• Electric power districting (Bergey, Ragsdale, & Hoskote, 2003a;

2003b).
• Emergency service districting (Iannoni, Morabito, & Saydam,

2009; Larson, 1974).
• Internet networking (Park, Lee, Park, & Lee, 2000).
• Health information systems (Braa & Hedberg, 2002).
• Police patrol districting.
• Political districting for the definition of electoral areas (Bozcaya,

Erkut, & Laporte, 2003; Cirincione, Darling, & O’Rourke, 2000;

Mehrotra, Johnson, & Nemhauser, 1998).
• Public transportation network districting (Tavares-Pereira, Rui

Figueira, Mousseaus, & Roy, 2007; 2009).
• Sales and service districting (Blais, Lapierre, & Laporte, 2003;

Galvão, Novaes, Souza de Cursi, & Souza, 2006).
• School districting (Caro, Shirabe, Guignard, & Weintraub, 2004;

Schoepfle & Church, 1991).
• Social facilities districting (Minciardi & Zoppoli, 1981).
• Solid waste disposal districting (Hanafi & Freville, 1999).
• Winter service districting (Muyldermans, 2003; Muyldermans,

Cattrysse, Oudheusden, & Lotan, 2002).

A unified territorial design model that allows the formulation and

olution of districting problems in a variety of applications is the

ubject of Kalcsics and Schröeder (2005). The authors also review

he existing literature in territorial design, highlighting application

elds, criteria, and solution methodologies for solving these types of

roblems.

.2. The Police Districting Problem

In the United States, police departments partition the territory

nder their jurisdiction according to a hierarchical structure: com-

and districts (or precincts), patrol sectors (or beats), and reporting

istricts (or r-districts). Each command district hosts a headquarters

here the commanding officer supervises the operations. A com-

and district is subdivided into patrol sectors, each having at least

ne car assigned to patrol the area and attend to the calls originat-

ng from it. Finally, r-districts constitute the atomic element in the

ierarchy: the smallest geographical unit for which statistics are kept.

s reported in Sarac, Batta, Bhadury, and Rump (1999), r-districts can

oincide with census block groups. In Europe, the territorial organi-

ational structure of police departments depends on the country or

he region considered. Nevertheless, a hierarchal structure similar to

he one adopted in the United States is predominant.

The PDP concerns the optimal grouping of r-districts into exter-

ally “homogeneous” patrol sectors. In fact, the car assigned to the

atrol sector should attend to all the incidents taking place in the

rea. Normally, if the car is busy responding to a call when another

ncident happens, a car from a neighboring area has to attend to it.

s Mayer (2009) points out, this generally leads to a domino effect,

here cars are pulled from their area to another, leaving the patrol

ector unattended and, therefore, more susceptible to criminal inci-

ents. In the light of this scenario, a balanced workload among the

istricts and the enforcement of a maximal response time become of

rimary importance.

The first paper on the PDP is presented by Mitchell (1972), which

roposes a clustering heuristic for the redesign of patrol beats in Ana-

eim, California. The author considers the total expected weighted

istance to incidents, as well as a workload measure defined as

he sum of the expected service time and the expected travel time.

odily (1978) adopts a utility theory model that incorporates the

references of three interest groups, namely, the citizens, the ad-

inistrators, and the service personnel. A simple local search al-

orithm swaps patrol beats from one sector to another to improve

he value of the utility function. Benveniste (1985) was the first au-

hor to include workload equalization in the optimization process,

olving a non-linear stochastic model by means of an approxima-

ion algorithm. D’Amico et al. (2002) solve a police districting prob-

em subject to constraints of contiguity, compactness, convexity, and

qual size. The novelty of the model lies in the incorporation of
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queuing measures to compute patrol office workloads and response

times to calls for service, computed by external software, PCAM

(Chaiken & Dormont, 1978a; 1978b). PCAM optimizes a queuing

model for the deployment of police resources, providing the optimal

number of cars per district. The authors solve the problem by means

of a simulated annealing algorithm that iteratively calls the PCAM

routine. At each step, the neighborhood is determined by a simple ex-

change procedure that takes into account the following constraints:

the average response time per district is bounded from above; the ra-

tio of the size of the largest and smallest districts is bounded from

above; districts must be connected; the ratio of the longest Euclidean

path and the square root of the area in each district is bounded from

above to preserve compactness; districts must be convex. The al-

gorithm is applied to a real-world case for the Buffalo Police De-

partment, NY. The following objectives were considered: minimize

the maximum workload (by decremental bounding constraining) and

minimize the maximum average response time. A different approach

is proposed by Curtin, Qui, Hayslett-McCall, and Bray (2005), who ap-

ply a covering model to determine the police patrol sectors. The cov-

ering model defines the centers of the police patrol sectors in such a

way that the maximum number of (weighted) incidents is covered.

An incident is considered to be covered if it lies within an acceptable

service distance from the center of a patrol sector. The model is inte-

grated in a GIS and applied to a case study involving the City of Dallas,

TX. In a subsequent article, Curtin, Hayslett-McCall, and Qiu (2010)

extend their covering model to include backup coverage (e.g., mul-

tiple coverage of high priority locations). The resulting model is bi-

objective in nature. The authors propose a single objective model that

maximizes the priority weighted coverage (i.e., a location is counted

separately each time it is covered), while ensuring a minimum cover-

ing level in terms of the priority-weighted number of locations cov-

ered (each covered location counted only once). The model is tested

on the Dallas data and refinements of the model are proposed (e.g.,

maximum workload per patrol sector). Zhang and Brown (2013) pro-

pose a parametrized redistricting procedure for police patrols. The

methodology consists of a heuristic algorithm that generates alter-

native districting plans. Next, the plans are evaluated in terms of the

average response time and workload. With this aim, an agent-based

simulation model was implemented in a GIS. The location and times

of the incidents taking place in each district were modeled by an

empirical distribution based on real incident data. Finally, the proce-

dure identifies the set of non-dominated solutions. The methodology

has been tested on a case study based on the Charlottesville Police

Department, VA.

2.2.1. Attributes

While analyzing the existing literature on the PDP, certain basic

features common to all the contributions emerged. In fact, all the ap-

plications considered include measures for workload, response time,

and the geometrical properties of the districts. Nevertheless, the

implementations vary considerably. Unlike Kalcsics and Schröeder

(2005), the term “attributes” has been adopted instead of “criteria”,

with the aim of providing a more generic framework that classi-

fies all the relevant characteristics of a PDP solution, regardless of

whether they are optimized in the objective function, or expressed as

constraints.

Workload. Given the complex nature of police procedures and op-

erations, and the great variability of the tasks that an agent can un-

dertake, defining the workload could be complicated. In Bruce (2009),

there are provided a number of questions that can help clarify what

to consider as part of the workload. Albeit difficult, an accurate defi-

nition of workload is desirable, as it ensures homogeneity in terms of

the quality and speed of service, and equalizes the burden on police

officers (Bodily, 1978).

In the literature on the PDP, different definitions of workload have

been adopted. In Mitchell (1972), the workload is computed as the
um of the total expected service time and the total expected travel

ime. Curtin et al. (2005, 2010) use the number (or frequency) of calls

or incidents) occurring at each district as a proxy for the workload.

s different calls can have different service times, some authors con-

ider this measure to be too naïve, as it might produce unbalanced pa-

rol districts. In Bodily (1978) and D’Amico et al. (2002), workload is

efined as the fraction of working time that an agent spends attend-

ng to calls. An equivalent measure is proposed by Benveniste (1985).

iven the stochastic nature of her model, workload is measured in

erms of the probability of a patrol car’s being busy. Once the prob-

bility is known, the time spent attending and answering calls can

e easily calculated. More recently, workload has been defined as a

ombination of different characteristics. In Sarac et al. (1999), the au-

hors aggregate population and call volume. Kistler (2009) makes use

f the convex combination of total hours worked (i.e., from dispatch

o call clearance), number of calls, and population. Finally, Zhang and

rown (2013) consider both the average travel time and the response

ime.

Response time. Response time is an important performance mea-

ure: it is the time between the arrival of a call for service and the

rrival of a unit at the location of the incident. According to Bodily

1978), a reduction in the response time results in a number of bene-

cial effects, such as:

• Increased likelihood of intercepting a crime in progress.
• Deterrent effect on criminals.
• Increased confidence in the police.

Generally speaking, most authors only take into consideration the

ravel times (Bodily, 1978; Kistler, 2009; Mitchell, 1972; Zhang &

rown, 2013) or travel distances (Benveniste, 1985; Curtin et al., 2005,

010). The only study considering the queuing effect is D’Amico et al.

2002), where the authors apply an external model, PCAM (Chaiken &

ormont, 1978a; 1978b), to compute the total response time includ-

ng the queuing time of the calls and the travel time to the location of

he incident.

Geometry. In 1812, Albright Gerry, the Governor of the Common-

ealth of Massachusetts at the time, manipulated the division of

is state and proposed a salamander-shaped district to gain an elec-

oral advantage, leading to the expression “gerrymandering” (result-

ng from merging “Gerry” and “salamander”). Since then, designing

lectoral districts having certain geometric properties has been of pri-

ary importance to ensure neutrality and prevent political interfer-

nce in the districting process.

In the context of the PDP, geometric attributes are still relevant

or efficiency (e.g., establishing boundaries that would be easy to pa-

rol and would not frustrate the patrol officers) and for administrative

easons (e.g., coordinating with other agencies). To the best of our

nowledge, only three works have explicitly included the geometric

roperties in the design process, such as the properties of compact-

ess (D’Amico et al., 2002; Kistler, 2009; Sarac et al., 1999), contiguity

D’Amico et al., 2002; Sarac et al., 1999), and convexity (D’Amico et al.,

002), which are generally obtained as a consequence of optimizing

he travel distance or the travel time. Also, the district area is consid-

red in all the mentioned works. Additionally, in Kistler (2009), the

otal length of the streets in a district is included.

Other attributes. Recently, a number of attributes that do not fall

nto any of the previous categories have been introduced. These at-

ributes generally try to capture complex real-world requirements.

he Buffalo Police Department needed to redesign the r-districts in

uch a way that the existing district boundaries would be respected,

nd the access to demographic data as well as their use by other agen-

ies would be easy (Sarac et al., 1999). The Tucson Police Department

eeded to consider the boundaries of gang territories, city council

ards, neighborhood associations, and the Davis–Monthan Air Force

ase (Kistler, 2009). Finally, in Curtin et al. (2010), backup coverage

i.e., multiple coverage) of incident locations is introduced.
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.2.2. Methodologies and approaches

Many districting approaches have appeared in the literature. In

his subsection, the contributions are categorized according to the

ethodology adopted, and their main characteristics are presented.

Optimization models. According to Kalcsics and Schröeder (2005),

he first mathematical program for the districting problem was pro-

osed by Hess, Weaver, Siegfeldt, Whelan, and Zitlau (1965), and con-

idered a neutral definition of the political districts. Since then, a large

umber of models have been proposed, mostly in the context of loca-

ion analysis. Similarly, in Curtin et al. (2005, 2010), maximal covering

odels are proposed. On the other hand, Mitchell (1972) presents a

et partitioning model that considers minimizing the expected dis-

ance inside of each subset and equalizing the workload of all the

ubsets. A different perspective is adopted by Benveniste (1985) and

’Amico et al. (2002), where patrol cars and agents are modeled as

ervers in a stochastic model. Benveniste (1985) proposes a Stochas-

ic Optimization model, while D’Amico et al. (2002) include a queu-

ng model inside of a simulated annealing algorithm to compute re-

ponse times that incorporate queuing effects.

Geographic information systems (GIS). Kistler (2009) uses a GIS to

edesign the Tucson Police Department districts. Most commercial

IS can be extended to integrate optimization routines. In Curtin et al.

2005) and Curtin et al. (2010), GIS are used in conjunction with a

aximal covering model. Wang (2012) presents the main applica-

ion areas of GIS in police practice. Among the various applications,

ang mentions the possibility of using GIS as a police force plan-

ing tool. Namely, he refers to hot-spot policing and police districting.

oncerning the latter, Wang identifies three main objectives: meet-

ng a response time threshold, minimizing the cost of operations, and

alancing workload across districts. The author mentions that future

esearch in this area should explore other goals, such as minimiz-

ng the total cost (response time), minimizing the number of dis-

ricts (dispatch centers), maximizing equal accessibility, or a combi-

ation of several goals. Finally, Zhang and Brown (2013) implement

n agent-based simulation inside of a GIS.

Other methods. Two studies have adopted approaches that do not

all into any of the other categories. Bodily (1978) devises a decision

odel based on utility theory to achieve the best solution in terms of

he surrogate utility of three interest groups. The work by Sarac et al.

1999) is an example of the proverbial expression “simpler is better.”

fter attempting to redesign r-districts by using a multi-criteria set

artitioning model, the authors realized that census blocks satisfied

ll the requirements. It is important to notice that their approach is

uccessful because of the specific requirements the Buffalo PD im-

osed on the r-district configuration (e.g., easy access to demographic

ata, suitable for use by other agencies).

. A multi-criteria Police Districting Problem

This section illustrates the PDP developed in collaboration with

he SNPC. The goal of the model is to partition into patrol sectors the

erritory under the jurisdiction of a district in the best possible way.

he criteria for evaluating the goodness of the configurations of the

atrol sectors were identified after interviewing several service coor-

inators and a number of agents involved in public safety operations.

he result is a mathematical optimization model which finds an ef-

cient configuration in terms of prevention service and attention to

alls, distributing the workload equitably between the agents.

During the interviews with the public servants involved in public

afety operations, several desirable characteristics were identified in

rder to find a “good” territory partition.

• Compact areas: A compact area allows better control of the ter-

ritory by the agents, as travel times from one point to another

within the area are minimal. Therefore, the more compact an area
is, the faster the response of agents who are in the area to emer-

gency calls.
• Homogeneity in terms of workload: Generating patrol sectors that

are similar in terms of workload is quite useful for two main rea-

sons. First, it ensures a more efficient distribution of work and,

therefore, better service. Second, greater equality in the work-

place increases the satisfaction of the agents.
• Mutual support: It is desirable that agents be able to count on the

support of agents assigned to other patrol sectors in case of need

and emergency.

Our model differs from those proposed so far in the literature in

number of relevant aspects. In general, our focus is on crime pre-

ention. For this reason, the purpose of our model is to increase the

ffectiveness of the deterrent effect of the agents’ presence on the

erritory, by concentrating the agents in the areas with a higher risk

f crime. On the other hand, previous approaches such as D’Amico

t al. (2002) and Zhang and Brown (2013) focus on reaction to crime

ncidents and aim at optimizing the response to emergency calls

nd, hence, to crimes that have already happened. Additionally, we

resent the first model for the PDP that optimizes at the same time

ttributes of area, crime risk, compactness, and support. Specifically,

utual support is an attribute that has not been included in any pre-

ious model. Mutual support differs from backup coverage (Curtin

t al., 2010) in that the former regards the possibility of receiving

acking in any point of the patrol sector from any other agent in the

istrict, while the latter only concerns the overlapping areas between

atrol sectors. Furthermore, our model allows the decision-maker

o explicitly and easily include his/her preferences in the optimiza-

ion process by means of weights associated to the attributes. In the

ormulation proposed by D’Amico et al. (2002), the user can spec-

fy his/her preferences only by adjusting the righthand side coeffi-

ients in the constraints, while in Curtin et al. (2005) and Curtin et al.

2010), no user preference is considered. Finally, all the approaches

reviously presented in the literature require specific data and in-

ormation, such as the time, location, and service time of incidents

nd emergency calls, which might not be available. This requirement

akes these models inapplicable in any context where this informa-

ion is not available. Also, these methodologies do not take into con-

ideration, and hence they cannot be extended to, all the non-violent

rimes that are not reported by emergency calls, such as, pickpockets,

heft of vehicles, or property damage.

In the next section, the structure of the optimization mathemati-

al model incorporating these properties is explained.

.1. Input data

Without loss of generality, the territory under the jurisdiction of

he district is assumed to be divided into a square grid, G, of n rows

nd m columns, having elements indexed by (i, j) ∈ G. Following this

tructure, we define two data matrices both having n rows and m

olumns:

• The crime risk matrix, R. Its entries, rij ∈ R, are non-negative

real numbers specifying the crime risk associated with the corre-

sponding locations. The risk of criminal activity can be estimated

with past data or using a predictive policing model (Perry et al.,

2013).
• The area matrix, A. Its entries, aij ∈ A, are non-negative real num-

bers specifying the total street length at each tile of the grid. This

data can be easily obtained using a GIS.

Finally, the number of patrol sectors, p, is required. The model uses

his information to define the number of areas into which to partition

he territory.
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3.2. Notes on taxicab geometry

The representation of the territory as a grid necessarily involves

certain simplifications when considering geometric properties such

as continuity and distance. Given the loss of information on the ur-

ban fabric of streets and roads resulting from using a grid as a model,

it is natural and necessary to apply a taxicab geometry. In this ge-

ometry, the distance between two points, also called the Manhattan

distance, is the sum of the (absolute) differences of their coordinates.

Therefore, the distance between the points a = (i, j) and b = (k, l) is

calculated as

dist(a, b) = |i − k| + | j − l|. (1)

Following this definition, two points are considered adjacent if

and only if their distance is equal to 1. A subset of points s is defined

to be connected if between any pair of points (belonging to s) there is

a path of adjacent points (belonging to s) connecting them. Within a

connected subset s, the minimum distance between any pair of points

is defined as the length of the shortest path connecting them formed

by points belonging to s. If this path does not exist, then the subset

is not connected. The matrix of the shortest paths between pairs of

points belonging to s, Fs, can be calculated efficiently using the Floyd–

Warshall algorithm (Floyd, 1962; Warshall, 1962). We refer to its

elements as F s
a,b

, where a, b ∈ s; F s
a,b

= ∞ when there is no path con-

necting points a and b. The connectivity condition can be expressed

as

0 ≤ F s
a,b < ∞, ∀a, b ∈ s ⇐⇒ s is connected. (2)

Finally, we present the property of convexity. In taxicab geometry,

the definition of convexity is related to the notion of the orthogo-

nal convex hull of a subset. In this paper, we exploit the following

property: a subset of points s is convex if, and only if, for all pairs of

points belonging to s, the shortest path distance (inside of the subset)

is equal to the Manhattan distance between them:

F s
a,b = dist(a, b), ∀a, b ∈ s ⇐⇒ s is convex. (3)

3.3. Constraints

We now present the model constraints. As explained in the previ-

ous sections, the model must generate a patrol sector configuration.

The districts can not overlap and they must cover the whole territory.

Mathematically, a partition is a family of non-empty subsets com-

pletely covering the initial set and in which each pair of these subsets

are disjoint. Thus, the first condition that any solution has to satisfy

is to define a partition, P, of the territory considered. This translates

to a definition of the subsets over the matrices A and R. Each sub-

set s ∈ P contains some of the matrix entries and represents a patrol

sector. From now on, the terms subset and (patrol) sector will refer

to the same concept. The second restriction concerns the cardinality

of the partition. The number of subsets in the partition must be ex-

actly p. The third condition regards the subsets’ geometry. Only con-

nected subsets are feasible. This condition implies that an agent can-

not be assigned to a patrol district composed of two or more separate

areas of the city. Furthermore, all the subsets are required to be con-

vex. When a subset is convex, it is also optimally efficient in terms

of distances between its points. In fact, in a convex subset, there is a

minimal shortest path connecting any pair of points. Therefore, this

condition allows the generation of patrol sectors that are more effi-

cient in terms of movement within the area. The resulting PDP can be

characterized by the following mathematical program, adapted from

King, Jacobson, Sewell, and Cho (2012).

opt ob j(P) (4)

s.t. ∃s ∈ P|(i, j) ∈ s ∀(i, j) ∈ G (5)

Emptys(P) = 0 ∀s ∈ P (6)
P| = p (7)

onns(P) = 1 ∀s ∈ P (8)

onvs(P) = 1 ∀s ∈ P (9)

In the model, obj(P) is an objective reflecting the goals of the de-

ision maker. The constraints (5) require that all the points of the

rid must belong to a subset. Emptys(P) is an indicator function that

quals 1 when s is empty (i.e., no points have been assigned to it)

nd zero otherwise. The cardinality constraint (7) forces the number

f subsets to be exactly p. Finally, Conns(P) is an indicator function

hat equals 1 when s is connected and zero otherwise, and Convs(P)

s an indicator function that equals 1 when s is convex and zero

therwise.

.4. Attributes

To find the best possible partition, a methodology is needed that

llows the comparison of the different solutions in terms of “good-

ess.” To evaluate this, we need to define some unambiguous criteria.

ore specifically, we consider the following attributes for each subset

∈ P:

• Area, as. This attribute identifies the size of the territory that an

agent should patrol. It is calculated as

as =
∑

(i, j)∈s

ai j. (10)

• Support received, bs. Two districts support each other if the dis-

tance between their geometric medians is less than or equal to a

defined constant, K. We recommend defining K as

K =
⌈

max{m, n}√
p

⌉
. (11)

The geometric median, os, of a subset s is the point minimizing the

sum of the distances to the elements of the subset:

os = arg min
a∈s

{∑
b∈s

F s
a,b

}
. (12)

Finally, the support received by a subset can be calculated as

follows:

bs = |{s′ ∈ P|dist(os, os′
) ≤ K, s �= s′}|. (13)

• Demand, cs. The demand is defined as the total risk of the subset,

i.e., the sum of the risks associated to the points belonging to the

subset:

cs =
∑

(i, j)∈s

ri j. (14)

It is important to remember that the rij identify the crime

risk associated to a point. Therefore, the demand cs identifies

how “dangerous” the subset is in terms of the expected crime

risk.
• Diameter, ds. The diameter of a subset is defined as the max-

imum distance between any pair of points belonging to the

subset:

ds = max
a,b∈s

{
F s

a,b

}
. (15)

The diameter is an efficiency measure. In fact, compact dis-

tricts have small diameters. Moreover, the diameter can be

interpreted as the maximum distance that the agent associ-

ated to the district should travel in case of an emergency

call. Therefore, a small diameter results in a low response
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he attributes defined are not comparable, as they are associated to

ifferent dimensions. To make comparisons between them, we need

o convert the attributes into dimensionless ratios:

• Area ratio, αs. This is the ratio of the subset area to the whole

area:

αs = as∑
(i, j)∈G ai j

. (16)

• Isolation ratio, βs. To express all the ratios as quantities to be

minimized, we consider the isolation of a subset as the comple-

ment of the support received:

βs = p − 1 − bs

p − 1
. (17)

• Demand ratio, γ s. This is the ratio of the subset demand to the

whole demand:

γ s = cs∑
(i, j)∈G ri j

. (18)

• Diameter ratio, δs. This is the ratio of the subset diameter to

the maximum diameter possible. We estimate this quantity as

the maximum Manhattan distance between two points in the

grid:

δs = ds

maxa,b∈G{dist(a, b)} . (19)

Now that all the attributes have been expressed in a dimension-

ess fashion, it is necessary to define the relative importance of each

atio. The decision maker can express preferences by associating

eights to the attributes: wα , wβ , wγ , and wδ . A larger weight as-

igns more importance to the minimization of the attribute. We can

ow define the workload Ws of a subset s as the sum of the products

f weights with the ratios:

s = wα · αs + wβ · βs + wγ · γ s + wδ · δs. (20)

.5. Objective function

After analyzing the information provided by the professionals

f the SNPC, we identified two primary necessities that our model

hould take into account:

• The model should define districts that are as efficient as possible,

in terms of the attributes considered and the weights specified.
• The model should define districts that are as homogeneous as

possible, in terms of the attributes considered and the weights

specified.

Unfortunately, there might be a trade-off between these require-

ents. As an example, an increase in the homogeneity of the dis-

ricts could reduce the global efficiency, and vice-versa. Therefore,

e define a multi-criteria objective function that takes into consid-

ration the preferences of the decision maker with respect to these

actors:

in ob j(P) = λ · max
s∈P

{W s} + (1 − λ) ·
∑

s∈P W s

p
, (21)

here 0 ≤ λ ≤ 1. The term max s ∈ P{Ws} represents the worst work-

oad, while the term
∑

s∈P W s

p is the average workload1. The objec-

ive function defined, inspired by the extended goal programming

aradigm introduced by Romero (2001, 2004), allows the decision

aker to examine the trade-off between optimization and balance
1 The average workload term of the objective function includes constant terms, such

s �αs = 1 and �γ s = 1. We decided to include them so that the worst workload and

he average workload could have the same magnitude and, therefore, be comparable.
y a parametric analysis. In fact, by varying λ, the model gives a range

rom optimization (λ = 0) to balance (λ = 1).

.6. The optimization algorithm

The model resulting from (4)–(9) is extremely complex. In fact,

rexl and Haase (1999) showed that subset contiguity can be en-

orced by using a number of inequalities, similar to the sub-tour elim-

nation constraints in vehicle routing, that increases exponentially

ith the number of subsets, making it intractable in large problems.

hirabe (2005, 2009) proposed a fluid flow approach to contiguity,

ielding a mixed-integer program formulation that avoids this expo-

ential increase by adding continuous decision variables measuring

flow volume. Nevertheless, this formulation is also intractable in

arge problems. Also, to the best of the authors’ knowledge, no linear

ormulation for the convexity condition has been presented in the lit-

rature. Additionally, for the purposes of this research, computational

ime is critical since the model is to be included in an integrated DSS

nd, therefore, the user would expect a solution within a reasonable

ime. Therefore, the presented model is solved by means of a heuris-

ic algorithm. Namely, we adopt a random search algorithm that, on

ach iteration, generates a new solution using a randomized greedy

euristic and then improves it using a local search algorithm. Addi-

ionally, the random search algorithm can be initialized by a solu-

ion provided by the user, which is then optimized by means of local

earch.

Random greedy algorithm. This algorithm generates an initial solu-

ion by randomly choosing the first element of each subset and then

xpanding the subsets in a greedy fashion while preserving their con-

ectivity and convexity. Initially, the partition subsets are empty. In

he first phase of the algorithm, each subset is initialized with a ran-

omly chosen point. At each iteration of the second phase, the algo-

ithm extends the initial solution by assigning a point to a subset. The

lgorithm chooses the combination of point and subset that results

n the best feasible solution. The algorithm ends when all the points

ave been assigned to subsets. Due to the convexity condition, it is

ossible that the algorithm cannot assign all the points to subsets. In

his case, the algorithm returns an empty set.

lgorithm 1 Random greedy algorithm.

procedure GreedyHeuristic(A, R, p){Phase 1 – Random initializa-

tion of the subsets.}

C ← (i, j) ∈ G; {Initialize points.}

for all s ∈ P do

c ← rand(C); {Randomly choose a point from C.}

C ← C\c; {Remove c from C.}

s ← c; {Assign c to s.}

end for

{Phase 2 – Subset expansion.}

while C �= ∅ do

P� ← ∅;

for all {s ∈ P} and {c|c ∈ Neighborhood(s) ∧ c ∈ C} do

s ← s ∪ c; {Assign c to s.}

if Convs(P) = 1 and ob j(P) < ob j(P�) then

P� ← P; {Save the best solution found so far.}

c� ← c; {Save the last point added to a subset.}

end if

s ← s\c; {Remove c from s.}

end for

P ← P�; {Update the current solution with the best solution

found so far.}

C ← C\c�; {Remove c� from C.}

end while

return P�;

end procedure
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Algorithm 3 Random search algorithm..

procedure RandomSearch(A, R, p, N, P̂)

if P̂ �= ∅ then

P� ← LocalSearch(A, R, p, P̂); {Initialization by user provided so-

lution.}

else

P� ← ∅; {Initialize the best solution found to empty set.}

end if

n ← 0; {Initialize the number of iterations to zero.}

while Loop() do

P ← GreedyHeuristic(A, R, p); {Generate a new solution.}

P ← LocalSearch(A, R, p, P); {Improve the current solution.}

if ob j(P) < ob j(P�) then

P� ← P; {Save the best solution found so far.}

end if

n ← n + 1; {Increase the iteration counter.}

end while

return P�;

end procedure
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The procedure rand() randomly chooses an element from the

input set. The set Neighborhood(s) returns the neighboring points,

i.e., the set of feasible points that do not belong to s and

whose distance from at least one of the points in s is exactly

one:

Neighborhood(s) = {a = (i, j) ∈ G\s|∃b ∈ s|dist(a, b) = 1 }. (22)

The neighboring set of points can be efficiently calculated by keep-

ing a list for each subset that is updated every time a point is added

to or removed from the subset. Subsets can be checked for convexity

(Convs(P) = 1) by applying condition (3), having a complexity equal

to O(|s|2). King et al. (2012); King, Jacobson, and Sewell (2014) pro-

pose data structures specifically designed for the efficient implemen-

tation of contiguity and hole constraints in local search algorithms

for planar graph partitioning. Nevertheless, implementing such so-

phisticated data structures in our algorithm is unnecessary, as no

real benefit would result from reducing the complexity of the con-

vexity test. In fact, the complexity for running the convexity test is

dominated by that of the Floyd–Warshall algorithm (O(|s|3) to com-

pute the shortest-path distance matrix, on which the convexity test is

based.

Local search algorithm. The local search algorithm improves the so-

lution generated by the greedy algorithm by reassigning the points

located at the subsets’ borders. At each step of the algorithm, all

the feasible reassignments of a point are considered. The algorithm

chooses the reassignment that results in the best partition. If the so-

lution found is better than the previous one, then it is taken as the

starting point of the next iteration.

Algorithm 2 Local search algorithm.

procedure LocalSearch(A, R, p, P)

improved ← true;

while improved do

improved ← false;

P� ← P; {Initialize the best solution found with the current one.}

for all {sA ∈ P} and {c ∈ sA} and {sB ∈ P|c ∈ Neighborhood(sB)} do

sA ← sA\c; {Remove c from sA.}

sB ← sB ∪ c; {Assign c to sB.}

if ∀s ∈ P, Emptys(P) = 0 and Conns(P) = 1 and Convs(P) = 1

and ob j(P) < ob j(P�) then

P� ← P; {Save the best solution found so far.}

improved ← true; {The solution improved.}

end if

sB ← sB\c; {Remove c from sB.}

sA ← sA ∪ c; {Assign c to sA.}

end for

P ← P�; {Update the current solution with the best solution

found so far.}

end while

return P�;

end procedure

Subsets can be checked for connectivity (Conns(P) = 1) by applying

condition (2), having a complexity equal to O(|s|2). Also the connec-

tivity test requires the shortest-path distance matrix computed using

the Floyd–Warshall algorithm.

Random search algorithm. Initially, if no initial solution P̂ is pro-

vided by the user, the best solution is initialized to empty. Other-

wise, the best solution is initialized by optimizing P̂ by means of lo-

cal search. At each iteration, the random search algorithm generates

a new solution by calling GreedyHeuristic and LocalSearch. The new

solution is compared with the best solution found. The algorithm it-

erates according to a certain looping condition, Loop. In our imple-

mentation, the algorithm runs for a fixed amount of computational

time.
. Case study: the Central District of Madrid

The algorithm has been applied and tested on a case study of

he Central District of Madrid. The solutions identified by the opti-

ization algorithm have been analyzed and compared to the stan-

ard patrolling configurations currently adopted by inspectors of the

NPC.

.1. The Central District of Madrid

Madrid is the capital of Spain and the most populous city in the

ountry, with 3,207,247 inhabitants as of 2013. In the metropolitan

rea as a whole, the population is 6,543,031. The Central District of

adrid, on which we focus our work, has an area of more than two

quare miles and comprises six neighborhoods: Palacio, Embajadores,

ortes, Justicia, Universidad, and Sol. Its population is approximately

50,000 inhabitants.

.1.1. Datasets

To determine the best grid size, we can take advantage of the re-

ults of Gorr, Olligschlaeger, and Thompson (2003). In fact, the au-

hors show that the average monthly crime counts for each cell of the

rid needs to be on the order of 30 or more to achieve good forecast

ccuracy. The resulting grid for the Central District of Madrid has nine

ows and nine columns, and can be seen in Fig. 1. Crime analysts from

he SNPC stated that the grid is sufficiently precise for the determi-

ation of patrol districts.

In this case study, we consider the thefts committed during the

onth of October, 2011. Theft is the most frequent type of crime com-

itted in Spain and one of the main priorities for the SNPC is its

eduction. The month of October has been chosen, as it is an “av-

rage” month in terms of population and activity and it has only

ne holiday. More specifically, we consider the following working

hifts:

• SATT3: Saturday, 10/15/2011, night shift (10 PM–8 AM).
• SUNT1: Sunday, 10/16/2011, morning shift (8 AM–3 PM).
• MONT2: Monday, 10/17/2011, afternoon shift (3 PM–10 PM).

These three shifts have been chosen for their representativeness,

s crime activity varies by time of day, day of the week, and by sec-

or, and exhibits seasonal effects (Cohen, 2006). Fig. 1 illustrates the

istribution of thefts in the three shifts considered. SATT3 is charac-

erized by a high level of nightlife, with people coming from other

istricts of Madrid as well as other cities. In the picture it can be seen
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Fig. 1. Number of thefts in the Central District of Madrid. Red represents a high crime level, while white represents no criminal activity. (For the interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Comparison of the patrolling configurations currently adopted by the SNPC

with those generated by the optimization algorithm. Scenario with two patrol sectors.

Each sector is represented in a different color. (For the interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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hat thefts are committed in almost all the territory, with the highest

evels concentrated around Plaza Mayor, the central plaza of the city.

UNT1 has a moderate level of criminality, mostly concentrated in

he south of the district where a very popular flea market (El Rastro)

s held every Sunday morning. Finally, MONT2 presents the charac-

eristics of a normal business day, with low levels of criminal activity,

ostly concentrated in the commercial area.

.2. Current patrolling configurations analysis

During an interview, a service coordinator in charge of the pa-

rolling operations of the Central District of Madrid stated that, on

“normal day,” one of the following patrol sector configurations is

pplied:

• CONF2: The district is divided into two big sectors by the Gran

Via, the main artery in the territory, and the agents are free to pa-

trol the assigned area ad libitum. The northern sector includes two

neighborhoods (i.e., Universidad and Justicia) while the southern

sector includes four neighborhoods (i.e., Palacio, Sol, Embajadores,

and Cortes).
• CONF6: The district is partitioned according to its six neighbor-

hoods.

To be able to compare the performance of these configurations

ith those identified by the optimization algorithm, we represented

ONF6 and CONF2 using the same grid structure adopted by the op-

imization algorithm, as illustrated in Figs. 2a and 3a. The cells of

he grid shared by more than one sector have been assigned to the

ector occupying the most of its area. It should be noticed that both

onfigurations present one sector that is not convex, i.e., the green

ector in CONF6 and the light blue sector in CONF2). Therefore, the

onfiguration currently adopted by the SNPC would be infeasible ac-

ording to the optimization model proposed. This might result in bet-

er attribute values for these solutions than those achievable with a

easible solution. In the following, we use these configurations as a

omparative basis for the quality of the solutions identified by the

ptimization algorithm.

.3. Analysis of the optimization model solutions

We now analyze the quality of the solutions found by the opti-

ization algorithm, by comparing them to the patrolling configura-

ions currently adopted by the SNPC. The optimization algorithm was

mplemented in C++. The experiments were run on a computer with

n Intel Core i5-2500K CPU having four cores at 3.30 gigahertz and

gigabytes RAM memory. The program was run on only one core and
he measured RAM memory use is less than 2 megabytes. Given that

he police district optimizer should be part of a DSS and, therefore, be

ufficiently interactive, the computational time limit for each test was

et to 60 seconds. Concerning the parameters, we asked a service co-

rdinator in charge of the patrolling operations of the Central District

o define her preferences among the criteria and the values for the

eights and the parameter lambda. The parameters values adopted

n the experiments are the following:

• Dataset: {SATT3, SUNT1, MONT2}.
• Number of patrol sectors, p: {2, 6}.
• Preference weights, (wα , wβ , wγ , wδ): {(0.45, 0.05, 0.45, 0.05)}.
• Balance coefficient, λ: {0.1}.
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Fig. 3. Comparison of the patrolling configurations currently adopted by the SNPC

with those generated by the optimization algorithm. Scenario with six patrol sectors.

Each sector is represented in a different color. (For the interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.).
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In any event, the algorithm can be run for any feasible combina-

tion of the parameters. In the following, we compare the solutions

found by the proposed algorithm and the patrolling configurations

currently adopted by the SNPC.

4.3.1. Scenario with two patrol sectors

As the optimization algorithm is random in nature, we ran each

configuration 50 times. The best solutions found by the algorithm are

displayed in Fig. 2. According to the figures, the optimization algo-

rithms assigns a greater area to the northern sector than the current

solution of the SNPC does. Also, we can see that the northern sector

slowly decreases in size as we move from the Saturday night shift

to the Monday afternoon shift, to adapt to the changes in the crime

activity level and distribution.

The solution and the attribute values are illustrated and compared

in Table 1a. The first three columns report the dataset, the method-

ology, and the objective function value. Then, for each attribute, the

average and the worst value are given. The area and demand averages

are not shown, as they are constant. For the algorithm, we show the

95 percent confidence interval computed over the 50 runs. Also, to

simplify the interpretation of the differences in the attributes values,

we show the percentage improvement of our solutions over the cur-

rent solution adopted by the SNPC. The improvement was calculated

as 100 · (1 − ZALG
ZSNPC

), except for the average and min support, that was

calculated as 100 · ( ZALG
ZSNPC

− 1), where ZALG is the value of the solu-

tion computed by the optimization algorithm and ZSNPC is the value

for the current patrolling configuration in use by the SNPC. In the in-

stances considered, the proposed algorithm produces patrolling con-

figurations that are always better than the current one in terms of

the objective function, with an average improvement of 11.97 per-

cent. Also, we can see that all the attributes experience a significant
mprovement, with the exception of the diameter, which worsens by

.55 percent on average.

.3.2. Scenario with six patrol sectors

The best solutions found by the algorithm are shown in Fig. 3. We

an see that there are significant differences between them and the

urrent patrolling configuration. From the observation of the configu-

ations with six subsets, one can see the importance of designing pa-

rolling districts tailored for the specific characteristics of each shift.

n fact, we can see that the size and location of the sectors changes to

dapt to the crime distribution in each shift. For the Saturday night

hift (Fig. 3b), the focus is on the center of the district, where most

f the nightlife takes place. On Sunday morning (Fig. 3c), as expected,

e can see that most of the agents should be located on the southern

art of the district, where the flea market takes place. On the other

and, on Monday afternoon (Fig. 3d), patrolling in the southern part

f the district can be reduced (only two sectors), in favor of a greater

ontrol of the central and the northern parts of the district, where the

ommercial activities are located.

The solution and the attribute values are illustrated and compared

n Table 1b. Also in the scenario with six patrol sectors the algorithm

enerates better partitions than those currently in use in the SNPC,

ith an average improvement of 10.40 percent. In fact, it can be seen

hat the objective function value of the current configuration is al-

ays larger that of the configurations generated by the optimization

lgorithm. Also, the optimization algorithm improves notably the av-

rage and minimum support, while keeping the max area and the

ax demand below the values of the current solutions. The only ex-

eption is for dataset SATT3, where the max demand is much higher

han that of the current solution.

. Conclusions

The purpose of this paper was to introduce a model for the opti-

ization of patrolling sectors, specifically tailored to suit the require-

ents of the Spanish National Police Corps (SNPC). This model will

e part of a Decision Support System (DSS) for the implementation of

predictive patrolling policing. The model proposed is multi-criteria

n nature. Given the non-linear nature of its restrictions, we propose

local search heuristic algorithm for its solution. A case study of

he Central District of Madrid was presented and the performance

f the algorithm was assessed. We showed empirically that the al-

orithm rapidly generates patrolling configurations that are more ef-

cient than those currently adopted by the SNPC. However, this re-

earch is just a scratch on the surface and several lines of research

an be pursued, as explained in the following.

• The model could be improved to increase its realism. As sug-

gested by Sarac et al. (1999), census cell blocks could substitute for

the current grid structure. Unfortunately, adopting this structure

would increase the complexity of the model and the time neces-

sary for its solution. In fact, the convexity restriction on the sub-

sets’ geometry would require the implementation of specific data

structures, such as those proposed by King et al. (2012, 2014). In

this case, finding a balance between realism and solvability would

be imperative, as the model should be solved in real-time.
• The approximation introduced by the current area measure could

be improved by considering other more realistic measures. A

previous implementation of the model computed the minimum

length Hamiltonian Cycle. However, initial computational experi-

ments showed that that was computationally inefficient. Further

research could focus on its time-efficient implementation, or on

alternative representative measures (Opasanon & Miller-Hooks,

2006; Pal & Bose, 2009).
• The effectiveness of other heuristic and metaheuristic algorithms

such as tabu search, ant colonies, and genetic algorithms could be

investigated.
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Table 1

Comparison of the patrolling configurations currently adopted by the SNPC with those generated by the optimization algorithm. The tables show the solution values, the attribute

values, and the percentage improvement of the algorithm solutions over the current patrolling configuration.

(a) Scenario with two patrol sectors

Dataset Method Obj(P) Max area Avg support Min support Max demand Avg diameter Max diameter

SATT3 CONF2 0.56 83588 0 0 33.4 11 12

Algorithm 3 [0.49, 0.49] [66247, 66247] [1, 1] [1, 1] [24.59, 24.59] [11.5, 11.5] [12, 12]

Improvement [12.5 percent, 12.5

percent]

[20.75 percent,

20.75 percent]

∞ ∞ [26.38 percent,

26.38 percent]

[−4.55 percent,

−4.55 percent]

[0, 0]

SUNT1 CONF2 0.56 83588 0 0 19.64 11 12

Algorithm 3 [0.49, 0.49] [70728, 70728] [1, 1] [1, 1] [13.76, 13.76] [11.5, 11.5] [12, 12]

Improvement [12.5 percent, 12.5

percent]

[15.38 percent,

15.38 percent]

∞ ∞ [29.94 percent,

29.94 percent]

[−4.55 percent,

−4.55 percent]

[0, 0]

MONT2 CONF2 0.55 83588 0 0 12.80 11 12

Algorithm 3 [0.49, 0.49] [68002, 68002] [1, 1] [1, 1] [11.42, 11.42] [11.5, 11.5] [12, 12]

Improvement [10.91 percent,

10.91 percent]

[18.65 percent,

18.65 percent]

∞ ∞ [10.78 percent,

10.78 percent]

[−4.55 percent,

−4.55 percent]

[0, 0]

(b) Scenario with six patrol sectors.

Dataset Method Obj
(
P
)

Max area Avg support Min support Max demand Avg diameter Max diameter

SATT3 CONF2 0.20 33065 2.33 1 8.85 5.17 7

Algorithm 3 [0.19, 0.19] [28281.22,

30050.94]

[3.66, 3.75] [2.65, 2.87] [13.49, 14.06] [5.43, 5.62] [8.74, 9.42]

Improvement [5 percent,

5 percent]

[9.12 percent,

14.47 percent]

[57.08 percent,

60.94 percent]

[165 percent,

187 percent]

[−58.87, −52.43] [−8.70 percent,

−5.03 percent]

[−24.86 percent,

−34.57 percent]

SUNT1 CONF2 0.21 33065 2.33 1 11.21 5.17 7

Algorithm 3 [0.18, 0.19] [27851, 29331.08] [3.64, 3.69] [2.88, 3] [6.44, 6.88] [5.25, 5.35] [7.29, 7.79]

Improvement [9.52 percent,

14.29 percent]

[11.29 percent,

15.77 percent]

[56.22 percent,

58.37 percent]

[188 percent,

200 percent]

[38.63, 42.55] [−3.48 percent,

−1.55 percent]

[−11.29 percent,

−4.14 percent]

MONT2 CONF2 0.21 33065 2.33 1 7.48 5.17 7

Algorithm 3 [0.18, 0.18] [32122.76,

33319.8]

[3.81, 3.89] [2.68, 2.88] [6.71, 7.16] [5.24, 5.36] [9.15, 9.61]

Improvement [14.29 percent,

14.29 percent]

[−0.77 percent,

2.85]

[63.52 percent,

66.95 percent]

[168 percent,

188 percent]

[10.29 percent,

4.28 percent]

[−3.68 percent,

−1.35 percent]

[−37.29 percent,

−30.71 percent]
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• Although the model is intrinsically non-linear, decomposition

methods such as Column Generation or Benders’ Decomposition

could be applied to solve the problem to optimality. Also, these

methodologies could still be used to generate good heuristic so-

lutions should the solution process take longer than the allowed

computational time.
• Recent papers have analyzed the statistical effect of law enforce-

ment actions on crime patterns (Jones, Brantingham, & Chayes,

2010). By including these effects in an optimization problem it

would be possible to formulate a model for the design of patrol

configurations that result in a reduction of the future level of crim-

inality. The model would be similar in nature to theoretical games

(Hohzaki & Maehara, 2010) and to fortification/interdiction prob-

lems used to hedge against intentional attacks (Kress, Royset, &

Rozen, 2012; Scaparra & Church, 2008; Zoroa, Fernandez-Saez, &

Zoroa, 2012) and natural disasters (Liberatore, Scaparra, & Daskin,

2012).
• A service coordinator in charge of the patrolling operations in the

Central District of Madrid pointed out that an important compo-

nent is ensuring that the agents’ job is “entertaining,” as opposed

to dull and boring. It could be an interesting challenge for model-

ers to come up with an “entertainment” attribute to be included

during the optimization process.
• Finally, the model and algorithm presented in this work will be in-

cluded in an integrated DSS for the implementation of a smart pa-

trolling policing that we are currently developing in collaboration

with the SNPC. Certainly, this research will open new opportuni-

ties for the application of OR methods and models in the police

sector.

We hope that this paper will be a useful source of ideas for

uture research on policing models and will contribute further to
he development and solution of more complex models for the

DP.
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