

HW #4. Interaction between Process and Kernel

Overview

Modern operating systems such as Windows and Linux are structured into two

spaces: user space and kernel space. Most of the operating system functions are

implemented in the kernel. Programs in the user space have to use appropriate

system calls to invoke the corresponding kernel functions. In this homework, we

will take a closer look at the system call mechanism by tracing system calls made

by a user process calls. We will then demonstrate how to implement a new

system call on Fedora Linux. We will also demonstrate how to copy data from

kernel space to user space and vice versa.

Tasks

A. Use ‘strace’ to trace the system calls made by the ‘ls’ command

1. Use ‘strace’

2. Open/Cat the output file ‘strace.txt’ (e.g. Figure 1)

Figure 1. screenshot of strace command

3. You can see all the system calls made by the ls command in sequential

$ strace ls 2>& strace.txt

order. For instance, in Figure 1, we can see that the ls command has

invoked the execve, brk, access, and mmap system calls

B. Add a custom system call

1. Download the kernel source (same steps as in Homework 2)

2. Add a custom system call to the syscall table (see Figure 2)

Figure 2. add a system call ‘sayhello’ to syscall table

3. Add the system call definition to the syscall interface (see Figure 3)

Figure 3. add the system call ‘sayhello’ definition to the syscall interface

4. Implement the custom system call (see Figure 4)

Figure 4. the system call ‘sayhello’

$ vim [source code directory]/arch/x86/syscall/syscall_64.tbl

$ vim [source code directory]/include/linux/syscalls.h

$ vim [source code directory]/kernel/sayhello.c

5. Modify the Makefile (e.g. Figure 5)

Figure 5. modify the Makefile

6. Make the new kernel (steps like homework 2)

 For a multi-core PC, you can accelerate the kernel make process with the ‘-j

[number of threads]‘ option.

C. Invoke system call by the system all number (see Figure 6)

1. Include the needed libraries

2. Use function ‘syscall’

Figure 6. call a system call in a program

 For detailed information of syscall, please check Linux man pages

$ vim [source code directory]/kernel/Makefile

$ make -j 4

#include <unistd.h>

#include <sys/syscall.h>

Usage: syscall(int [syscall number], [parameters to syscall])

$ man syscall

3. After running the code, you can use ‘dmesg’ to see the messages output

from printk (e.g. Figure 7)

Figure 7. the ‘printk’ messages from ‘sayhello’ system call

※ You can download the full source code of the examples in the section B and

section C here.

D. Copy data between user space and kernel space (Figure 8)

1. Include the header for XXX

2. copy_from_user

‘copy_from_user’ is used to copy user space data to a kernel space buffer

It is defined at ‘[source code directory]/include/asm-generic/uaccess.h’

3. copy_to_user

‘copy_to_user’ is used to copy kernel space data to a user space buffer

It is defined at ‘[source code directory]/include/asm-generic/uaccess.h’

$ dmesg

#include <linux/uaccess.h>

Usage: copy_from_user (void* dst, void* src, unsigned long len)

Usage: copy_to_user(void* dst, void* src, unsigned long len)

https://github.com/headhsu2568/OS_hw4/tree/master/sayhello

Figure 8. the ‘sayhello2’ system call uses ‘copy_from_user’ to get a name and uses

‘copy_to_user’ to store the hello message to user space buffer

※ You can download the full source code of the examples in the section D

here.

E. Manipulate the task_struct (program control block) of a process

In Linux, each process has a data structure ‘task_struct’ to store its

information(process id, process state, page table, etc.), and there is a global

variable ‘current’ which points to the current process’ task_struct’. As a result,

you can get the current process’s task_struct information easily through the

current pointer.(e.g. see Figure 9 to get the current process’s state)

Figure 9. get process state

The ‘task_struct’ is defined in ‘[source code directory]/include/linux/sched.h’

(e.g. Figure 10), you can trace the structure and know more about the process.

https://github.com/headhsu2568/OS_hw4/tree/master/sayhello2

Figure 10. the definition of ‘task_struct’ in file ‘sched.h’

※ You can download the full source code of the examples in the section E here

and the other similar example source code here.

https://github.com/headhsu2568/OS_hw4/tree/master/get_state
https://github.com/headhsu2568/OS_hw4/tree/master/get_state

F. Send a signal from kernel space to user space

 The kernel space

1. Include the required headers

4. Declare and initialize a signal structure

The variable ‘si_signo’ is the signal number and ‘si_code’ presents how to send

the signal, we set it as ‘SI_KERNEL’ to indicate that the signal is sent from the

kernel.

5. Get the ‘task_struct’ of a process by process id

The ‘find_task_by_vpid’ function will return the process task structure with a

given process id.

6. Send a signal to the process by its ‘task_struct’

The first parameter of send_sig_info is the signal number, the second parameter

is a pointer to the signal structure, and the last parameter is a pointer to the

specified task structure.

 The user space program

1. Include the required header

#include <asm/siginfo.h>

#include <linux/sched.h>

// declare a signal structure

struct siginfo info;

// initialization

memset(&info, 0, sizeof(struct siginfo));

info.si_signo = SIGUSR1;

info.si_code = SI_KERNEL;

struct task_struct* task;

task = find_task_by_vpid(pid);

int ret = send_sig_info(SIGUSR1, &info, task);

#include <signal.h>

2. Declare and initialize a signal handler structure

The ‘sa_sigaction’ variable is the signal handler function and ‘sa_flag’ is the

signal flags which modify the behavior of the signal.

3. Regist the signal handler when receive the specific signal

The first parameter is the signal number for the signal that the program is

interested in, the second is the new sigaction structure pointer, and the last is

the old sigaction structure pointer.

4. Define the signal handler function(e.g. function receiveData)

The first parameter is the received signal number, the second is the siginfo

structure from the sender, it is an optional parameter.

※ You can download the full source code of the examples in the section F here.

 For more detailed information, you can use command ‘man 7 signal’

struct sigaction sig;

sig.sa_sigaction = receiveData;

sig.sa_flags = SA_SIGINFO;

sigaction(SIGUSR1, &sig, NULL);

void receiveData(int signo, siginfo_t *info) {

 // do something when receive the signal

}

https://github.com/headhsu2568/OS_hw4/tree/master/use_signal

Homework Submission

Usually, we use the command ‘ps aux’ to get a list of the running processes on a

system. By using the ‘ps aux’ command, we can see the command line strings of

the running processes (e.g. the ‘./a.out’ in Figure 11). Internally, the command

line string for each process is stored as a field in the process’s task_struct in the

kernel.

Figure 11. program a.out is running

The memory address of the command line string can be acquired from the

variable ‘arg_start’. Correspondingly, the variable ‘arg_end’ stores the memory

address to the tail of the command line string. These two variables are kept in

the ‘mm_struct’ structure (Figure 12), and the mm_struct structure appears in

‘task_struct’ as the variable ‘mm’ (Figure 13).

‘task_struct’ is defined at ‘[source code directory]/include/linux/sched.h’, and

‘mm_struct’ is defined at ‘[source code directory]/include/linux/mm_types.h’.

Figure 12. arg_start, arg_end in mm_struct

Figure 13. mm in task_struct

From the section E, we know the usage of the ‘current’ variable. Now you can

simply use the global variable ‘current’ and access the inner variable ‘mm’. You

can then get the command line string’s address, which is stored in the ‘arg_start’

variable After you locate the string, you can use copy_to_user function to copy

the string to user space memory.

In this homework, you need to complete two tasks.

Task 1
You have to implement a custom system call to support two features: the first

is to get the command line string of the calling process and copy it to a user

space variable; the second is to modify the command line string of the calling

process. For demonstration, you have to implement a user-space program to

invoke the custom system call and show both of the features are working.

You must follow the steps described below.

At the start of your user-space program, you have to delay it and use ‘ps aux’ to

show the original command line string as shown in Figure 14.

After calling your custom system call, your user space program must print out

the original command line string like Figure 15 (the value must be the same as

the one shown in Figure 14), and then you have to delay the program and use

‘ps aux’ again to confirm that the modified command line string like Figure 16,

and then capture the screenshots for homework submission.

For example, you implement a system call ‘sys_change_cmdline’ and a user

space program ‘change_cmdline’.

At first, execute ‘change_cmdline’, and use ‘ps aux’ before calling the system call

‘sys_change_cmdline’ to show the original command line string

‘./change_cmdline’(e.g. Figure 14)

Figure 14. before the syscall, the command line of the ‘change_cmdline’ is

‘./change_cmdline’

After the system call ‘sys_change_cmdline’ is called, program ‘change_cmdline’

will print out the original command line string is ‘./change_cmdline’ (e.g. Figure

15)

Figure 15. after the syscall, ‘change_cmdline’ will get and print out the original

command line string is ‘./change_cmdline’

And then use ‘ps aux’ to show the current command line string is ‘Yen-Chun Hsu

0056021’ (e.g. Figure 16)

Figure 16. after the syscall, the command line of ‘change_cmdline’ will become

‘Yen-Chun Hsu 0056021’

Try to implement the custom system call, and then show the ‘ps aux’ result to

demonstrate your work. Also, please briefly describe how you implement it.

※ For convenience, you can download the user space program prototype of

this task here, and the system call program prototype here.

Task 2

Think about why we cannot just use memcpy, strcpy, etc. function to copy

data from kernel space memory to user space memory?

Please archive your system call program, your user space program and the

assignment document in PDF in an RAR file. Submit this RAR file to E3.

You can download all the example source code from github.

You can search and trace the kernel source code at lxr website.

It will take a long time to build the kernel, so you should start working on the

homework early on.

https://github.com/headhsu2568/OS_hw4/blob/master/change_cmdline.c
https://github.com/headhsu2568/OS_hw4/blob/master/sys_change_cmdline.c
https://github.com/headhsu2568/OS_hw4
http://lxr.linux.no/

