HW #4. Interaction between Process and Kernel

Overview

Modern operating systems such as Windows and Linux are structured into two
spaces: user space and kernel space. Most of the operating system functions are
implemented in the kernel. Programs in the user space have to use appropriate
system calls to invoke the corresponding kernel functions. In this homework, we
will take a closer look at the system call mechanism by tracing system calls made
by a user process calls. We will then demonstrate how to implement a new
system call on Fedora Linux. We will also demonstrate how to copy data from

kernel space to user space and vice versa.

Tasks

A. Use ‘strace’ to trace the system calls made by the ‘IS’ command

1. Use ‘strace’

M%P FRIVATEIMAP_FIXEDIMAP DENYWRITE,

= :1 ENCENT (No such file or directory)

0NONONONOND™ . . .,

Figure 1. screenshot of strace command

3.  You can see all the system calls made by the Is command in sequential



order. For instance, in Figure 1, we can see that the Is command has

invoked the execve, brk, access, and mmap system calls

B. Add a custom system call
1. Download the kernel source (same steps as in Homework 2)

2. Add a custom system call to the syscall table (see Figure 2)

common ope
ommon

5 common

04 4

ommon setns
ommon getcpu
4 0 vm_readv

SYS_pProcess_vm_w

svs_savhel 18 |

all numbers start at 512 to avoic

return

Figure 4. the system call ‘sayhello’



5. Modify the Makefile (e.g. Figure 5)

notifier.o
013 .0 groups.o \
vhello.o

Figure 5. modify the Makefile

6. Make the new kernel (steps like homework 2)

® For a multi-core PC, you can accelerate the kernel make process with the ‘j

[number of threads]‘ option.

C. Invoke system call by the system all number (see Figure 6)

1. Include the needed libraries

#include <unistd.h>

#include <sys/syscall.h>

int main() {
int ret

printf(/ret:
return




3. After running the code, you can use ‘dmesg’ to see the messages output

from printk (e.g. Figure 7)

chsu- % dmesg | tail -n 1

Figure 7. the ‘printk’ messages from ‘sayhello’ system call

# You can download the full source code of the examples in the section B and

section C here.

D. Copy data between user space and kernel space (Figure 8)
1. Include the header for XXX

___________________________________________________________________________

2. copy_from_user
‘copy_from_user’ is used to copy user space data to a kernel space buffer

It is defined at ‘[source code directory]/include/asm-generic/uaccess.h’

___________________________________________________________________________

3. copy_to_user
‘copy_to_user’ is used to copy kernel space data to a user space buffer

It is defined at ‘[source code directory]/include/asm-generic/uaccess.h’

___________________________________________________________________________


https://github.com/headhsu2568/OS_hw4/tree/master/sayhello

me :
memset(

len = strlen{ntr):
ifi(copy from user(name, ptr, len))
return -ERFAULT;
1
I
printk(KERN DEBUG "syscall get name: %s(len: %lu)\n", name, len);

snprintf(buf, BUF SIZE. "Hello. !
if{copy to user(ptr, buf. strlen(buf))p {
return -EFAULT,

1

f)rintk( KERN DEBUG "%s\n", buf);

return 0;

Figure 8. the ‘sayhello2’ system call uses ‘copy_from_user’ to get a name and uses

‘copy_to_user’ to store the hello message to user space buffer

2% You can download the full source code of the examples in the section D
here.

E. Manipulate the task_struct (program control block) of a process
In Linux, each process has a data structure ‘task_struct’ to store its
information(process id, process state, page table, etc.), and there is a global
variable ‘current’ which points to the current process’ task_struct’. As a result,
you can get the current process’s task_struct information easily through the

current pointer.(e.g. see Figure 9 to get the current process’s state)

state = current->»state;
(ERN_DEBUG

if(copy_to user(dst, &state, sizeof(state))) {

return -EFAULT;

1
¥

Figure 9. get process state

The ‘task_struct’ is defined in ‘[source code directory]/include/linux/sched.h’

(e.g. Figure 10), you can trace the structure and know more about the process.


https://github.com/headhsu2568/OS_hw4/tree/master/sayhello2

Jinclude/linux/sched.h#11234

m [ IxrJinux.no/linu -+

1234| struct task struct {

1235 volatile long state; /% -1 unrunnable, 0 runnable, >0
1236 void *stack;

1l atomic_t usage;

1238 unsigned int flags: /* per process flags, defined be!
1730 unsigned int ptrace;

1240

1241| #ifdef CONFIG sSMP

1242 struct 1llist node wake_entry;

1243 int on_cpu;

1244)| #endif

1245 int on_rg;

1246

1247 int prio, static prio, normal prio;

1248 unsigned int rt_priority;

1£49 const struct sched class *sched class;

1250 struct sched entity se;

1251 struct sched rt entity rt;

1252| #ifdef CONFIG CGROUP SCHED

1253 struct task group *sched task group;

1254| #endif

1255

1256| #ifdef CONFIG PREEMDT NOTIFIERS

1557 /% 1ist of struct preempt _notifier: %/

1258 struct hlist head preempt notifiers;

1253| #endif

1260

1761 /*

1262 * fpu counter contains the number of consecutive contex
1263 * that the FPU is used. If this is over a thresheld, th

Figure 10. the definition of ‘task_struct’ in file ‘sched.h’

%% You can download the full source code of the examples in the section E here

and the other similar example source code here.


https://github.com/headhsu2568/OS_hw4/tree/master/get_state
https://github.com/headhsu2568/OS_hw4/tree/master/get_state

F. Send asignal from kernel space to user space
® The kernel space

1. Include the required headers

___________________________________________________________________________

#include <asm/siginfo.h>
#include <linux/sched.h>

// declare a signal structure

struct siginfo info;

// initialization

memset(&info, 0, sizeof(struct siginfo));
info.si_signo = SIGUSR1;

info.si_code = SI_KERNEL;

The variable ‘si_signo’ is the signal number and ‘si_code’ presents how to send
the signal, we set it as ‘SI_KERNEL to indicate that the signal is sent from the
kernel.

5. Get the ‘task_struct’ of a process by process id

___________________________________________________________________________

struct task_struct™ task;
task = find_task_by vpid(pid);

The ‘find_task_by vpid’ function will return the process task structure with a

given process id.

6. Send a signal to the process by its ‘task_struct’

___________________________________________________________________________

The first parameter of send_sig_info is the signal number, the second parameter
is a pointer to the signal structure, and the last parameter is a pointer to the

specified task structure.

® The user space program

1. Include the required header

___________________________________________________________________________



2. Declare and initialize a signal handler structure

i struct sigaction sig; i
i sig.sa_sigaction = receiveData; i
i sig.sa_flags = SA_SIGINFO; :

The ‘sa_sigaction’ variable is the signal handler function and ‘sa_flag’ is the

signal flags which modify the behavior of the signal.

3. Regist the signal handler when receive the specific signal

___________________________________________________________________________

The first parameter is the signal number for the signal that the program is
interested in, the second is the new sigaction structure pointer, and the last is

the old sigaction structure pointer.

4. Define the signal handler function(e.g. function receiveData)

void receiveData(int signo, siginfo_t *info) {

i // do something when receive the signal i

The first parameter is the received signal number, the second is the siginfo

structure from the sender, it is an optional parameter.
2% You can download the full source code of the examples in the section F here.

® For more detailed information, you can use command ‘man 7 signal’


https://github.com/headhsu2568/OS_hw4/tree/master/use_signal

Homework Submission

Usually, we use the command ‘ps aux’ to get a list of the running processes on a
system. By using the ‘ps aux’ command, we can see the command line strings of
the running processes (e.g. the “/a.out’ in Figure 11). Internally, the command
line string for each process is stored as a field in the process’s task_struct in the
kernel.

oshw4 [/hom

u

Figure 11. program a.out is running

The memory address of the command line string can be acquired from the
variable ‘arg_start’. Correspondingly, the variable ‘arg_end’ stores the memory
address to the tail of the command line string. These two variables are kept in
the ‘mm_struct’ structure (Figure 12), and the mm_struct structure appears in
‘task_struct’ as the variable ‘mm’ (Figure 13).

‘task_struct’ is defined at ‘[source code directory]/include/linux/sched.h’, and

‘mm_struct’ is defined at ‘[source code directory]/include/linux/mm_types.h’.



I g a [ kerlinux.no nclude X B
_ 299 gtruct mm_struct {
BDD struct vm_area struct * mmap; S 1list of vMaAs */
301 struct rb_root mm_rb;
SN2 struct vm_area struct * mmap cache; /* last find vma result */
303| #ifdef CONFIG MMU
304 unsigned long (*get unmapped area) (struct file *filp,
=l unsigned long addr, unsigned long len,
306 unsigned long off, unzigned long flags):
307 void (*funmap_area) (struct mm_struct *mm, unsigned long addr);
308| #endif
=l unsigned long mmap base; /* base of mmap area */
S unsigned long task =ize; /% size of task vm space */
311 unsigned long cached hole size; /* if non-zero, the largest hole
Sz unsigned long free area cache; /* first hole of sige cached hole
SHlE pgd £t * pgd;
S atomic t mm_users; /* How many users with user space
S atemic t mm count; /* How many references to "struct
316 int map count; /* number of VMAs */
317
=il spinlock t page_table lock; /* Protects page tables and some
Sz struct rw semaphore mmap sewm;
320
SR, struct list head mmlist; /* List of maybe swapped mm's. T
322 * together off init mm.mmlist, a
323 * by mmlist lock
324 */
325
326
327 unsigned long hiwater res; /* High-watermark of RSS usage */
28 unsigned long hiwater wvm; /* High-water virtual memory usage */
329
320 unsigned long total vm; /% Total pages mapped */
331 unsigned long locked wm; /* Pages thalt have PG mlocked sebt */
332 ungigned long pinned wm; /% Refcount permanently increased */
333 unsigned long ghared wvm; /* Shared pages (files) */
334 unsigned long exec vin; S* VM EXEC & ~VM WRITE */
335 unsigned long stack vm; % VM GROWSUP/DOWN */
336 unsigned long reserved wvm; /* VM _RESERVED|VM IO pages */
337 unsigned long def flags;
338 unsigned long nr_ptes; /* Page table pages */
=59 unsigned leng start code, snd code, ztart data, end data;
S unsigned leng start brk, brk, start stack:
Al unsigned long arg start, arg end, env _start, env_end:
BTG = —

Figure 12. arg_start, arg_end in mm_struct

Is z g a [ Ierlinuxnoy/linux+

nclude/linux/sched h#1L1234

#endif /% #ifdef CONFIG_TREE FREEMPT RCU */
1286 #ifdef CONFIG RCU BOOST
1287 struct rt_mutex *rcu boost mutex;
1288| #endif /#* #ifdef CONFIG RCU BOOST */
1289
1250| #if defined (CONFIG SCHEDSTATS) || defined (CONFIG TASK DELAY ACCT)
ggon struct sched info sched info;
1292| #endif
1993
1294 struct list head tasks;
12585| #ifdef CONFIG_SMP
1296 struct plist node pushable tasks:
12597| #endif
12658
1290 struct mm_struct *mm, *active mm;
1300| #ifdef UONEIG COMDAT BOR
1301 unsigned brk randomized:1;
1302| #endif
1303| #if defined (SPLIT RSS_COUNTING)
1304 struct task rss_stat rss_stat;
1305| #endif
130&6| /* task state */
1307 int exit state;
1200 fond ia 2 e P N

Figure 13. mm in task_struct

From the section E, we know the usage of the ‘current’ variable. Now you can

simply use the global variable ‘current’” and access the inner variable ‘mm’. You



can then get the command line string’s address, which is stored in the ‘arg_start’
variable After you locate the string, you can use copy_to_user function to copy

the string to user space memory.

In this homework, you need to complete two tasks.

Task 1
You have to implement a custom system call to support two features: the first
is to get the command line string of the calling process and copy it to a user
space variable; the second is to modify the command line string of the calling
process. For demonstration, you have to implement a user-space program to
invoke the custom system call and show both of the features are working.

You must follow the steps described below.

At the start of your user-space program, you have to delay it and use ‘ps aux’ to
show the original command line string as shown in Figure 14.

After calling your custom system call, your user space program must print out
the original command line string like Figure 15 (the value must be the same as
the one shown in Figure 14), and then you have to delay the program and use
‘ps aux’ again to confirm that the modified command line string like Figure 16,

and then capture the screenshots for homework submission.

For example, you implement a system call ‘sys _change_cmdline’ and a user
space program ‘change_cmdline’.

At first, execute ‘change_cmdline’, and use ‘ps aux’ before calling the system call
‘sys_change_cmdline’ to show the original command line string

‘/change_cm 14)

e
/ychsu al

dline’(e.g. Figur
] -ychsu- % ps change_cmdline
0 - S+ 01:40

S+ 01:40

Figure 14. before the syscall, the command line of the ‘change_cmdline’ is

‘./change_cmdline’

After the system call ‘sys_change_cmdline’ is called, program ‘change_cmdline’
will print out the original command line string is ‘./change_cmdline’ (e.g. Figure
15)

oshw4 [ /home/ychsu]

call sysca /S _

origin cmdline:




Figure 15. after the syscall, ‘change_cmdline’ will get and print out the original

command line string is ‘./change_cmdline’

And then use ‘ps aux’ to show the current command line string is ‘Yen-Chun Hsu
0056021’ (e.g. Figure 16)

1su] -

Figure 16. after the syscall, the command line of ‘change_cmdline’ will become
‘Yen-Chun Hsu 0056021’

Try to implement the custom system call, and then show the ‘ps aux’ result to

demonstrate your work. Also, please briefly describe how you implement it.

$% For convenience, you can download the user space program prototype of

this task here, and the system call program prototype here.
Task 2

Think about why we cannot just use memcpy, strcpy, etc. function to copy
data from kernel space memory to user space memory?

Please archive your system call program, your user space program and the
assignment document in PDF in an RAR file. Submit this RAR file to E3.

You can download all the example source code from github.
You can search and trace the kernel source code at Ixr website.

It will take a long time to build the kernel, so you should start working on the
homework early on.


https://github.com/headhsu2568/OS_hw4/blob/master/change_cmdline.c
https://github.com/headhsu2568/OS_hw4/blob/master/sys_change_cmdline.c
https://github.com/headhsu2568/OS_hw4
http://lxr.linux.no/

