
Cube Orchestra:
A touch interactive musical application

Jordi Hidalgo Gómez

Héctor Parra Rodŕıguez

Advanced Interface Design
Master in Sound and Music Computing

Universitat Pompeu Fabra
Barcelona - April 15, 2012



1 Introduction

The Cube Orchestra is an application developed starting from a previous project. The idea of the pre-
vious Cube Orchestra application was an interactive musical application where multiple users can play
simultaneously different kind of melodies and rhythms from a mobile device. Each user is creating ob-
jects and this objects are visualized through a projection. The interesting point of the application is that
several users can enjoy playing music while knowing what they are doing not only by pressing buttons
or sliders, but also interacting with the creation and manipulation of cubes.

The aim of the project presented here is to extend the previous application with a touchable interface.
A snapshot of the actual application can be seen in figure 1. With the introducing of the new interface,
we have introduced also a new role for the users. Now we can distinct between the generator and the
manipulator. The generator will be the user in charge of creating the cubes and generate music, as
in the past application. The manipulator will be the new role, the user that will be touching directly
the objects in the screen and manipulating the generated music. As we see in figure 1 in the superior
part there are a slider, which control the bpm of the overall melodies and drum patterns and bar with
circumferences. This circumferences are the objects that will represent the effects and can be applied
directly to each of the cubes by placing on the top of them. Then another capabilities have been added
according to the touchable capabilities and possible gestures accepted by the system.

Figure 1: Cube Orchestra application

2 Research question

As we said, the system have been developed on the top of the old Cube Orchestra application where the
interaction or control is reduced to the use of mobile devices. So we can propose a research question like:
can we take advantage from touch screen and gestures to develop an interactive musical application?.
The objective of this project is to evaluate how the touchable capabilities can improve the previous ap-
plication. Maybe one of the main problems of the previous interface is that the user was very restricted
only to virtual buttons and knobs and this control was mapped to the projected visualization of the
objects. Some aspects of this interface were good like could be very specific and precise actions like could
be on/off actions. But we observed that actions directly related with the visual object itself were not
that good mapped with the mobile device. A very simple example could be move the cube along the

2



surface or projected area, this is not very comfortable with a XY pad, while touching directly the object
and move it along the surface becomes more comfortable and usable. Another example could be the
selection of the multiple objects in the screen or projected area that becomes also more understandable
directly interacting with the cubes.

Starting from the commented research question, we can deduce or think in other problems or aspects
that can be evaluated. An initial idea of the Cube Orchestra application was to take profit from the
polyhedron objects and the possibilities that offers by manipulating shapes and creating new polyhedrons.
This in combination with colors and movement(like rotation or beat synchronization) could help in order
to improve the mapping with the created sounds and music.

3 Sensors/Actuators

Figure 2: Wiimote IR cam

The main goal of our interface is to track a finger pressing the screen,
wich will allow to interact with the visual objects and manipulate them.
There are several ways to track faces, body or just fingers. One of
the most extended frameworks for track images directly from a cam
is Open CV[11]. This framework is a very good aproach in order to
track specific body parts directly from the cam but is difficult to track
a finger and then detect when is pressing. Same happens with kinect,
that has a very good precision but still is difficult to determine how
we are pressing a single point in a determined area. For this reason
we decided to chose the Wiimote as an input sensor. The Wiimote
is the controller of the videoconsole Wii, that it has an integrated in-
frared camera on its top, so it detects infrared points on its vision angle
and send the position of every point. The Wiimote IR camera provides
high-resolution, high-speed tracking of up to four simultaneous IR light
sources. The camera sensor exact specifications are unpublished but it
seems to have a resolution of 1204x768 pixels, more than 4 bits of dot size and a 45 degree horizontal
filed of light source[10]. Moreover it is relatively cheap, about 30$.

Figure 3: IR LED devices

For our case the use of the Wiimote is perfect in the
sense of it tracks a source light point with a very high pre-
cision and also it is very useful to simulate when we touch
the screen with only turning on/off the light. The drawback
here is that we need an emitting light device, which is not
that comfortable than only using the fingers and interacting with
the projected objects. But we have tried to make a com-
fortable and non-intrusive devices that can be easily tracked by
the Wiimote. These can be seen in figure 3 which only con-
sists on a simple light key chain powered by two 3V batter-
ies where we have replaced the usual white LED by an infrared
LED[13].

The Wiimote and the IR emitters are the main sensors of the interface but we can considerate also the
mobile device which with the touch screen and the accelerometer it will be controlling some parameters.

4 Mapping

For the mapping process we have distincted in two groups, Input Mapping and Output Mapping. Input
mapping is referred to the assignation of controls that the user can modify and interact. Then Output

3



mapping is related to the internal mapping between the visual objects and the sound.

4.1 Input Mapping

As we mentioned, the there is two types of “users” for the application. The generator and the ma-
nipulator. This two users will have two different roles in the process of creating music and also two
different ways of using the interfaces. The generator will be creating new cubes with its corresponding
melodies or rhythms. This will interact with the mobile device which has the TouchOSC interface[9] as
is explained in section 5.1.1. We have tried to map this interface as the usually is made with this kind of
interfaces involving on/off/toggle buttons, sliders, knobs etc. So the mapping is simple, some examples
could be the volume with the sliders, drum samples with the pads, or effects amount with the knobs.
Then we assigned the touchable interface for the manipulator. This user is the one that has the IR leds
and interacts directly with the objects that the generator has created. This could be not that usual
kind of interface for music like the TouchOSC application, but we tried to map the more natural and
intuitive actions according to shapes, movement, position in the screen or even colors of the cubes. So
the manipulator will be interacting with the add-on effects and the cubes that will be control some of the
parameters of the output sound and visual events. A very simple mapping example is the panning effect,
the manipulator will be displacing the object in right/left directions while the sound will be more or less
present in one of the two stereo channels according to its position. Another clear example that we found
very important in the operation of the application is the mapping of the size of the effects(circumferences
on the top of the cubes). The manipulator can increase/decrease the size of the circumferences with the
use of the two IR leds by increasing/decreasing the distance of them inside the circumference. This
mapping allows control some of the main parameters of the effects.

4.2 Output Mapping

Figure 4: TouchOSC interface

For the output mapping we wanted to have visual objects that create
sounds, not to have a visualization or projection to complement the
sound. This means that most of the actions that we want to do will
start in a movement, size or color change of the cubes that then will
be mapped with a sonic event. So we defined the system in the way
that every time the user interacts with the interface, the mobile or the
touchable, the effect will be a visual change and at the same time a
change in the sound or music created. A clear example of this could
be the rotation of the cubes. We thought that could be interesting to
perceive the tempo of the melodies or drum patterns with the rotational
velocity of the cubes, so when the manipulator moves the BPM slider,
the cubes increase/decrease the rotational velocity which gives the user
a direct feedback of how faster or slower the music is being played.

5 Implementation

For the implementation of the project we decided to differentiate between different parts, based on their
responsibilities, and then connect them together to finally have the complete working system.

5.1 Data input

5.1.1 Mobile devices

The application was intended to be a playable instrument were more than one person could play at the
same time, so we decided the best approach was to use mobile devices since, nowadays, it is an affordable
technology, that most of the people have and that have good sensors in it. After considering different
solutions we came to use a mobile application called TouchOSC[9]. This application runs on iOS and

4



Android devices (the most popular) and has a set of predefined layouts with buttons, sliders and matrices
that gave us the control we needed.

Figure 5: TUIO platform dia-
gram

TouchOSC communicates with the central computer using OSC[2]
messages through the UDP protocol, so we managed to assign functions
to the elements of the layout but, moreover, keep track and save the
state of the layout on the central computer so the user of the mobile
device can switch between different instruments (each instruments has
a layout) and its layout is automatically reloaded.

5.1.2 Touchable screen

The touchable screen has been our main feature for the application. We
wanted a person controlling the visual output with his fingers. At first
we thought about using the technology of Reactivision[5] for tracking
the fingers but this had many complications: you need a very good
camera, there has to be low ambient light, it is thought to be used
horizontally but not really vertically and the tracking is slow (about

20-30 frames/sec).
So, in the end, we found the technology best fitted our requirements was the Wiimote. As we have

mentioned in section 3 the Wiimote meets perfectly our requeriments and communicates all the data
through Bluetooth, in our case, to the central computer.

Figure 6: TUIO platform dia-
gram

In the central computer we ran a software called Wiimote
Whiteboard[12]. This software detects the Wiimote and is able to send
to any internal port the position of the detected infrared points trans-
lated into the TUIO protocol[6]. Wiimote Whiteboard applies a run-
ning sum filter to the captured data so it is smoothed and, moreover,
it allows using simultaneously a pair of Wiimotes for redundancy and
for covering big screens; a particularly useful feature we needed to use
to achieve a good touch-like response. There are similar applications
to this one like Smoothboard[8] but this is the only one supporting
simultaneous points (multitouch) and, in addition, cross-platfrom.

5.2 Data output

5.2.1 Sound

For the sound we went directly for Pure Data[4] for a number of reasons.
It is free, has a good community with useful effects and instruments to
take also for free, it is easily programmable and really good for staring
fast projects, and finally, the patch created could be integrated natively in the future to a Java program,
a C++ program or even to mobile apps.

So we used two instruments from the community, a drum machine[3] and a synthesizer[14]. Each of
them can be played directly or through a sequencer we programmed ourselves. Its parameters can be
tweaked and some sound effects can be applied and controlled. Actually, the mobile device’s users have
total control over the instrument and its parameters and the touchable screen user controls the effects
applied to every instrument and its quantity.

The Pure Data application was controlled by the main MT4j application (section 5.2.2) through
OSC events. This communication was actually bidirectional since Pure Data also sent back some OSC
messages about the tempo and the instruments state.

5.2.2 Visualization

We first started the heart of this application with Processing[7] (Java). It was very good to draw
visualizations and had nice libraries for OSC communication. But when we integrated the touchable

5



screen we needed something more, and we found MT4j[1] was perfect. It is a Java framework built on
top of Processing for the graphics drawing but specially designed for multitouch applications, desktop or
mobile. It accepts different inputs like a touch screen of a mobile, multiple mice, windows touch events. . .
but most importantly, it was able to read directly the TUIO events we got from Wiimote Whiteboard.

The good thing about MT4j was it comes with classes for the basic polygons and polyhedrons capable
of natively react to multitouch gestures. It means the new things we had to implement were quite
straightforward since we only need to map the multitouch gestures of the new graphics to the desired
actions/events. The bad part was we had started building our system with Processing, not MT4j, so
there was a complex structure (including OSC communication) to adapt to the MT4j gestures handling
architecture. We used a base class provided by MT4j to inherit with the basic functions, but a lot
of the “touchable” behavior had to be implemented by hand and, sadly, there is still a lack of good
documentation on this framework so a lot of code introspection was needed.

6 Conclusions

This project had been a rewarding experience since we found what we were searching for: adding a touch
screen and its corresponding gestures improve the user experience on interactive musical applications.

There is an essential difference between changing a button/slider status or touching a visual object
representation, and it is the internal mapping our mind has to do. While for a button/slider we need to
remember its function (in terms of sound) a visual representation it supposed to give a natural perception
where one can guess or sense how this is going to affect the system. Certainly, your guess might be wrong
initially but it will be easy to see what else it is doing and, more importantly, this behavior can be more
easily and quickly integrated in the user. Moreover, a touchable representation can represent complex
sound events that the user does not really need to understand but that can actually control.

All of this happens for the simple reason that humans are used to interact with physical objects in
every moment, and a touchable screen is closer to this reality than buttons, that are more abstract.
Nevertheless, it is very important to build a visual representation that has the intuitiveness mentioned.
As an obvious example, if touch an object upwards you clearly expect it to move upwards, not downwards.

We also found it is very important the touchable screen really “feels” touchable. To make the
touchable screen the closest experience with our reality we need to make it very smooth and responsive,
in other words, the interaction has to feel natural. In our project this implied more work than we
expected; it is crucial to find infrared emitters that are good for the Wiimote camera, the placement
of the cameras has to be accurately studied so the user does not hide the infrared pens, and, finally,
take care that the cameras cover the hole extension of the screen with angle enough to be precise at
determining positions.

In conclusion, this project confirms the current tendency of introducing multitouch surfaces for soft-
ware applications is extendable and also a very good approach for sound generating systems.

6



References

[1] Multi touch for java. http://www.mt4j.org/.

[2] Open sound control. http://opensoundcontrol.org/.

[3] Pd drum machine. http://www.nullpointer.co.uk/-/pd.htm.

[4] Pure data. http://puredata.info/.

[5] reactivision. http://reactivision.sourceforge.net/.

[6] Tuio. http://www.tuio.org/.

[7] C. R. Ben Fry. Processing. http://processing.org/.

[8] S. T. Boon Jin. Smoothboard. http://www.smoothboard.net/.

[9] Hexler. Touchosc. http://hexler.net/software/touchosc.

[10] J. Lee. Hacking the nintendo wii remote. Pervasive Computing, IEEE, 7(3):39 –45, july-sept. 2008.

[11] OpenCVWiki. Opencv. http://opencv.willowgarage.com/wiki/.

[12] U. Schmidt. Wiimote whiteboard. http://www.uweschmidt.org/wiimote-whiteboard.

[13] V. Semiconductors. High power infrared emitting diode, 940 nm, gaalas/gaas. http://www.vishay.
com/docs/81011/tsal6400.pdf.

[14] P. Stone. Polyphonic synthesizers. http://www.pkstonemusic.com/pd_code.html.

7

http://www.mt4j.org/
http://opensoundcontrol.org/
http://www.nullpointer.co.uk/-/pd.htm
http://puredata.info/
http://reactivision.sourceforge.net/
http://www.tuio.org/
http://processing.org/
http://www.smoothboard.net/
http://hexler.net/software/touchosc
http://opencv.willowgarage.com/wiki/
http://www.uweschmidt.org/wiimote-whiteboard
http://www.vishay.com/docs/81011/tsal6400.pdf
http://www.vishay.com/docs/81011/tsal6400.pdf
http://www.pkstonemusic.com/pd_code.html

	Introduction
	Research question
	Sensors/Actuators
	Mapping
	Input Mapping
	Output Mapping

	Implementation
	Data input
	Mobile devices
	Touchable screen

	Data output
	Sound
	Visualization


	Conclusions

