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Abstract

Graphical representations have to be true to the data they display. Computational

tools ensure this on a technical level. But we also need to take ‘flaws’ of the human

perceptual system into account. The sine illusion provides an example where human

perception leads to systematic bias in the assessment of the optical stimulus, with a

particularly notable impact on perception of time-series data with a seasonal compo-

nent. In this paper, we discuss the reasons for the illusion and various strategies useful

to break the illusion or reduce its strength. We demonstrate the presence of the illusion

in real-world and theoretical situations. We also present data from a user study which

demonstrate the dramatic effect the sine illusion can have on conclusions drawn from

displayed data.

1 Introduction

Graphics are powerful tools for summarizing large or complex data, but they rely on the

main premise that any graphical representation of the data has to be “true” to the data

(see e.g. Tufte, 1991; Wainer, 2000; Robbins, 2005). That is, a measurable quantity of a

graphical element in the representation has to directly reflect some aspect of the underlying
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data. Generally, we see a lot of discussion on keeping true to the data in the framework

of (ab)using three dimensional effects in graphics. Tufte (1991) goes as far as defining a

lie-factor of a chart as the ratio of the size of an effect in the data compared to the size of an

effect shown, with the premise that any large deviations from a value of one indicate a misuse

of graphical techniques. Computational tools help us ensure technical accuracy – but this

brings up the additional question of how we deal with situations that involve innate inability

or trigger learned misperceptions in the audience. In this paper we want to raise awareness for

one of these situations, known as the sine illusion or line width illusion. Based on the results

of a human subject study in section 3 we can show that this phenomenon manifests itself

frequently and persistently in our dealings with statistical graphics. In section 2 we provide

a set of strategies to mitigate the effects of the illusion. Again, results from the subject

study are given to show that there is a wide range of possible values in the parameter space

of the solution that provide relief from the distortive effects of the illusion in the general

population.
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(a) Scatterplot of Ozone and Temperature in Hous-
ton, 2011. A loess fit shows the overall trend.
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(b) Scatterplots of Ozone and Temperature
de-trended according to the loess fit in (a).

Figure 1: Scatterplots of Ozone and Temperature in Houston, 2011. The increase in vari-
ability over the temperature range is more pronounced in the de-trended plot on the right.

As a first example let us consider the relationship between ozone concentration and

temperature. Ozone concentrations were measured from 21 locations in the Houston area
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(EPA, 2011), and temperature data are provided by the NCDC (National Climate Data

Center, 2011) site at Hobby International Airport, located near the center of Houston.

Figure 1a shows daily measurements of 8-hour average ozone concentration and temper-

ature at several sites in Houston, for days in 2011 with temperatures above 45◦F and dew

points of less than 60◦F. A loess smooth line is added for reference. These types of plots

are often used to give an overview of the relationship between two variables. The trend

line summarizes this relationship, while the points show raw measurement to allow an as-

sessment of the overall size of the data, the amount of (marginal) variability presented, as

well as the (conditional) variability along the trend line. It is the latter task that we cannot

satisfactorily complete. While we might agree that there is an increase in variability of ozone

concentrations for temperatures above 80◦F, we will not doubt homogeneity elsewhere based

on figure 1a.

This evaluation changes when considering figure 1b: the scatterplot shows a loess based

de-trended residual of temperature. The previously almost invisible increase in variability

of ozone measurements with increasing temperatures now becomes apparent. This phe-

nomenon, caused by the change in the slope of the trend line, is known as the sine illusion

in the literature on cognition and human perception or line width illusion in the statistical

graphics literature.

In the cognitive literature, Day and Stecher (1991) first documented the illusion in the

context of vertical lines along a sinusoidal curve. Figure 2 shows a sketch of this: line

segments are centered evenly spaced along the curve. Line segments are of equal length but

appear longer in the peaks and troughs due to the illusion. The parameters that influence

the strength of the illusion are the amplitude of the curve and the length of the line segments.

As the length of the line segments increases, the apparent difference in the length of the line

segments decreases. Any modification that increases the change in slope under which the

curve appears, such as an increase in the amplitude of the curve or a more extreme aspect
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ratio, reinforces the apparent difference in line lengths.

Figure 2: The original sine illusion was demonstrated on
evenly spaced vertical lines centered around a sinusoidal
curve of f(x) = sin(x). The lines in the peak and trough
of the curve appear to be longer than in the other regions.

More recently the illusion has been shown in non-sinusoidal curves (Cleveland and McGill,

1984; Schonlau, 2003; Robbins, 2005; Hofmann and Vendettuoli, 2013), but the underlying

effect seems to be the same, in the sense that the illusion is not triggered by the periodic

nature of the underlying trend line but only by changes to its slope.

Next, we examine the perceptual and statistical literature regarding this illusion.

The Sine Illusion in Statistical Graphics has been frequently noted, though usually

not as an optical illusion. Rather, the problem is typically identified as the difficulty of

visually subtracting two curves (see e.g. Robbins 2005, p. 35 or Cleveland and McGill 1984,

p. 549), and the resulting erroneous conclusions when this process goes awry. Playfair’s

chart of the balance of trade between England and the East Indies (Playfair, 1786; Playfair

et al., 2005) (shown in Appendix A) represents the possibly oldest example of this common

phenomenon. In more modern visualizations, bivariate area charts and “stream graphs”

(Byron and Wattenberg, 2008) commonly produce the illusion (see an example at http:

//bl.ocks.org/mbostock/3894205).

Perceptual Explanations for the Sine Illusion can be found in the sensation and

perception literature. While not thoroughly examined, the sine illusion has been classified

as part of a group of geometrical optical mis-perceptions related to the Müller-Lyer illusion

(Day and Stecher, 1991) or the Poggendorf illusion (Weintraub et al., 1980), which puts
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the illusion into the framework of context-based illusions. Day and Stecher (1991) suggest

that the sine illusion occurs due to misapplication of perceptual experience with the three-

dimensional world to a two-dimensional “artificial” display of data.

Experience with real-world objects suggests that the stimulus of figure 2 is very similar

to a slightly angled top view of the 3-dimensional figure of a strip or ribbon describing

waves in a third dimension, such as e.g. a road does on rolling hills. This is sketched out

in figure 3a. Our real-world experience suggests immediately that changes in the width of

the road are unlikely and resolves the representation accordingly. Figure 3a shows the line

segments slightly angled towards each other. In contrast to that, Figure 3b shows a variation

of the same plot with a vanishing point set further away from the viewer. This makes the

line segments almost parallel to each other and the representation therefore more closely

resembles the sketch of figure 2, in which the sine illusion was originally presented.

(a) Perspective plot of sine illusion (b) Perspective plot, vanishing point near infinity.

Figure 3: Two different perspective projections of the same data responsible for the sine
illusion. The first projection angles the lines and appears more natural, but the second
projection suggests that the lines do not need to be angled to create the same 3d impression.

Figure 4: The sine illusion with two individual lines high-
lighted. Horizontal grid lines do not help to resolve the
illusion, even though they provide a clear basis for com-
parison of line lengths. Readers are much better at as-
sessing the length of the two singled out line segments;
they are equal.

Recreating the three-dimensional context of the sine illusion might resolve the distortion.

Generally, an increase of the dimensionality of a graph is not recommended (Tufte, 1991;
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Cleveland and McGill, 1984), but Spence (1990) suggests that adding a third dimension to

simple statistical graphics does not interfer with an accurate reading. However, for the sine

illusion, the process of projecting the data accurately into a higher dimension is not simple.

The projection that best resolves the illusion likely is highly subjective and influenced by

choices of angle and color gradient for depth cues. As there is not a single three-dimensional

projection that corresponds to the two-dimensional data, this approach would only produce

further visual ambiguity.

To further complicate the situation, the illusion itself is insidious – we trust our vision

implicitly, to the point that when we understand something, we say “I see”. This trust in

our visual perception is seldom called into question, for our perception is optimized for inter-

action with a three-dimensional world. Artificial two-dimensional situations (such as graphs

and pictures) may accurately represent the data and still produce a misleading perceptual

experience.

The contextual cues of the overall trend are critical to the sine illusion’s effect; the

illusion only holds when a substantial portion of the graph is considered simultaneously,

which triggers our innate ability of perceiving one whole rather than the individual parts it

consists of (principle of grouping; Wolfe et al., 2012). Considering only two line segments

at a time resolves the illusion. The bold lines in figure 4 are clearly of the same length.

Comparisons of individual line lengths is visually a fairly simple task, and is done with a

relatively high accuracy (Cleveland and McGill, 1984). Day and Stecher (1991) contains a

more thorough discussion of how much context is required for the illusion to persist.

The Geometry of the Illusion is driven by our preference in evaluating line width as

orthogonal width rather than the difference along the vertical axis. Figure 5 demonstrates

the change in orthogonal width as the slope of the line tangent to the graph of f changes;

these changes correspond to our perception of apparent line length.
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Figure 5: The sine illusion with lines orthogonal to the tangent line at f(x). The perception
that the vertical length changes with f(x) corresponds to changes in actual orthogonal width
due to the change in the visual (plotted) secant angle. The strength of the perceptual effect
depends in part on the aspect ratio of the graph, as shown in the second image.

The illusion is most pronounced in regions where the angle between the orthogonal and

the vertical line is large. Changes to the aspect ratio therefore have a major impact on the

strength of the sine illusion. Any measure that alleviates the difference between perceived

width and the perpendicular width, decreases the effect of the illusion but does not com-

pletely overcome it. Banking to 45◦ (Cleveland et al., 1988) has been suggested as a good

default aspect ratio for time series, but does not necessarily help in the situation of the sine

illusion, as the example in section 4 shows, as the illusion would only be worsened by banking

to 45◦. The perceived length of the vertical line changes with the angle of the line perpen-

dicular to the slope of sin(x), suggesting that the sine illusion stems from a conflict between

the visual system’s perception of figure width and the mathematical judgment necessary to

determine the length of the vertical lines.

Our preference for assessing figure width based on the orthogonal width suggests that the

underlying illusion may be a function of geometry rather than some unknown visual or neural

process that occurs subconsciously. In this case it may be possible to correct the graphical
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display for the illusion to minimize its misleading effect. A geometrical correction that –at

least temporarily– counteracts the illusion would be a valuable tool in visual analysis, as

this illusion very persistently affects our judgment of very common tasks such as e.g. the

assessment of conditional variability of data along a trend line.

What follows is a compilation of several approaches to correct for or mitigate the effect

of the illusion. Our primary intent here is to demonstrate the pervasiveness of the illusion

and the extreme measures necessary to remove its effect.

2 Breaking the Illusion

The sine illusion is caused by a conflict between vertical width, which is the width that we

want onlookers to assess visually, and orthogonal width, which is the width that the onlooker

perceives. This difference can be expressed as a function in the slope of the underlying trend

line. This forms the basis for adjusting the vertical width for the perceived orthogonal width

in the following three approaches:

1. separation of trend and variability,

2. transformation of x: adjusting slope to be constant by reparameterizing the x axis,

and

3. transformation of y: adjusting y values to make conditional variability appear correctly

Each of these ideas is discussed in more detail in this section.

2.1 Trend Removal

Cleveland and McGill (1984, 1985) discuss the perceptual difficulty of judging the difference

between two curves plotted in the same chart, and alternatively, recommend to display
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the difference between the two curves directly. This is in line with recommendations for

good graphics to ‘show the data’ rather than make the reader derive some aspect of it (e.g.

Wainer, 2000). While the illusion is not apparent when trend line and variability in the

residual structure are shown separately, the separation makes it more difficult to evaluate

the overall pattern in the data, as we must base any judgment on two charts; either by

combining information from two graphs or by mentally re-composing the original graph (at

which point, the sine illusion becomes a factor). To minimize cognitive demands stemming

from our limited visual memory (Healey and Enns, 2012) we ideally want to tell the whole

story with a single graph, in particular because in many situations we may not be able to

show multiple graphs due to space limitations (such as in journal publications) or time and

attention limitations (in presentations).

Additionally, removing the trend requires an initial model, making any plots produced

using that fit conditional on the assumptions necessary to obtain that model fit. As we typi-

cally view the data before fitting even a rudimentary model, these initial modeling decisions

might already be influenced by the sine illusion.

2.2 Transformation of the X-Axis

The sine illusion is driven by changes in the slope of trends between variables, we can

therefore counteract the illusion by removing these changes, transforming the x axis such

that the absolute value of the slope is constant and forcing the corresponding orthogonal

width to represent the conditional variability. Let us assume that the relationship between

variables X and Y is given by a model of the form y = f(x) + ε, where f is some underlying

function (either previously known or based on a model fit), that is differentiable over the

region of observed data.

For a correction, we want to find a transformation T (x) of x, such that f(T (x)) is a

piece-wise linear function, where each piece has the same absolute slope.
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Let a and b be the minimum and maximum of the x-range under consideration. Then for

any value x ∈ (a, b) the following transformation results in a function with constant absolute

slope (see appendix B for a derivation of the equation):

(f ◦ T )(x) = a+ (b− a)

(∫ x

a

|f ′(z)|dz
)
/

(∫ b

a

|f ′(z)|dz
)
, (1)

The transformed x-axis is changed from a linear representation of the x values to a ‘warped’

axis that continuously changes the scale of x to compensate for changes in the slope. To

emphasize this change in scale along the x axis, dots are drawn at the bottom of the chart

to show the transformation’s effect on equally spaced points along the x-axis. Results from

this transformation are demonstrated in Figure 6a.

While the transformation in equation (1) effectively removes the appearance of changing

line lengths, we can see in practice that the illusion can be broken by a much less severe

transformation of the x axis. For that we introduce a shrinkage factor w ∈ (0, 1) that allows

a weighted approach in counteracting the illusion as:

(f ◦ Tw)(x) = (1− w) · x+ w · (f ◦ T )(x) (2)

Note that for w = 1 the x-transformation is applied completely, while smaller values of w

indicate a less severe adjustment, which lets the data more closely reflect the original function

f(x). Figures 6b - 6d show the effect of different shrinkage values w. As w decreases, the

lines become more evenly spaced and the illusion begins to return. The extent to which we

can shrink the adjustment back to the original function varies with the aspect ratio of the

chart and the function shape.
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(a) X axis transformation based on eqn. (1),
corresponding to weighting of w = 1.
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(d) Weighted Transformation, w = 1/4

Figure 6: Examples of X axis transformations in the sine curve. Dots at the bottom of the
graph show the transformation’s effect on equally spaced points along the x-axis. Different
amounts of weighting w correspond to differently strong corrections. In (a), x-spacing of the
lines changes the extant width such that the absolute value of the slope is uniform across
the whole range of the x axis resulting in the largest amount of correction. (b) - (d) reduce
the correction in (a) towards successively more uniform spacing in x while still breaking the
effects of the illusion.

2.3 Transformation in Y

Understanding the geometry of the sine illusion leads to another approach of resolving the

conflict between the orthogonal width and the vertical length of the segment.

Let again the function f describe the general relationship between variables X and Y .

As sketched out in figure 7a we want to first find the orthogonal (extant) width in a point

(x0, f(xo)) on the graph, which corresponds to the perceived width, and then correct the

vertical width accordingly to match with the audience’s expectation.

The orthogonal width (see sketch in figure 7a) is given as the line segment between

endpoints (x1, f1(x1)) and (x2, f2(x2)), where f1 and f2 denote the vertical shifts of function
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f by −`/2 and `/2, respectively, where ` is defined as the overall line length, ` > 0, ` ∈ R.

These endpoints are determined as the intersection of the line orthogonal to the tangent

line in (x, f(x)) and graphs f1 and f2. The orthogonal line through (xo, f(xo)) is given in

point-vector form as (
xo

f(xo)

)
+ λ

(
f ′(xo)

1

)
,

for any real-valued λ. The extant (half-)widths are then given as |λ|
√

1 + f ′(xo)2. This

expression describes the quantity that we perceive rather than the quantity that we want

to display (`/2), which leads us to a general correction factor of `/2 ·
(
|λ|
√

1 + f ′(xo)2
)−1

.

Note that this yields in general two solutions: one for positive, one for negative values of λ

corresponding to upper and lower (half-)extant width.

In order to get actual numeric values for λ, we need to find end points of the extant line

width as solutions of intersecting the orthogonal line and the graphs of f1 and f2. We find

these end points as solutions in x and λ of the system of equations:

x− xo = λf ′(xo) (3)

f(x)− f(xo) = −λ± `/2 (4)

Note that the above system of equations involves function values f(x), which implies that

solving this system requires numerical optimization for any but the most simple functions f .

In the following two sections we make use of Taylor approximations of first and second

order to find approximate solutions to end points as sketched out in Figure 7.

For the linear approximation to f(x) we make use of f(x) ≈ f(x0) + (x − x0)f ′(x0),

which together with equations 3 and 4 yields a correction factor in x0 of `new(x0) = `old
√

1 + f ′(x0)2.

Note that the linear method gives the same result as a varying slope extension from a trigono-

metric approach suggested by Schonlau (2003) and used in Hofmann and Vendettuoli (2013).
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(x1, y1)

(x2, y2)

slope : f'(x)

(a) General Correction

(x1, y1)

(x2, y2)

(b) Linear Approximation

(x1, y1)

(x2, y2)

(c) Quadratic Approximation

Figure 7: (a) is the general correction approach, and may require numerical optimization
to obtain exact solutions for (x1, y1) and (x2, y2). (b) uses a first-order Taylor series ap-
proximation to f(x) and (c) uses a second-order Taylor series approximation to f(x). The
intersection of the function f(x) ± `/2 and the orthogonal line, (x1, y1), (x2, y2) must be
obtained to determine the necessary correction factor.

A second-order Taylor polynomial approximation to f(x) additionally accounts for the

asymmetry in the extant widths on either side of the center trend line.

A quadratic approximation to f(x) is achieved using the approximation f(x) ≈ f(x0)+

f ′(x0)(x− x0) + 1/2f ′′(x0)(x− x0)2. This simplifies the system of equations 3 and 4 to the

following quadratic equation in λ:

f ′′(x0)f
′(x0)

2λ2 + 2(f ′(x0)
2 + 1)λ± ` = 0,

which leads us to corrections for the half lengths as (see appendix C for details):

`new1(x0) = 1/2 ·
(
v +

√
v2 + f ′′(x0)f ′(x0)2 · `old

)
· v−1/2 (5)

`new2(x0) = 1/2 ·
(
v +

√
v2 − f ′′(x0)f ′(x0)2 · `old

)
· v−1/2 (6)

where v = 1 + f ′(x0)
2.

Adjusting the top and bottom segments of the vertical lines separately so that the extant
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Figure 8: In the quadratic approximation top and bottom segments of the vertical lines are
adjusted separately.

width is constant breaks the illusion, but slightly distorts the sinusoidal shape of the peaks.

Figure 8 shows the correction factor based on a quadratic approximation compared to the

untransformed data. Unlike the linear solution, the half-segments here are not necessarily

of the same length, and thus there are separate correction factors for each half-segment.

The quadratic correction breaks whenever the expression in the square root of eqns. (5)

and (6) becomes negative, i.e. whenever v2±` ·f ′′(x) ·f ′(x)2 < 0. This happens for combina-

tions of large values of `, which signify a large vertical extent, or large conditional variability

E[Y |X], and simultaneous large changes in the slope of the main trend, i.e. large values of

the curvature f ′′(x). In the linear approximation of f the same situation leads to a massive

overcorrection of the vertical lines, changing the shape of the ‘corrected’ function beyond

recognition.

Similar to the correction of the x-axis, we can use a weighted approach to find a balance

between counteracting the illusion and representing the original data:

`neww(x) = (1− w) · `old + w · `new(x) (7)
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3 Transformations in Practice – a User Study

In order to more fully understand the sine illusion and test the proposed corrections, we

created an applet to allow users to investigate the illusion’s prominence with respect to its

parameters. Users can examine the sine illusion by changing line length, the function’s am-

plitude, and compare corrections in x-axis and y-values to uncorrected data. All corrections

proposed in this paper are implemented in a Shiny applet (RStudio Inc., 2013) located at

http://bit.ly/1ldgujL.

We employed a second Shiny applet (http://bit.ly/SzDnTc) to collect data on users’

preferences on the amount of correction used, i.e. we are interested in identifying a range of

‘optimal weights’ in each of the corrections. This applet presents users with a graph that is

the result of a correction in x or y with a randomly selected starting weight value . Users are

asked to adjust the graph until the lines appear to be the same size, that is, until the illusion

is no longer present (from lower weight values) or is appropriately corrected (from higher

weight values). Users manipulate the graph using a plus/minus button to adjust the amount

of correction used. Underlying this adjustment is the value of the weight w as defined in

eqns. (2) and (7). The numerical value of w was hidden from the user to prevent anchoring

to a specific numerical value. The applet utilizes the linear Y transformation and does not

break under any combination of parameters tested in this experiment.

A low initial weight (w0 close to 0) indicates that the amount of correction is low and the

response from a trial like this will give us an idea of the minimal amount of weight necessary

to break the illusion, while a high initial weight (w0 close to 1) indicates that the data are

fully corrected. Generally, responses from the two different types of trials do not result in

the same threshold weight, but rather indicate a range of acceptable weights.

It is of additional interest to determine whether and how much these optimal weights are

subject-specific or population-based, whether they depend on the initial weight, and how
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much within-subject variability we find compared to between-subject variability.

3.1 Study Design

The study aims to determine the range of “optimal” transformation weights for each trans-

formation type. Psychophysics methodology typically approaches threshold estimation by

using the method of adjustment (Goldstein, 2010), where stimuli are provided showing states

both above and below the hypothesized optimal value and participants adjust the stimuli

until the stated goal is met (in this case, until the lines appear to have equal length). It is

expected that there will be a difference in user-reported values from below and from above,

and these values are typically averaged to produce a single threshold value (the results from

this model are provided in appendix D.2). Instead of averaging these values, we use a mixed

model to compare user responses for different starting points to be able to estimate the range

of transformation weights.

The study is set up as a fractional factorial design of correction type (x or y) and starting

weight w0. Each participant is asked to evaluate a total of twelve situations, six of each

correction type. Starting weights were chosen as follows: each user was given a trial of each

type starting at 0 and 1. The remaining four trials of each type had starting weights chosen

with equal probability from 0.25 to 0.75 (see figure 9). We decided to have a higher coverage

density for starting weights around 0.6 after a pilot study indicated a preference for that

value. Using a distribution with a wide coverage allows us to more fully explore the space

of plausible weights w while focusing on the (0, 1) interval and enabling precise estimation

of the optimal weight in the region indicated by the pilot study.

A trial begins with the presentation of a graph at the chosen starting weight w0. Partic-

ipants are asked to adjust the graph using increment and decrement buttons. A trial ends

with the participant clicking the ‘submit’ button, at which point the weight for the final

adjustment is recorded. This provides a clear starting value and ending value, allowing us to
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0.0 0.4 0.8 1.2
Starting weight

Figure 9: Overview of possible starting weights. Weight values are discrete, but staggered
so as to provide fine-grained adjustments around 0.6 and more coarse discriminatory infor-
mation toward the outside.

assess the range of optimal values for each participant. In addition to starting weight, cor-

rection type, and anonymized user-specific data (partial IP address, hashed IP address, and

hashed browser characteristics), each incremental weight is recorded with a corresponding

time stamp. Specifications of a user’s browser turned out to be sufficient as an anonymous,

yet individual ‘fingerprint’.

3.2 Results

Participants were recruited from Amazon Mechanical Turk and the reddit community. As

this study was conducted outside a laboratory setting, we can not gauge a participant’s

willingness to follow the guidelines and put in their best effort. This, besides potential

technical issues (server outage, speed of response) make a careful selection of data going into

the analysis necessary. The specific data exclusion criteria are provided in appendix D.1.

The following analysis is based on the cleaned data, consisting of 125 participants with

1210 valid trial results.

The results from the standard psychophysics model (provided in appendix D.2) suggest

that some transformation is necessary to break the illusion, yet a complete transformation

is not needed. For an estimate of the range of acceptable transformation weights we use a

linear model that incorporates starting points other than 0 and 1, and allows for user-specific

variability.

In order to account for user-level variability, we fit a random effects model for the adjusted
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weight value as a function of starting weight and trial type, with a random intercept for

each participant. The exact model specification and parameter estimates can be found

in appendix D. Figure 10 gives an overview of the relationship between starting weights
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Figure 10: Simulation results from the fitted model, facetted by correction type. Fixed
effects results are shown as histograms; the red values display the results when starting from
an uncorrected plot and are concentrated around w = 0.1 for X and w = 0.14 for Y ; the
blue values represent user-chosen weights when starting from a fully corrected plot and are
concentrated around w = 0.63 for X and w = 0.67 for Y . Additionally, 95% bootstrap
intervals are shown as horizontal line segments above the histograms; these intervals are
for the lower and upper bounds of the “preferred weight interval” tested in the experiment.
User-level density curves show the individual variability around fixed effects α∗ and α∗ + β.

and user-preferred weight values. Higher starting weights are associated with higher user-

submitted values, while lower starting weights result in lower user-submitted values. The

ranges of optimal weights are similar under both transformations. Boundaries for the X

transformation are slightly lower than boundaries for Y .

Bootstrap simulations for each of the coefficients suggest that the range of acceptable

shrinkage values w is between 0.098 and 0.625 for x and 0.142 and 0.67 for y, where the lower

value is the estimate starting at w = 0 and moving up, and the upper value is the estimate

starting at w = 1 and moving down. This suggests that either correction is preferable to an
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uncorrected graph, and that a weighted correction is preferable to the fully corrected graph,

as neither 0 nor 1 is contained in any overall interval. In addition to showing the strength of

the correction, this experiment also demonstrates the strength of the illusion itself: corrected

line lengths appear more uniform than uncorrected ones, even though the corrected lengths

are not uniform while the uncorrected lengths are completely uniform.

4 Application: US Gas Prices

Figure 11 shows daily gas prices for a time frame between 1995 to 2014 as published in the

Energy Information Administration’s historical database of gas prices (EIA, 2014b). This

data set includes prices for all three grades of gasoline as well as two chemical formulations

which are sold in different geographic areas across the United States (EIA, 2014a).
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Figure 11: US Gas prices from
1995 to 2014 steadily increase
over the time frame, with some
dramatic short-term changes.
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Figure 12: Standard deviation
of daily gas prices between 1995
and 2014. The doubling of the
standard deviation over the time
frame is masked in Figure 11.

There is a clear increase in daily gas prices over time as well as several dramatic price

changes, which mask the steady increase in variance shown in figure 12. Instead, we perceive

an increase in variability in the frequent ups and downs along the overall trend. In particular,

the strong decrease in gas prices at the end of 2008 seems to be associated with a low variance.
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This is an effect of the sine illusion, and the actual variability in Oct 2008 is higher than in

previous months. In order to judge variability better along the trend line we apply the two

different corrections to this data, using a trend line fit based on smoothing splines to obtain

the necessary first and second derivatives.

Figure 13 shows the results from the X transformation applied to the gas prices. The

figure on top is a fully corrected version, while the one below only uses w = 0.36, the midpoint

of the range of experimentally determined acceptable values, for the transformation. At

w = 1, the transformation is severe, but it becomes clear that the variance between 1995

and 2000 is lower than it is between 2009 and 2014. When w = 0.36, the transformation is

much less noticeable but yields a near-constant absolute slope of the fitted line. The minor
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Figure 13: Corrected
gas price data using
X-transformations with
w = 1 and w = 0.36.

effect of the weighted transformation on individual x-values contrasts with the effectiveness

of the transformation in reducing the illusion; this is best seen in the fitted line, which is

distinctly (piecewise) curved in the uncorrected data and appears to be much more piecewise

linear in the corrected data, even at the reduced weighted value.

Similar to the X transformation, the Y transformation highlights local fluctuation in

the variability of daily gas prices much more than the untransformed data (the trend line

is not adjusted, but the individual data points are not accurate and are negative in the

w = 1 transformation). Figure 14 shows Y transformations for the data. Again, we show

20



a full transformation (top) and a transformation based on the midpoint of the previously

determined acceptable region of w = 0.40. in the full transformation it is clear that the

variance is nearly constant between 1995 and 2000 and then begins to increase with the

price of gas. When w = 0.40, the transformation is much less noticeable, and the resulting

y-axis scale is much more similar to the uncorrected data.
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Figure 14: Corrected
gas price data using
Y -transformations with
w = 1 and w = 0.40.

5 Conclusions

The sine illusion is a frequent occurrence in statistical graphics, and displays should therefore

be thoughtfully considered to minimize its effect visually and acknowledge its influence.

The illusion is persistent and powerful in the sense that it is very difficult to resolve

without modifying the visual stimulus directly. While systematically modifying the data is

uncommon in statistics, this approach is not out of place in the visual arts or architecture.

As far back as 400 BC the builders of the Parthenon ensured a straight appearance of the

columns from afar by widening columns at the center, thereby counteracting the effects

of the Hering illusion (Howe and Purves, 2005; Hering, 1861). Similarly, painters often

exaggerate color hues used in shadows to account for color constancy in the brain. The

systematic modifications we suggest here are also comparable to chloropleth maps, which

scale a region’s area based on population.
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We cannot counteract the illusion and represent the data visually without an intervention

that is drastic enough to remove the three-dimensional context the sine-illusion induces. The

proposals in this paper for transformations in x and y provide the means to temporarily

correct the data as a diagnostic measure, perhaps using an applet or R package for that

purpose. These corrections are significant not only because of their implications for statistical

graphics, but because previous attempts to resolve optical illusions using geometry have not

met with success (Westheimer, 2008). These corrections are only a first step and could

be improved upon; currently, the corrections break down for extreme (secant) values, but

multiple iterations of the correction procedure resolve some of these issues (though remove

the convenience of a functional form for the transformation). Similarly, the y corrections

proposed here extend the line lengths (or for actual data, increase the deviation from the

smooth line) – some normalization might make the corrections less noticeable.

Our primary goal is to raise awareness of the illusion and its implications for statistics;

the use of plots to guide the modeling process can leave us vulnerable to overlooking changes

in the variance due to the illusion. While best practice has been to plot the residuals

separately, this removes the context of the data and is not practical before there is a model.

The proposed transformations require only a nonparametric smooth, maintain the context

of the data, and are readily interpretable.

The data for this study were collected with approval from IRB-ID 13-257.
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A Examples of the Sine Illusion in graphics

Figure 15: Playfair’s graph of exports to
and imports from the East Indies demon-
strates that the line width illusion is not
only found on sinusoidal curves but is
present whenever the slope of the lines
change dramatically. The increase in both
imports and exports circa 1763 does not ap-
pear to portray as large of a deficit as that
in 1710, even though they are of similar
magnitude.

The shaded area on the chart is named “balance against England”, suggesting that the

difference between the lines is of main importance. This difference in trade is encoded as the

difference between the lines along the vertical axis. However, the vertical distance between

two lines provides a much less visually salient cue than the orthogonal width between the

lines. This results in an underestimation (Cleveland and McGill, 1984) of the difference in

trades around 1763, which is of a much higher (about 1.5 fold) magnitude as around 1770,

but appears much smaller.

B Transformation of the horizontal axis

As the slope is determined by the aspect ratio, we are free to choose it and w.l.o.g. we get

for each piece Ti:

f(Ti(x)) = ±ax+ bi.

This means that Ti is essentially an inverse of function f , with each piece defined by the

intervals on which the inverse of f exists: let {x0 = min(x), x1, ..., xK−1, xK = max(x)} be

the set of values with local extrema enhanced by the boundaries of the x-range, i.e. f ′(xi) = 0

for i = 1, ..., K − 1 and f ′(x) 6= 0 for any other values of x. Then each interval of the form
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(xi−1, xi) defines one piece Ti of the transformation function T (x). We will define Ti now

as a combination of a linear scaling function and the inverse of f , which we know exists for

interval (xi−1, xi).

Let function s = [a,b]s
[c,d] be the linear scaling function that maps the interval (a, b)

linearly to the interval (c, d). This function is formally defined as

s(x) = [a,b]s
[c,d](x) = (x− a)/(b− a) · (d− c) + c for all x ∈ (a, b).

Note that the slope of function s is given as

s′(x) = (d− c)/(b− a).

Two scaling functions can be evaluated one after the other, only if the image (i.e. y-range) of

the first coincides with the domain (i.e. x-range) of the second. This consecutive execution

results in another linear scaling:

[e,f ]s
[c,d]
(
[a,b]s

[e,f ](x)
)

= [a,b]s
[c,d](x)

In our situation let the scaling function s be given as:

[c,d]s
f([xi−1,xi])(x) = f(xi−1) + (x− c)/(d− c) · (f(xi)− f(xi−1))),

where f([xi−1, xi]) is defined as the interval given by (min(f(xi−1), f(xi)),max(f(xi−1), f(xi))).

Note that s has either a positive or negative slope depending on whether f(xi−1) is smaller

or larger than f(xi), respectively.

Then the transformation in the x-axis, T (x) is defined piecewise as a combination of Ti,
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where each Ti is given as:

Ti(x) = f−1
(
[ci,di]s

f([xi−1,xi])(x)
)
. (8)

Using this definition for the transformation makes f(T (x)) a piece-wise linear function with

parameters ci and di, i.e. for x ∈ (ci, di) we have

f(T (x)) = f(f−1([ci,di]s
f([xi−1,xi])(x))) = [ci,di]s

f([xi−1,xi])(x).

Correspondingly, the slope of f(Ti(x)) is (f(xi) − f(xi−1)))/(di − ci). In order to make the

slope the same on all pieces Ti of T , we need to define ci and di with respect to the function

values on the interval (xi−1, xi). There are various options, depending on how closely the x-

range of T should reflect the original range: for [ci, di] = range (f([xi−1, xi])) the new x-range

is the range of f on (xi−1, xi), but with the advantage that the scaling function simplifies to

the identity or a simple shift.

In order to preserve the original x-range, we need to invest into a bit more work for the

scaling. With an identity scaling, each Ti maps from the range of f on (xi−1, xi) to the same

range. Overall we can therefore set up the function T to map from the interval given by the

sum of the function’s ‘ups’ and ‘downs’, i.e. (0,
∑K

i=0 |f(xi) − f(xi−1)|), to the range of f

on (x0, xK). This ensures that all pieces f(Ti) have the same slope (of |1|).We can then use

another - global - linear scaling function to map from the range of x, i.e. interval (x0, xK)

to (0,
∑K

i=0 |f(xi)− f(xi−1)|), yielding a transformation function T of

T (x) = (f−1 ◦ [ci,di]s
f([xi−1,xi]) ◦ (x0,xK)s

(0,
∑K

i=0 |f(xi)−f(xi−1)|))(x),
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where ci and di are given as

ci =
i−1∑
j=0

|f(xj)− f(xj−1)| and di =
i∑

j=0

|f(xj)− f(xj−1)|.

We can write the difference |f(xj)− f(xj−1)| as
∫ xj

xj−1
|f ′(z)|dz. This shows equation (1).

C Reformulation of the quadratic approximation

A quadratic equation in λ of the form

aλ2 + bλ+ c = 0, (9)

where a, b, and c are real-valued parameters the solutions take on the form

λ± =
−b±

√
b2 − 4ac

2a
∗
= 2c

(
−b±

√
b2 − 4ac

)−1
.

∗ if b 6= ±
√
b2 − 4ac, i. e. a, c 6= 0.

Application to quadratic approximation to f : in the example, we have the following

equivalencies:

a = f ′′(x0)f
′(x0)

2

b = 2(1 + f ′(x0)
2) > 0 for all x

c = ±`
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For a valid solution for the correction factor, we have to assume that λ is a factor that

extends the original extant width (in absolute value).

λ1/2 = `
(
v +

√
v2 ± f ′′(x0)f ′(x0)2 · `

)−1
for v = 1 + f ′(x0). This gives the results as shown in equations (5) and (6)

D Random Effects Model and Detailed Results

D.1 Data Cleaning

The following exclusion criteria were used to clean the raw data obtained from Amazon

Mechanical Turk:

• Participants did not interact with the applet: we required participants to use the

adjustment at least once in order to include data for this trial (592 trials removed).

• Participants finished fewer than four trials: while participants were asked to complete

twelve trials, some did not finish all of those. In order to stabilize predictions of random

effects, participants’ data were excluded if there were fewer than four trials (78 out of

a total of 203 participants).

• Out-of-bounds results: weights leading to severely over- or under-corrected results were

excluded from the analysis. For trials to adjust Y -values, weights outside of [−2.5, 3.5]

show dramatically unequal line lengths; weights from X-transformations outside the

range of [−2, 2] do not preserve the underlying function shape and concavity. Figure 16

shows results at the threshold of acceptability. Only more severely distorted results

were excluded from the analysis (12 of the X and 5 of the Y trials out of 1227 trials

remaining after application of other criteria).
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Figure 16: Transformation weights outside of the intervals [−2.5, 3.5] for y and [−2, 2] for
x produce figures which do not maintain the underlying function shape (in x) or which are
composed of extremely uneven length lines (in y). Trials with final results that were more
extreme than these examples were excluded from the analysis.

D.2 Psychophysics Model Results

The psychophysics model shown in Figure 17 is based on weighted averages (by adjustment

type) of all trials with starting weights w0 = 0 and 1.
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Figure 17: Estimated density of
participant-level means using the
standard psychophysics method of limits
analysis described in Goldstein (2010).
The overall means are both near 0.4,
however, there is quite a bit of user-level
variability.

According to this analysis, the optimum transformation value for x is 0.35, and the

optimum transformation value for y is 0.45. Figure 17 shows the estimates and 95% Wald

intervals for the mean, as well as estimated density of participant-level responses.
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D.3 Random Effects Model Formulation

Let Wij denote the final adjustment to weight by participant i, 1 ≤ i ≤ 125 , on trial j,

1 ≤ j ≤ ni. We model the final weight Wij as a function of the correction type T (i, j)

(where T (i, j) ∈ {X, Y }), and starting weight Xij, with a random intercept for participant

to account for subject-specific ability:

Wij = αT (i,j) + βXij + γi,T (i,j) + εij (10)

γiX
i.i.d.∼ N(0, η2X), γiY

i.i.d.∼ N(0, η2Y ),

εij
i.i.d.∼ N(0, σ2) and Cov(γ, ε) = 0

αT (i,j) is either αX or αY , describing the lower threshold of the acceptable range for each

of the types of correction, while αX + β and αY + β describe the upper thresholds for the

respective correction. We can therefore interpret β as the length of the interval of plausible

weights. Additionally, this allows the interpretation of the quantity (α∗+β/2) as equivalent

to the estimate of the optimal weight based on the psychophysics methodology.

The fitted model parameters are shown in tables 1 and 2.

Transformation Threshold Parameter Estimate 95% C.I.
X Lower αX 0.097 (0.045, 0.150)

Upper αX + β 0.625 (0.570, 0.682)
Y Lower αY 0.143 (0.097, 0.188)

Upper αY + β 0.671 (0.626, 0.718)

Table 1: Fixed effect estimates of model (10) for the boundaries for reasonable weights. In
parentheses, 95% parametric bootstrap confidence intervals are given based on model (10)
(N=1000).

Table 2 gives an overview of the variance estimates. 95% confidence intervals are, based

on 1000-fold parametric bootstrap of model 10. All variance components are significant and

relevant; variability within a single individual’s trials is about half the size of variability
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Groups Correction Parameter Estimate 95% C.I.
Participant X ηX 0.171 (0.167, 0.247)
Participant Y ηY 0.145 (0.107, 0.179)

Residual σ 0.304 (0.290, 0.317)

Table 2: Overview of random effects for model (10), including 95% confidence intervals based
on parametric bootstrap results (N=1000).

across participants.

We use parametric bootstrap to generate responses for each correction type and each

participant from the model, which we use to both create user-level densities, population-

level densities, and bootstrap intervals for model parameters.

The variability of the random effects for each trial type is similar; but the model benefits

significantly from allowing separate random effects for individual’s variability by correction

type (0.1452394 and 0.1705474 for Y and X transformations, respectively, as opposed to

0.3044344 for the overall variability). The interaction between starting weight and trial type

was not significant, however, and was thus removed from the model (p-value = 0.9009749).
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