Skip to content
Switch branches/tags


Failed to load latest commit information.
Latest commit message
Commit time

Conditional Sequential Modulation for Efficient Global Image Retouching Paper Link

By Jingwen He*, Yihao Liu*, Yu Qiao, and Chao Dong (* indicates equal contribution)

Left: Compared with existing state-of-the-art methods, our method achieves superior performance with extremely few parameters (1/13 of HDRNet and 1/250 of White-Box). The diameter of the circle represents the amount of trainable parameters. Right: Image retouching examples.

The first row shows smooth transition effects between different styles (expert A to B) by image interpolation. In the second row, we use image interpolation to control the retouching strength from input image to the automatic retouched result. We denote the interpolation coefficient α for each image.


  title={Conditional Sequential Modulation for Efficient Global Image Retouching},
  author={He, Jingwen and Liu, Yihao and Qiao, Yu and Dong, Chao},
  journal={arXiv preprint arXiv:2009.10390},

Dependencies and Installation

  • Python 3 (Recommend to use Anaconda)
  • PyTorch >= 1.0
  • Python packages: pip install numpy opencv-python lmdb pyyaml
  • TensorBoard:
    • PyTorch >= 1.1: pip install tb-nightly future
    • PyTorch == 1.0: pip install tensorboardX


Here, we provide the preprocessed datasets: MIT-Adobe FiveK dataset, which contains both training pairs and testing pairs.

  • training pairs: {GT: expert_C_train; Input: raw_input_train}
  • testing pairs: {GT: expert_C_test; Input: raw_input_test}

How to Test

  1. Modify the configuration file options/test/test_Enhance.yml. e.g., dataroot_GT, dataroot_LQ, and pretrain_model_G. (We provide a pretrained model in experiments/pretrain_models/csrnet.pth)
  2. Run command:
python -opt options/test/test_Enhance.yml
  1. Modify the python file input_path, GT_path (Line 139, 140). Then run:

How to Train

  1. Modify the configuration file options/train/train_Enhance.yml. e.g., dataroot_GT, dataroot_LQ.
  2. Run command:
python -opt options/train/train_Enhance.yml


  • This code is based on mmsr.
  • Thanks Yihao Liu for part of this work.