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Abstract

Downstream flow alteration resulting from river impoundment or interbasin trans-

fer schemes, while improving water supply assurance levels, has been shown to

have negative ecological consequences, including outbreaks of pest blackfly. In

South Africa's Orange River, large impoundments constructed in the 1970s have

created an ongoing blackfly outbreak problem. Although the severity of the

outbreaks has been successfully managed using aerial applications of larvicides,

periodic outbreaks continue to occur. Understanding the interactions of the multi-

ple variables driving the outbreaks is complex. We integrated variables useful in

predicting outbreak conditions (discharge, water temperature, seston concentration,

benthic algae) using a Bayesian network approach. Data to define probabilities

were collected at 11 sites over four sampling seasons, and system states were

derived using flow and water temperature thresholds. The late summer months

(February, March, and April) were most favourable for pest blackly outbreaks,

and the probability of an outbreak is six times higher for postimpoundment versus

preimpoundment flow conditions. The model was successful in integrating multiple

environmental variables that act as triggers for pest blackfly outbreaks. The effi-

cacy of the model as a management tool will increase if ongoing monitoring data

are incorporated into the model as case files.
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1 | INTRODUCTION

Filter‐feeding blackfly larvae are ubiquitous in lotic systems and

inhabit a broad spectrum of hydraulic habitats from small clear

mountain streams to large turbid rivers (Crosskey, 1973).

Notwithstanding the economic benefits of flow assurance,

impoundment of large river systems may result in overwhelming

dominance of aquatic macroinvertebrate communities by pest

species such as blackfly (O'Keeffe & de Moor, 1988). This is a

consequence of downstream changes in natural flow regimes,

through either homogenization and reversal of hydrographs, or flow

augmentation in receiving systems from interbasin transfer schemes

(Rivers‐Moore, de Moor, Morris, & O'Keeffe, 2007; Snaddon &

Davies, 1998). Such ecological consequences are not always
wileyonlinelibrary.com
anticipated or internalized in cost–benefit analyses supporting the

development of such schemes. Examples of this include large rivers

in West Africa, the Saskatchewan River system in Canada, and the

Orange and Great Fish Rivers of South Africa (Chalifour, Boisvert,

& Back, 1990; Fredeen, 1977; Rivers‐Moore et al., 2007; Rivers‐

Moore, Palmer, & Dallas, 2014), where various permutations of

negative influences on human health, livestock and poultry farming,

agriculture, and recreation have manifested.

In South Africa, blackfly outbreaks along the middle and lower

Orange River have the potential to cause losses to livestock produc-

tion estimated at US$13.3 million per annum in 2013 (Rivers‐Moore

et al., 2014). This figure is a conservative estimate as it excludes losses

in the tourism and irrigated agricultural sectors through lost revenue

and labour days (Mullins, 2007). Economic losses occur along
© 2018 John Wiley & Sons, Ltd./journal/rra 1197
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approximately 1,200 km of the middle and lower reaches of the

Orange River (Palmer, 1997). This is the river segment downstream

of Van Der Kloof Dam, a major impoundment regulating flows in the

Orange River. The major pest species is Simulium chutteri; however,

Simulium damnosum, Simulium nigritarse, and Simulium adersi are also

of concern (de Moor, 1994, and citing others). Switching between

clear and turbid conditions, which are driven by changes in flow vol-

umes and seston concentration, favour either the major pest species

(S. chutteri and S. damnosum) under more turbid conditions or less

problematic species (S. adersi and S. nigritarse) under clearer conditions

(Rivers‐Moore & Palmer, 2018). Whereas the latter feed predomi-

nantly on birds, the former major pest species feed primarily on

mammals and are therefore considered a management concern due

to their negative impact to sheep farmers and their nuisance value

to agricultural labourers (Rivers‐Moore & Palmer, 2018).

There are a number of options for blackfly control, including flow

manipulation, physical removal of aquatic weeds, and aerial spraying

of adult flies; protection of livestock using insecticides; and biological

control and larvicide application. The Blackfly Control Programme

along the middle and lower Orange River was started in 1991, based

on aerial applications of larvicides to control the key pest species

S. chutteri. Effective larvicide concentrations have been established

through research, with larvicide volumes calculated at each application

based on measured discharge. The volumes of larvicide used, together

with relatively large discharges (mean = 100 m3·s−1), mean that down-

stream carry of active ingredients from upstream applications

results in an overapplication of larvicides (Chalifour et al., 1990;

Rivers‐Moore, Bangay, & Palmer, 2008). It extends over some

850 km of the middle and lower Orange River, where 148 rapids have

been identified as optimal breeding habitat for pest blackfly species

(Palmer, Rivers‐Moore, Mullins, McPherson, & Hattingh, 2007).

Larvicides are usually applied three times in autumn and six times in

spring (Palmer & Palmer, 1995). Larvicides registered for blackfly con-

trol in South Africa are Teknar® and VectoBac® (produced from the

naturally occurring bacteria Bacillus thuringiensis var. israelensis) and

Abate® (organophosphate temephos; Palmer & Palmer, 1995). The

former bacterial larvicides are high target specific to simuliid

Diptera, whereas the organophosphates are less selective (Palmer &

Rivers‐Moore, 2008). Wide‐scale application of Abate has led to

resistance being developed in the major pest blackfly species Orange

River populations as a result of prolonged exposure to this larvicide

(Palmer & Palmer, 1995; Palmer & Rivers‐Moore, 2008).

Consequently, the current control programme is restricted to, and

completely dependent on, correct application of B. thuringiensis var.

israelensis. The success of the control programme depends largely on

the correct timing of larvicide applications, informed through a

monitoring programme using a 10‐point scoring system for larval and

pupal densities developed by Palmer (1994). Larval density data are

scored fortnightly by staff from the regional South African

Department of Agriculture, Forestry and Fisheries.

There has been a research history of more than 30 years in

response to the “blackfly problem” along the Orange River. Projects

have included fundamental research of blackfly ecology on the Orange

River, to inform the design of the Blackfly Control Programme by

Palmer (1997), and a follow‐up project 10 years later to explore
alternative larvicides due to larval resistance of temephos (Palmer

et al., 2007). However, despite a long history of research, monitoring,

and management, periodic outbreaks of blackfly continue to occur,

with the most recent outbreak in 2011 (Rivers‐Moore et al., 2014),

and before that in 2000–2001 (Palmer et al., 2007). Reasons for

periodic outbreaks include sporadic higher than normal winter flows

(Palmer et al., 2007), changes in turbidity levels promoting switching

of dominant blackfly species (Fredeen, 1977; Rivers‐Moore et al.,

2014), and larvicidal resistance (Palmer & Rivers‐Moore, 2008).

Integrating the interacting effects of all of these variables is a

challenge. Bonkewitzz and Palmer (1997) developed an interactive,

flexible, rule‐based probabilistic model for river managers involved

with the Orange River Blackfly Control Programme. Understanding

the causal factors contributing to blackfly outbreaks requires knowl-

edge of the variables governing blackfly larval numbers, which include

water velocity, available habitat, and water temperature (Crosskey,

1973; de Moor, 2003; Palmer & O'Keeffe, 1995; Rivers‐Moore, de

Moor, Birkholz, & Palmer, 2006; Rivers‐Moore, Hughes, & de Moor,

2008; Sheldon & Oswood, 1977). Given the interacting dynamics of

each variable, and the uncertainty around the relative contributions

of each variable under different seasons, a suitable framework for

representing the problem is a Bayesian network (BN). This is a proba-

bilistic network for reasoning under uncertainty, wherein current

knowledge on multiple variables and their interdependencies are

quantified and graphically represented into a probabilistic modelling

framework (Jensen & Nielsen, 2007; Kjaerulff & Madsen, 2008). The

probability of an event is conditional on other factors (Jensen & Niel-

sen, 2007), where “each fact is suggestive in itself [and] together they

have a cumulative force” (Sherlock Holmes: “The Adventure of the

Bruce‐Partington Plans”). BNs are causal networks with the strength

of links represented as conditional probabilities and useful in calculat-

ing new probabilities as new information becomes available.

Rivers‐Moore et al. (2014) developed a simple BN model for two

species on the Orange River, although this model did not incorporate

the effects of water temperature or turbidity on outbreak

probabilities. Such networks are useful as a decision support tool for

considering the influences of multiple variables on a measured

response variable (Stewart‐Koster et al., 2010; for example, blackfly

outbreaks). A BN essentially consists of cause‐and‐effect relationships

and is a tool for facilitating the development of conceptual models for

representing relationships among variables, even if the relationships

involve uncertainty. Consequently, this approach is free from the

arguments of too little data, and BNs show strong prediction accuracy

even using small sample sizes (Batchelor & Cain, 1999; Kjaerulff &

Madsen, 2008; Uusitalo, 2007). With the use of this approach, BNs

are particularly useful in predicting the likelihood of an event occurring

through consideration of both independent and interactive

(conditional) causal environmental variables on the response variable

—in this case, probability of blackfly outbreak (Stewart‐Koster et al.,

2010). This paper develops a probabilistic model for predicting when

outbreaks are likely to be most severe, and which environmental

variables are most likely to be responsible for them. Together, these

provide a tool for assisting with the seasonal planning efforts of

the Blackfly Control Programme and informing which variables should

be monitored.
nse
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2 | METHODS

2.1 | Study sites

Eleven sites along the middle and lower Orange River, distributed

along some 600 km downstream of Van Der Kloof Dam, were

selected for collection of primary data (Figure 1; Table 1). Sites

extended over an elevation range of 600 m and were chosen

to represent both single‐ and multiple‐channelled river reaches.

Channel type was previously identified by Rivers‐Moore et al.

(2014) as affecting flow rates and current velocities. Multiple

channel sections were identified using GoogleEarth™ and plotted

on the river profile. The spatial distribution of sections with mul-

tiple channels was characterized on the basis of the association

between points (degree of clustering vs. regular spacing). The

co‐ordinates of all instream barriers and downstream distances

between point pairs were calculated for 2 × n and n × n matri-

ces. These matrices were used in second‐order analyses, a

suitable technique for assessing clustering of points in one or

more dimensions (Fortin & Dale, 2005; Rosenberg & Anderson,

2011). Outputs are modified Ripley's K values that are a function

of how many points fall within a series of different radius values

for each point.
3/2023]. See the T
erm

s and C
onditions
2.2 | Data collection

Sampling was undertaken in late spring (November 2015), late summer

(March 2016), winter (July 2016), and early summer (December 2016).

Moving from downstream to upstream so as not to contaminate or
FIGURE 1 Map of study area, showing full extent of study area (a) and loca
zone extends from Douglas downstream to some 400 km below Blouputs.
trample downstream sites, we sampled across a range of hydraulic

habitats and reeds where immature blackfly (larvae and pupae) were

expected. Although there is evidence to support limited drift of larvae

downstream within a breeding site (Rivers‐Moore et al., 2007), it is

highly unlikely that cross‐contamination between sampling sites

occurred given the sessile nature of blackfly larvae, and the average

interriffle distances of 5.7 km (Rivers‐Moore, Bangay, & Palmer,

2008). Samples were collected either from reeds cut and preserved

or using a 250‐μm mesh net downstream of fist‐sized rocks. Larval

densities were rated according to the 10‐point scale of Palmer

(1994). Blackfly pupae and larvae were collected and preserved in

70% ethanol. Each sample was identified to species level, and

relative abundances were recorded in the laboratory using the

taxonomic keys of de Moor (2003). All data for each sample at each

site and per seasonal sampling event were collated into spreadsheet

data matrices, with associated hydraulic and water quality data and

manipulated using pivot tables. Raw abundance data per species

and life history stage, and presence and absence data were used in

analyses. Blackfly species turnover between seasons and sites was

compared using a Bray–Curtis analysis (McCune & Mefford, 2011).

Reed areas extending 100 m upstream and downstream at all sites

were calculated using on‐screen digitizing of satellite images from

GoogleEarth™.

Turbidity (cm) was measured using a clarity tube, in association

with the presence/absence of algae, which reduces blackfly habitat.

Turbidity values were converted to seston concentrations (mg·L−1;

Equation (1); Palmer, 1997; Rivers‐Moore et al., 2007). Spot readings

of pH and conductivity (μS·cm−1) were recorded using a Hanna pH/

conductivity meter.
tion of study sites relative to VanDer Kloof Dam (b). The blackfly control
Higher resolution of sites between Gifkloof and Keimos is show in (c)
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TABLE 1 Study site details, including downstream distance from Van Der Kloof Dam (DD), and elevation

Site Site name
Latitude
°S

Longitude
°E DD (km)

Elevation
(m amsl)

Channel
type

1 Douglas −29.16194 23.69623 174.6 993 Single

2 Prieska −29.65553 22.74592 355.1 926 Single

3 Gifkloof −28.43743 21.40092 621.6 800 Single

4 UP1 −28.45798 21.26165 636.5 785 Single

5 UP13 −28.45262 21.25943 636.5 785 Single

6 Druiswater −28.60385 21.14277 660.3 778 Single

7 Kanoneiland −28.46768 21.10197 666.5 765 Single

8 UP8 −28.68780 21.06878 671.8 746 Single

9 UP12 −28.69490 21.01452 679.3 726 Multiple

10 Ikaia Lodge −28.72913 20.98595 683.8 724 Single

11 Blouputs −28.51377 20.18694 785.0 439 Single

1200 RIVERS‐MOORE AND HILL
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TSS ¼ exp
log

SD
256

−0:616

0
B@

1
CA; (1)

where TSS is total suspended solids (mg·L−1) and SD is clarity (cm).

Water temperatures are a controlling variable for larvicidal efficacy

(Palmer, 1997), algal mats (de Moor, 1994), and blackfly larval develop-

ment (de Moor, 1982, 1994). Hourly water temperature data were col-

lected at all sites using Hobo TidbiT v2 water temperature loggers and

aligned for a common period from November 4, 2015, to November

2, 2016. Data were processed into metrics describing magnitudes, fre-

quencies, durations, and timing of thermal events (Rivers‐Moore, Dallas,

& Morris, 2013), based on thermal thresholds for S. chutteri of 10°C,

26.67°C, and 30°C, which describe a lower threshold below which

pupation does not occur, a chronic stress threshold, and an upper

thermal threshold (Rivers‐Moore, Dallas, & Ross‐Gillespie, 2013).

Definition of thermal seasons of mean daily water temperatures was

determined using regime shift detection software (Rodionov, 2006;

p < 0.01; cut‐off length = 30; Huber's weight parameter = 1).

For the hydraulic data, current velocity was measured at each

sampling point, using a transparent velocity head rod. Differentials in

depth between the current “head” and the lower depth were converted

to velocities. Sampling point depths (cm) were recorded using a depth

stick. For the hydrological data, observed mean daily flow data time

series were obtained from the national Department of Water and Sanita-

tion's Hydrological Information System (www.dwaf.gov.za/Hydrology).

We used flow gauging data from two stations with the longest time

series data available: D3H008/Marksdrift: 1935–2016; and D7H008/

Upington: 1942–2016. A critical discharge threshold of 100 m3·s−1 was

derived from the velocity–discharge relationships in Palmer (1997) and

using a critical velocity of 1 m·s−1 for both S. chutteri and S. damnosum

(Palmer & Craig, 2000; Rivers‐Moore et al., 2007). Return intervals of

flows exceeding 100 m3·s−1 were calculated for preimpoundment and

postimpoundment periods (1942–1977; 1978–2016).

2.3 | Bayesian network model

Data from the 11 study sites were used as the basis for developing the

BN model. For the sake of model parsimony, the BN model objective
node was restricted to two node states, namely, the “major” problem

species (S. chutteri and S. damnosum) and the “minor” problem species

(S. adersi and S. nigritarse).

BN models are not explicitly able to reflect temporal or spatial

patterns (Cain, 2001). The approach to dealing with this was to build

as many models as required to represent study area spatial units,

and relevant time periods. Sites were grouped according to seasonal

values of pH, turbidity (cm), and conductivity (μS·cm−1). These data

were analysed using a principal component analysis (correlation

matrix), and sites classified using a cluster analysis (Euclidean distance

measure; group averaging linkage method). In the second approach,

sites were grouped according to thermal metrics describing water

temperature time series, on the basis of the methods of Rivers‐Moore,

Dallas, and Morris (2013), and the thermal data collected in this study.

The BN model was designed to take the following into account:

• benthic algae dominating the substrate habitat and controlled by

water temperature and seston concentration (de Moor, 1994);

• larvicidal efficacy as a function of water temperature and seston

concentration (Palmer, 1997);

• outbreak probability as a function of dominance of the “strong

porous” species and affected by water temperature; and

• dominance of the pest blackfly species complex determined

by the moderating nodes of “abiotic” and “biotic” conditions

dominating (de Moor, 1994).

Nodes were linked in cause‐and‐effect sequences using the

Bayesian software Netica v 4.16 (Norsys Software Corporation,

2010) and assigned variable states. All variables used discrete states,

arranged from most positive to most negative. Development of a BN

was an iterative process of testing the logic of relationships and keep-

ing the network as parsimonious as possible. No more than three

parent nodes (a variable with links going out to other variables; Cain,

2001) were linked to any child node (a variable with links to it from

other variables; Cain, 2001), as the elements of a conditional probabil-

ity table increase exponentially according to in based on number of

states (i) and the number of parent nodes (n; Cain, 2001). The water

temperature threshold was linked to a number of child nodes each
nse
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FIGURE 2 Orange River profile based on downstream distance from
Van Der Kloof Dam showing distribution of multiple‐channelled sites
on the Orange River downstream of Van Der Kloof Dam (top); results
of Ripley's K analysis on one‐dimensional data of barriers along the
lower and middle Orange River. Values of zero reflect random
distributions, values < 0 indicate clumping, and values > 0 indicate
regular spacing (bottom)
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likely to have a particular temperature threshold; a trade‐off was made

in assigning a 20°C mean daily water temperature threshold as being a

compromise threshold to serve all three variables. With the use of

data from the field surveys, case files were generated, with each data

point representing a data record. Simple logic statements are used for

five of the nodes (biotic, abiotic, larvicidal efficacy, pest complex, and

outbreak probability), based on combinations of their parent node states.

For example, “Discharge = High AND Seston Concentration = High”

resulted in the abiotic node being assigned a “favourable” state.

Node states were defined according to the threshold values, and

conditional probabilities were generated from the case files.

To validate the model, two approaches were used. In the first, we

divided the case file data into training and test case files, on a 3:1 ratio.

Data records were assigned random numbers sorted from smallest to

largest and were selected for each exercise. The test case file was

applied to both the upper and lower Orange River BN models. In the

second approach, the probabilities of each state of the parent nodes

were defined on the basis of a number of approaches; for example,

for flow conditions, the return intervals for flows below or exceeding

100 m3·s−1 were calculated from flow data. This threshold corre-

sponds with optimal velocity thresholds for both S. chutteri and

S. damnosum (Palmer, 1997; Palmer & Craig, 2000). Return intervals

were calculated for two periods defined according to when the major

impoundment controlling downstream flows on the Orange River was

completed, namely, 1942–1977 versus 1978–2016, and probabilities

calculated for each state. An exponential relationship between flow

rates and seston concentration was used to calculate seston concen-

tration time series for preimpoundment and postimpoundment flow

conditions, from which return intervals were calculated for a threshold

value of 60 mg·L−1 (Palmer, 1997; Equation (2)). Monthly outbreak

probabilities were compared against historical data of adult blackfly

annoyance levels. The fly worry index was previously used in the

1990s (Palmer, 1997) as a 4‐point scoring system reflecting the

annoyance levels of adult blackfly. It is assumed that there will be a

1‐ to 2‐week time lag between the larval density data and the adult

fly worry index data, on the basis of the temperature‐dependent time

lag between larval and adult life history stages.

Seston ¼ 1:92*Flow0:755: (2)

3 | RESULTS

A total of 25 multiple‐channelled sections were identified on the mid-

dle and lower Orange River. Multiple channel zones were strongly

clustered within 60‐ to 80‐km segments, with clusters regularly

spaced at larger scales (Figure 2).

All water quality data exhibited seasonal variation (Figure 3), with

little downstream gradient difference. Water clarity was generally low

(<42 cm) and the highest during the July 2016 survey, with

correspondingly high levels of algae on the rocks. Based on the seston

concentration versus flow volume curves, low seston concentrations

occurred at low flows, with distinct seasonal patterns. Values of pH

reflected neutral to slightly alkaline conditions at all sites (7.0–8.5).

Conductivity values ranged from 400 to 600 μS·cm−1, being highest
during the July 2016 survey, corresponding with relatively low flow

volumes.

Water temperatures exhibited a marked cooling trend from late

March 2016, with Sites 1–2 slightly cooler than the remaining down-

stream sites (3,600 vs. 4,000 degree days > 10°C per annum). This

was predominantly a consequence of a marked reduction in daily

water temperature ranges and a cooling trend from late March. The

annual thermograph showed 10 significant changes in mean daily

water temperatures (Figure 4).

Seasonal plots of the relative proportions of contribution to

overall sample numbers demonstrate clear switching of dominant

species between sites and seasons, but with specific site clusters

based on species abundances (Figure 5). Maximum abundances

relative to velocity values showed clear species‐specific responses,

with S. chutteri and S. damnosum abundances peaking at 1.2 m·s−1.

In contrast, S. adersi and S. nigritarse showed preferences for

velocities of 0.6 and 0.8 m·s−1, respectively (Figure 6; Table 2). There

was little relationship between blackfly species abundances and pH

or conductivity.
3.1 | Bayesian network model

In terms of water quality, all sites exhibited similar characteristics, with

little evidence to support grouping of sites based on water quality.
nse



FIGURE 3 Clarity (top, left); pH (bottom, left); and conductivity values for late spring (November 2015), late summer (March 2016), winter (July
2016), and early summer (December 2016) for study sites, going from upstream to downstream. The top right shows mean daily flow volumes and
seston concentrations from October 2015 to September 2016

FIGURE 4 Mean daily water temperatures for the cooler,
upstream site at Prieska versus the warmer downstream site at
Upington (Up13). Cumulative degree days > 10°C are indicated on
the second axis

FIGURE 5 Bray–Curtis ordination of sites surveyed, based on
simuliid species data (percent contribution of each species' relative
abundance to total number per sample); season codes: 1 = late spring;
2 = late summer; 3 = winter; 4 = early summer (after Rivers‐Moore &

Palmer, 2018). Sade = Simulium adersi; Schu = Simulium chutteri;
Sdam = Simulium damnosum

1202 RIVERS‐MOORE AND HILL

 15351467, 2018, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.3357 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
ice
What was apparent, however, was a seasonal shift in water qual-

ity, with winter water quality driven by higher conductivity and

clarity values (Figure 7; Table 3). Sites were generally clearer but

with higher conductivity levels and higher alkalinity during winter

and transitioning to more turbid, neutral pH conditions with

greater dilution of salts in summer. Conversely, sites could be

divided into three distinct thermal groups, based on their thermal

metrics (Figure 8). Here, the Douglas and Prieska sites (Sites 1–2)

clustered together as cooler sites than the remainder of the main
channel Orange River sites, which showed greater thermal

homogeneity.

Node probabilities were calculated for the cooler and warmer site

groups based on 31 and 407 records of system states, respectively.
nse



FIGURE 6 Log‐transformed abundances of four species of blackfly
based on combined sample data from November 2015 and March
2016. Velocity preference curves are based on maximum
abundances for velocity values (see Table 3). Sade = Simulium adersi;
Schu = Simulium chutteri; Sdam = Simulium damnosum;
Snig = Simulium nigritarse

TABLE 2 Second‐order polynomial equations describing relationship
between stream velocity and relative abundance for four species of
Simulium (see Figure 6)

Species Equation R2

Simulium adersi y = −2.712x2 + 3.589x + 0.942 0.41

Simulium chutteri y = −2.192x2 + 4.886x + 0.602 0.59

Simulium damnosum y = −2.522x2 + 5.600x + 0.008 0.58

Simulium nigritarse y = −3.150x2 + 4.766x + 0.479 0.92

TABLE 3 Eigenvalues for seasonal water quality variables associated
with the 11 blackfly study sites on the middle and lower Orange River

Variable

PC Axis 1 PC Axis 2

Cumulative % variance

50.28 76.56

Eigenvalues

pH −0.365 −0.687

Turbidity 0.571 −0.373

Conductivity 0.574 −0.428

Season 0.460 0.453

Note. PC: principle component.
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Outbreak probabilities were four times higher in the upper zone than

in the lower zone (27.1% and 5.7%, respectively). Node sensitivity rel-

ative to the outbreak node for each model showed different combina-

tions of variables having greater leverage for each BN (Table 4).

Relative sensitivities illustrated that abiotic drivers were more than

eight times more influential than biotic conditions in affecting out-

break probabilities, and with channel type and seston concentration

being more important to model accuracy than water temperature

and reed abundance. Model predictions for the outbreak probability
FIGURE 7 Principal component analysis of
study sites based on water quality variables
for November 2015 and March, July, and
December 2016. Seasons 1–4 represent the
data collected for the late spring (November
2015), late summer (March 2016), winter (July
2016), and early summer (December 2016)
sampling periods, respectively
node indicated <2% and 15% inaccuracy for the lower and upper zone

models, respectively, than did the test case file data. Probabilities for

the parent nodes compared favourably with the probabilities derived

from return intervals on time series (Table 5), with the exception of

seston concentrations. Here, probabilities based on the case files for

turbid conditions were two thirds of what would be expected from

the time series data. An example of the conditional probabilities for

“low” versus “high” outbreak probability conditional upon three parent

nodes is provided in Table 6.

The final BN model represented relationships among all system

variables, with probabilities of system states changing in accordance

to the understood system behaviour and relationships (Figure 9).

Eleven nodes were identified for the BN model, with each node having

two to three states. Data indicated an increase in the probability of

pest blackfly outbreaks between preimpoundment and postimpoun-

dment flows. The highest probabilities of outbreaks, according to the

model, were for February to April (Figure 10). Verification data, using

maximum monthly values of the fly worry index, showed a lag of 1

to 2 months.
4 | DISCUSSION

Water quality conditions were relatively consistent across the 600‐km

study axis, with the exception of peripheral habitat that caters for

different blackfly species with specific water quality preferences.
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FIGURE 8 Cluster classification of study sites based on water temperature metrics. Sites were assigned to a cooler water temperature group
(Sites 1–2) and a warmer water temperature group (Sites 3–10) according to the 75% information remaining threshold

TABLE 4 Node sensitivity relative to the “outbreak probability”
node

Node Lower Upper

Outbreak probability 100.0 100.0

Simulium pest complex 19.5 17.4

Abiotic 14.0 14.3

Channel type 10.8 0.1

Seston concentration 10.0 14.5

Discharge 2.1 0.0

Biotic 1.6 0.3

Benthic algae 1.2 0.4

Reeds 0.2 0.0

Larvicidal efficacy 0.1 22.5

Water temperature 0.1 0.4

TABLE 6 Conditional probability values for the “outbreak probabil-
ity” node, based on three input nodes

Simulium pest
complex

Water
temperature

Larvicidal
efficacy

Outbreak
probability
= low

Outbreak
probability
= high

Minor Cool Optimal 50 50

Minor Cool Suboptimal 99.22 0.78

Minor Warm Optimal 98.15 1.85

Minor Warm Suboptimal 99.24 0.76

Major Cool Optimal 50 50

Major Cool Suboptimal 75 25

Major Warm Optimal 98.88 1.12

Major Warm Suboptimal 8.33 91.67

TABLE 5 Parent node state probabilities

Node State probability Case probability

Channel type 20% multiple/
80% single

23.72% multiple/
76.28% single

Discharge 37% < 100 m3·s−1/
63% > 100 m3·s−1

36.19%
< 100 m3·s−1/
63.81%
> 100 m3·s−1

Seston
concentration

42% < 60 mg·L−1/
58% > 60 mg·L−1

60.64%
< 60 mg·L−1/
39.36%
> 60 mg·L−1

Water
temperature

30% < 20 °C/70%
> 20 °C

31.79% < 20 °C/
68.21% > 20 °C
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Larvae of S. chutteri exhibit a wide tolerance of water quality condi-

tions (conductivities of 2–55 mS·m−1). Similarly, de Moor (1982) noted

that fluctuations in pH in the Vaal River were minor (7.8–8.4) and not

considered to account for larval size variation. Water temperatures are

favourable throughout the year for blackfly life history development,

although the marked cooling during autumn and winter is likely to lead

to reduced numbers of generations over this period, and favouring

larger larvae that develop into more fecund adults. This is particularly

so for the Prieska and Douglas sites, which are slightly cooler than the

other downstream sites. However, an important difference between

the Douglas and Prieska sites was that the former site experiences

significantly higher levels of subdaily flow variability than do sites

further downstream, as a consequence of the water releases from

Van Der Kloof Dam for hydro‐electric power generation. Although

these constant high and low flow pulses over a 24‐hr time period

are mitigated with downstream distance, the ecological consequence

is that pest blackfly are more abundant at elevated but stable flows

and less abundant at elevated by highly variable subdaily flows.

The BNs successfully incorporated the interactions of five environ-

mental variables underpinning system switching between blackfly spe-

cies complexes, together with the compounding effects of larvicidal

efficacy on outbreak probability. Prediction accuracy when compared

with test data was good, although the poorer performance for the

upper zone illustrates the importance of understanding spatial model-

ling domains, and the need for two BNs in our system to cater for the

upper, cooler sites and the warmer, lower sites. Themodel further dem-

onstrated the considerable increase in outbreak probabilities

postimpoundment and the most critical months where control actions

need to be focussed. The probabilities derived for the parent nodes

from the case files performed well against the probabilities derived

from long‐term time series, with the exception of seston concentration,

which underrepresented ambient conditions. This has been shown to

be a major driver underpinning system switches between different spe-

cies complexes of blackfly (Rivers‐Moore & Palmer, 2018) and would

require long‐term monitoring data to validate the actual probabilities.

There was poor agreement between monthly outbreak probabilities

and historical outbreak data. However, the time lag between the out-

break probabilities and the fly worry index scores is not surprising given

that the BN model prediction probability of suitable habitat conditions

for larvae is instantaneous, whereas the fly worry index reflects adult

blackfly: Depending on water temperatures, the time required for life

cycle completion is 12–24 days (de Moor, 1989).

Although impetus of the control programme may fade during

periods when the problem has “gone away,” this has not reduced the
nse



FIGURE 9 Bayesian network model showing parent and child nodes together with management and utility nodes [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 10 Seasonal variation in blackfly
outbreak probabilities for preimpoundment
and postimpoundment flow conditions
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need for a stakeholder‐driven, holistic, and proactive longer term solu-

tion to the problem. Ultimate solutions to this problem are, however,

constrained by the conflicting resource needs of the stakeholder

sectors along the middle and lower Orange River. Thus, flow manipu-

lation may be feasible in theory, but its application is complicated by

the income that would be lost through hydro‐electric power genera-

tion in winter months, where power demand is highest. Agricultural

activities are typically mixed, with the same land owners who suffer

livestock losses also requiring irrigation water for vineyards. The lower

and middle Orange River blackfly problem can truly be described as a

“wicked problem,” defined as difficult or impossible to solve because

of contradictory user requirements (Rittel & Webber, 1973). In such

situations, the challenge is to integrate the confounding effects of

multiple variables into an integrated system understanding.

This model presents a framework for refining the current monitor-

ing programme, where field visits that already score blackfly larval
densities should be used as opportunities to record turbidity, pres-

ence/absence of benthic algae, blackfly species, and periodic

downloading of water temperatures form data loggers. It is simple

enough to be readily altered and adapted as needs dictate, while pro-

viding a simple template that can be applied across different thermal

zones. Such model traits are regarded as desirable for uptake of BN

models (Lynam, Drewry, Higham, & Mitchell, 2010). In terms of vari-

ables to be monitored, the node sensitivities in the predictive model

highlight that Simulium pest species and larval densities plus water

clarity are critical to be monitored, whereas water temperature and

presence of benthic algae are desirable but less important to monitor.

Even with limited data, BNs are regarded as being robust and able to

show good prediction accuracy (Uusitalo, 2007). Ongoing monitoring

data of a few easily measured variables, if incorporated as additional

records into expanded case files, will serve to improve prediction

accuracy. This could readily happen through the uploading of data
nse
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onto an online platform such as a mobile phone app, with information

periodically collated and analysed by a BN administrator. The inclusion

of cost–benefit utility nodes together with a management node of

alternative management interventions would extend the current BN

into a decision network where alternative scenarios may be

objectively evaluated.

Given that the environmental variables driving pest blackfly

outbreaks in affected river systems globally are similar, this approach

has potential to be applied elsewhere. With blackfly species being

ubiquitous across global aquatic ecosystems, and conforming to the

labral fan‐type classification of Palmer and Craig (2000), the model

could accommodate alternative blackfly species classified as “major”

and “minor” pest species with relative ease. This would only require

collection of data for the variables listed above, with relevant return

interval probabilities calculated. We conclude that this study has

potential for consolidating much of the previous research related to

the Blackfly Control Programme into a useful predictive management

framework. As the accuracy of predictions improves as the number

of case files increases through the software learning algorithms, this

model will become increasingly useful if updated. Together, the com-

ponents of this framework are different from previous aspects of the

Blackfly Control Programme, because they provide a structured means

for auditing the successes and failures of the Blackfly Control

Programme, and there is the basis for evaluating the most likely

scenarios of future blackfly outbreaks in response to climate change‐

induced water temperature increases.
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