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11 Introduction

e secret is out. Game Al is seldom about any deep intelligence but rather about the illu
sion of intelligence. O en we are trying to create believable human behavior, but the actual
intelligence that we are able to program is fairly constrained and painfully brittle. Yet, we
struggle to put up a good show and strive to keep up the illusion.

Well, maybe we should be a little more purposeful and directly work on propping up
the illusion, instead of shoring up the crumbling intelligence. Maybe there are tricks that
we can use to fool the players into beliethiege is real intelligence there. Instead of work
ing toward patching up the actual intelligence, perhaps we should also consciously work
toward promoting the appearance of intelligence.

In fact, if you do not work on the illusion side of the equation, you are likely failing
to do your job. Expectations play a huge role in how humans perceive the world, and if
expectations are not properly managed, then even truly human-level intelligent behavior
might be perceived as incompetent and decidedly nonhuman.

is chapter aims to accomplish two things. To start, we will explain why it is sci
enti cally possible to trick players into believing there is real intelligence. en, we
will look at six concrete ways to perpetuate the illusion of intelligence in the eyes of
the player.



1.2 Why the lllusion Works

ere are three things that work to make players very susceptible to the illusion. First,
players want to believe that there are glimmers of real human-level intelligence in their
games. Second, humans have this desire to anthropomorphize nonhuman entities, seeing
human traits and emotions where there are none. ird, expectations can easily become
reality in the mind of the player.

1.2.1 Players Want to Believe

We have the perfect audience to make this work. e players want to believe—in fact,
they are willing participants in the illusion. ey want to believe that the fake video game
characters have human-like qualities. e players are incredibly forgiving as long as the
virtual humans do not make any glaring mistakes. Players simply need the right clues and
suggestions for them to share and fully participate in the deception.

1.2.2 Eagerly Ready to Anthropomorphize

When people talk about a thing or creature as if it were human, they are anthrepomor
phizing it. Anthropomorphism appears to happen naturally as we see things all around us
that remind of human traits, emotions, or intentions. Your computer hates you, your car
is temperamental, and your recently picked owers are starting to look sad.

One theory put forth by neuroscientists is that similar parts of the brain are involved
when we think about both human and nonhuman entities (Gazzola et al. 2007). is sug
gests that anthropomorphism is the result of using similar processes as when we think
about people. It is a sort of a misattribution e ect that is perhaps hardwired into our
brains.

Another theory is that when people try to understand incomprehensible behavior, they
0 en apply familiar human traits to make sense of the situation (Waytz et al. 2010). So
when a human-like entity in a game exhibits any kind of behavior, human-like traits are
the rst template we try to apply. How can we understand this behavior? Well, let us try
applying human behavior and see if that explains what we are seeing. When this happens,
the confounding of actual human intelligence with Al is greatly enhanced.

And here we are, as video game developers, presenting human-looking avatars that
animate, move, and speak similar to humans. Anthropomorphism is a welcome e ect that
encourages the illusion.

1.2.3 The Power of Expectations

Expectations powerfully control how we experience the world. For example, if you believe
a bottle of wine is very expensive, you will not only think the wine tastes better, but your
actual enjoyment will be more. Researchers at Caltech and Stanford presented people with
a 45 bottle of wine and & bottle of wine. Using brain-imaging techniques, they found
that the human brain actually experiences more pleafieme the participants believed
they were drinking the expensive wine versus the cheap wine, even though both were
the same (Plassmann et al. 2008). is is not people reporting that the wine was tastier—
neurologically, the brain actually experienced more pleasure.

Similarly, the placebo e ect is a real phenomenon in humans that likely works on the
same mechanism of expectations. A pladsb® medically ine ective treatment for a

1. e lllusion of Intelligence



medical condition that is intended to deceive the patient. If we give a person this ine ec
tive treatment, the person will o en have a perceived or actual improvement. is is called
the placebo e eadr placebo respon®rain-imaging techniques have shown that placebo
causes real physiological changes in the brain that are measurable (Lieberman et al. 2004).
e e ect is attributed to the perceptions and expectations of the patient (Kirsch 1985).
Clearly, expectations can have a powerful e ect on what we experience. is further
emphasizes that managing player expectations can have a signi cant e ect on promoting
the illusion of intelligence.

1.3 Selling the lllusion

Now that we understand why the illusion works and how it is reinforced, our goal is to
further encourage and nurture the illusion. is can be done through expectations and
performance.

1.3.1 Promoting the Quality of the Al

One simple way to manage expectations is to simply tell the player about the strengths of
the Al. Over the years, several games have chosen to tout the quality of their game’s Al in
press releases, interviews, and box art.

A positive example of this is from 2006 when the game e Elder Scrolls IV: Oblivion
heavily promoted their Radiant Al system, which was subsequently used on e Elder
Scrolls V: Skyrintallout 3 Fallout: New Vegaand Fallout 4Similarly, the series Le 4
Deadlet players know that an Al director was helping cra the tension and experience.
When players have heard about or can even name the technology behind the game, then
that is evidence it could be really good.

An example where this did not work out as well was Madden NFL 98 that bragged
in a press release about their liquid Al system used to make their video football players
move and ow like water. is partly back red due to the weak analogy, since water is
not very intelligent. However, the worst blowback came from a competing football game,
NFL GameDay 98hat snidely commented in a Next Generation magazine interview that
“Liquid Al is the stu that ran down EA's leg when they saw Gamé&Day

A subtle use of managing expectations is to use hints during loading screens to high
light aspects of the Al. If the Al is considering several aspects to make a particular deci
sion, perhaps mention this to the player as part of a tip. It will make the player more aware
of how the Al is responding, and it might make both the Al and the game seem more
interesting.

If your game is doing something truly remarkable, then there might be value in let
ting players know. However, you need to be con dent that you can deliver and not have it
back re.

1.3.2 Perform with Animation and Dialog

e Al must give the performance of its short lifetime if it wants to impress. e chief way

this is done is through subtle animation and dialog. Unfortunately, this is frustrating for
most game Al programmers because they do not directly create the animations or the dia
log. e best they can do is make compelling arguments to management that these assets
should be created. However, this is so important that it really does need to become a priority.
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To understand how important this is, let us work through a very short thought experi
ment. Imagine all of the ways that the player comes to understand and experience an Al
character. Let us call this tliecabularyof the Al. e vocabulary consists of every dia
log clip, every grunt, every animation, every movement, and every interaction. Imagine
that an Al character had only two sound clips (an attack grunt and a death cry) and had
only four animations (idle, walk, attack, and die). e vocabulary of this particular Al
is severely stunted, ironically, with the most interesting behavior happening when it
dies. ere is virtually no way you can convey a deeply intelligent Al with such a limited
vocabulary.

Fortunately, one way to programmatically add to an Al's vocabulary is with the
head look. If the Al's head and gaze can be controlled directly, then you as an Al
programmer can wield great power. With head control, you now have the ability for
the Al to notice things, compare objects in the environment, anticipate actions, and
truly seem aware. Let us illustrate this with a simple scenario. An Al has two enemies
to fight: left bad guy and right bad guy. After running a complex evaluation, the Al
decides it is best to fight the left bad guy. Fighting ensues, but the problem is that the
subtleties of the decision were both instantaneous and hidden. However, what if the
Al spends a second looking at each enemy and sizes them up before attacking the left
bad guy. What if during the fight with the left bad guy, the Al occasionally looks back
at the right bad guy to keep an eye on him. This can telegraph deep intelligence to the
player for something that the Al instantaneously chose and is no longer concerned
with. However, it is the showmanship of the situation that will convey a conscious and
relatable Al character.

Another element of animation that programmers have control over is speed. Fast
movements convey being upset, agitated, confused, and nervous. Slow movements convey
being relaxed, calm, and in control over the situation. ese are all very human adjectives
that we might want the player to liberally apply to our Al characters.

In the right situation, one of the best reactions to play might be one that is completely
ambiguous. Consider this stroke of genius from the 2005 game Fat&deadgethere
were two Al characters who would respond to free-form text entered by the player.
When the Al inevitably did not understand a player statement or knew that the state
ment was of questionable moral content, one of the Al characters might respond simply
with a raised eyebrow. e genius of this choice is that the interpretation is le up to the
player, because it is an ambiguous reaction. However, it is the perfect time for the player
to project all kinds of human properties and thought processes onto the Al, furthering
the illusion.

One of the truly great secrets in game Al is to use dialog between Al characters to
emphasize and sell the intelligence. e rst prominent example of this was in F.E.A.R.
where pursuing Al guards would converse with each other, remarking, “Where did the
player go?” and responding with, “He is behind the boxes!” All of a sudden, not only
were the guards hunting down the player, but they were working together! e surpris-
ing thing was that this was all smoke and mirrors. An Al module simply monitored
what was happening and called for these dialog moments as they t the moment (Orkin
2015). It is a great technique that has been used many times since in games such as

e Last of Us.
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1.3.3 Stop Moving Like a Robot

Although it is crucial to have an adequate vocabulary, the quality of the movement is the
other aspect that needs careful attention. If the Al movement is not smooth and lifelike,
then the illusion will start to wear thin.

is is where knowledge of animation techniques, such as anticipation, ease-in, and
ease out, can really help. Your goal is to make the movement uid and credible. Work to
identify jarring movements and eliminate them. Discontinuous movement is incredibly
unnatural and draws attention to the inauthenticity of the situation. Be very sensitive to
this when there are collisions. Sometimes, it is much better to brie y allow object penetra
tion, thus avoiding hard collisions and discontinuous movement.

Reaction times are another key area that has the potential to destroy the illusion.
Humans are incapable of instantaneous reaction. e fastest a hyperfocused human can
react is 0.2 seconds with mental comparisons requiring a bare minimum of 0.4 seconds
(Rabin 2015). Use these times as the baseline to always delay the results of a decision.
However, realize that distracted or unfocused characters would have much longer reac
tion times.

A nal aspect of movement that should be mentioned is that your Al should step pur
suing the player relentlessly, similar to a terminator. Intelligent creatures sometimes stop,
they re ect, they hesitate, they reconsider, they second-guess themselves, they size up
their opponent, and they pause. Movement is an indication of deeper thought processes,
and variations in movement can convey all of these thoughts and more. In addition, ene
mies that temporarily back o are much more enjoyable adversaries. is is an old advice
that was well known even during the early 1980s, as shown by the wave-patterned attack/
retreat behavior of ghosts in Pac-Man

1.3.4 Have a Reason to Exist

Al characters need to stop standing around waiting for the player to approach. Characters
with nothing to do are a clear signal that the Al is fake and has no real purpose-Al char
acters should have a reason to exist beyond the player.

For each Al character, this can be as simple as guring out their backstory, and why
they are in their current situation. What is their agenda for today? By giving each Al its
own motivations (beyond its interactions with the player), it can make each character feel
more connected to the game world. A er all, the game world is their home and reality. If
it makes sense, it will be much more natural and realistic to the player.

1.3.5 Project a Strong Personality

Personality is the culmination of all the properties of an intelligent character. It implies
the entire existence of the character up until the point you interact with it: where it was
born, how it grew up, and how it interacts with its reality. It exudes emotions, motives,
purpose, and competence. Personality implies incredible depth and authenticity.

Because personality has such power and in uence, a carefully cra ed personality can
convincingly convey there is something beneath the surface of your characters, whether
there is or not. Personality can be used as a shell around your character to imply humanis-
tic qualities that are simply an illusion. How you leverage this tool can completely change
how your players feel about the game.

1.3 Selling the Illusion



In addition, a strong personality goes a long way to covering up any inconsistencies in
the behavior or logic of a character. Strong personalities can be irrational and unpredict
able, allowing incredible leeway in how players might critique their actions.

1.3.6 React Emotionally on Demand

Some programmers have this weird obsession with trying to get game Al to simulate emo
tions. is seems to stem from the belief that if an Al was truly sad, angry, or happy, then
maybe it might nally convince players that some deep kind of intelligence was actually
there. is can be equated to the practice of method acting, where an actor will immerse
themselves in the character, and through this process, it is hoped that authenticity will
emanate out of their performance. It seems to be an unfounded belief that if an Al truly
feels emotions, perhaps it will pervade the Al's behavior, and maybe the player will notice.

Without simulating everything that makes up human-level intelligence, this approach
for the purposes of games appears misguided. e more straightforward approach would
be to directly convey emotions as directly demanded by the situation and the environ
ment. For example, if surrounded by overwhelming forces, fear would be a good emotion
to directly convey. Fear does not need to emanate from a simulation within the character;
it can be directly shown through dialog and animation when the situation calls for it. If a
creature calculates that it is doomed, it should give a performance that matches the situa
tion, conveying a fear of death.

Players can only see an Al’s behavior, not what is being simulated. If you want to make
an Al appear emotional, then directly show that speci ¢ emotion in the correct situations.
is can have a dramatic e ect on how the player feels toward the Al.

1.4 Conclusion

In this chapter, we looked at the importance of promoting the illusion of intelligence. It is
not enough for game Al characters to actually have intelligence, but there is a need and
obligation to actively sell the illusion. Luckily, there are many things helping us out, such
as players who are willing participants, unconscious anthropomorphism, and the power
of setting expectations.

Fortunately, there are many levers that we have in order to promote the illusion of
intelligence. We covered six main areas: promoting the quality of the Al, perform with
animation and dialog, stop moving like a robot, have a reason to exist, project a strong
personality, and react emotionally on demand. With many of these tricks up your sleeve,
you should not only be able to sell the illusion, but master it.
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2.1 Introduction

Randomness plays an important role in many games by adding replay value and forc
ing the player to adapt to unpredictable events. It o en takes the form of variables with
values that change gradually but randomly with time and hence perform what are tech
nically known as random walks. Such variables might affect visibility or cloud cover
in a weather simulation, the mood of an NPC, the loyalty of a political faction, or the
price of a commodity. is chapter will describe the statistical properties of normally
distributed random walks and will show how they can be shaped and manipulated so
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that they remain unpredictable while also being subject to scripted constraints and
responsive to player interaction.

We begin by describing how to generate a simple random walk and discuss some of its
limitations. We then show how to overcome those limitations using the walk’s statistical
properties to e ciently sample from it at arbitrary points in its past and future. Next,
we discuss how to x the values of the walk at speci ¢ points in time, how to control the
general shape of the movement of the walk between them, and how to limit the walk to
a speci c range of values. Finally, we describe how to generate random walks with arbi
trary probability distributions and to allow for player interaction. e book’s web site
contains spreadsheets and Csource code for all the techniques that are described in
this chapter.

2.2 Problems with a Basic Random Walk

One simple way to generate a random walk is to initialize a variabletsapme desired
starting value i and then, on each step of the simulation of the game world, add a sample
from a normal distribution (a bell curve). is process is fast and e cient and produces
values of x that start af and then randomly wander around, perhaps ending up a long
way from the starting point or perhaps returning to a point close to it.

is approach is not without its problems, however. For example, how can we work
out what the value of x will be two days from now? Equivalently, what value should x be
at right now, given that the player last observed it having a particular value two days ago?
Perhaps we are simulating the prices of commodities in a large procedurally generated
universe, and the player has just returned to a planet that they last visited two days ago.
is is the problem of extrapolating a random walk.

2.3 Solving the Extrapolation Problem Using Statistical Methods

One way to solve the extrapolation problem is to quickly simulate the missing part of the
random walk. However, this might be computationally infeasible or undesirable, particu-
larly if we are modeling a large number of random walks simultaneously, as might be the
case if they represent prices in a virtual economy. Fortunately, we can use statistical meth
ods to work out exactly how x will be distributed two days a er it was last observed based
only on the last observed value. Speci cally, the central limit theorem tells us that if x had
the value xat time ¢, then at time,tx will be distributed as

PXx N Xt ty % (2.2

is is a normal distribution with the following two characteristics: it has megnwhich

is the last observed value; and variahcetf) 2,, wheret t,is the time since the last
observation; and 2, is a parameter that controls how quickly the walk can wander away
from the starting point. In fact, since the distribution is normal, we know that x will lie

in a range of approximateks 1.96./(t to) 2 about 950f the time. Figure 2.1a shows
a random walk generated using Equation 2.1 wjtkgual to 90 and?, equal to one.
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Figure 2.1

(@ shows 250 steps of a random walk generated using the extrapolation equation and
(b) shows the effect of increasing 2

Figure 2.1b shows how increasing the value2pfo ve makes the walk wander about
much more rapidly.

Of course, we need to select a speci ¢ value,fand that can be done by sampling
from p(x). Although this produces a value of x that is technically not the same as the
one that would have been produced by simulating two days’ worth of random walk, it is
impossible for the player to tell the di erence because the true value and the sampled
value have identical statistical properties given the player’s limited state of knowledge
about how the numbers are generated.

Equation 2.1 actually provides us with a much better way of generating random walks
than the naive approach that was mentioned earlier. In particular, becatygepresents
the time between successive samples, it allows us to update the random walk in a way that
is invariant to changes in the real times of steps in the simulation of the game world; the
statistical properties of the walk will remain the same even if the times between updates
are irregular or di erent on di erent platforms.

To generate a random walk using Equation 2.1, rst pick an initial valugffaruse in
p(x), and then sample from(¥) to get the next value,.xe value x , can then be used in
place of xin p(x), and % can be sampled fron{®). Next, use xin place of xin p(x) and
samplex;, and so on. In each case, the time interval should be the time between the obser
vations of the random walk and hence might be the times between updates to the game
world but might also be arbitrary and irregular intervals if the player does not observe the
value of the walk on every tick of the game engine.

An interesting feature of Equation 2.1 is that it is time reversible and hence can be used
to generate values of x in the past just as easily as ones in the future. Consider if a player
visits a planet for the rst time and needs to see a history of the price of a commaodity.
Equation 2.1 can be used to generate a sequence of samples that represent the price his-
tory. is is done in exactly the same way as when samples are generated forward in time
except that xwould be interpreted as precedingx would be interpreted as preceding
X3, and so on.

Although having the ability to extrapolate random walks forward and backward in
time is extremely useful, we o en need to do more. What happens, for example, if the
player has observed the value of a variable but we need to make sure that it has some other
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speci ¢ value in one hour from now? is situation might arise if a prescripted event is
due to occur—perhaps a war will a ect commodity prices, or there will be a thunderstorm
for which we need thick cloud cover. Since we now have two xed points on the walk—the
most recently observed value and a speci ed future value—it is no longer good enough to
be able to extrapolate—we must interpolate.

2.4 Using Interpolation to Walk toward a Fixed Point

Now that we can generate samples from a random walk that are consistent with a single
xed value, we have everything we need to interpolate between two xed values—we just
need to generate samples that are consistent with both. We do this by calculating-the prob
ability distributions for x with respect to each of the xed values and then multiply them
together. As Equation 2.1 represents a normal distribution, we can write down the prob
ability distribution for interpolated points quite easily:

D X ~N Xo Xn 1 1
tto & th t & toto & tat A

1 1
1 2 2
t t0 XX tn t XX

Herex, is the rst speci ed value, which occurs at titgex,, is the second, which occurs
att,; and x is the interpolated value of the walk at any tirAs before, in order to obtain
a speci ¢ value forxve need to sample from this distribution. Interpolated values of x are
guaranteed to start af &t time §, to randomly wander around betwegrahd t, and to
converge to xat time t. Interpolation therefore makes it possible to precisely determine
the value of the walk at speci ¢ points in time while leaving it free to wander about in
between.

To generate a walk using Equation 2.2, ysn® % to sample from p{ to generate
the next value of &and %. Next, use xin place of xand sample again from¥)(o gener
atex,, and so on—this can be done either forward or backward in time. e interpolation
equation has fractal properties and will always reveal more detail no matter how small
the interpolated interval. is means that it can be applied recursively to solve problems
like allowing the player to see a 25-year history of the price of a particular commodity
while also allowing him to zoom in on any part of the history to reveal submillisecond
price movements.

2.2)

2.5 Restricting the Walk to a Fixed Range of Values

One potentially undesirable feature of the random walk that has been described so far is
that, given enough time, it might wander arbitrarily far from its starting point. In practice,
however, we usually want it to take on some range of reasonable values, and this can eas
ily be done by adding a statistical constraint that speci es that the values of x must, over
an in nite amount of time, follow a particular probability distribution. If we choose a
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normal distribution with mean xand variance ?to keep the math simple, the equation
for extrapolating becomes

X X 1 1 1 1
px N —2 & ) —— 51— = (2.3
t t0 XX t to XX t tO XX

and the equation for interpolating becomes

Xo X Xn
t to 2 2 ¢, t 2
p x~N 0 " , 1 3 —12 71 3 (2.9
1 71 1 t tO XX tn t XX
tto % 2 tht &

A walk generated according to these equations is subject to a so bound in the sense that
it will lie in the rangex 1.9 about 950f the time but will occasionally wander

a little further, exceeding 6.]_1\/_ with a probability of less than one in a billion.
Figure 2.2a shows a random walk generated according to Equation 2.3agjttakto 90

and ?equalto 100.

If it is necessary to be absolutely certain that the walk will stay between xed bounds, then
it is better to use the unconstrained extrapolation and interpolation equations and postpro
cess the values they generate. If this is done by re ecting the walk o the bounds whenever
it encounters them, the walk will retain the important statistical property that its behavior
is invariant to the time steps that are used to generate it. To see how this works in practice,
consider generating a random walk that must be constrained to lie between zero and one.

is can be done by generating a dummy variableusing the unconstrained extrapo
lation and interpolation equations but presenting a valde the player that is derived
according to the following rules:

if floor(x ") is even then x=x * floor(x M)
otherwise x=1 x “+floor(x 7).

120 1.0
110 0.8
100 A

0.6
W \ p’\n/ W (Wi
o N Z';‘V‘W Coh g
70 : V\I WM' \[W’\\M
(6)01 51 101 151 201 251 (Ob?l 51 101 151 201 251

Figure 2.2

(@) shows a random walk that is soft bounded to have a normal distribution with X =90 and
*2 =100 and (b) shows a random walk that is hard bounded to lie between zero and one.

2.5 Restricting the Walk to a Fixed Range of Values
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x will perform the required random walk between the bounds zero and one, and in the
long term will tend toward a uniform distribution. Figure 2.2b shows a random walk
between the bounds zero and one that was generated using this technique. If we simply
requirex to be nonnegative, it is su cient to take the absolute value; afoing so will
produce a random walk that is always nonnegative that will also, in the long term, tend
toward a uniform distribution.

2.6 Manipulating and Shaping the Walk with Additive Functions

We have so far described how a random walk can be manipulated by using the interpola
tion equation with one or more xed points. Interpolation guarantees that the walk will pass
through the required points but it gives us no control over what it does in between—whether it
follows roughly a straight line, roughly a curve, or makes multiple sudden jumps. Sometimes
we want exactly that kind of control, and one way to achieve it is simply to add the random
walk to another function that provides the basic form of the walk that we want. In this way,
the random walk is just adding random variability to disguise the simple underlying form.
Consider a game where we have a commodity with a price of 90 credits that must rise to
110 credits in one hour from now. We could simply do this by using the interpolation equa
tion and letting the walk nd its own way between the two xed price points, as shown in
Figure 2.3a. Alternatively, we could choose a function that starts at 90 credits and rises to

120 120

110 iadiieaN 110 A

100M M 100 n W
20

80 80
70 70
1 51 101 151 201 251 1 51 101 151 201 251
(a) (b)
120 120
110 Apnn 110 _Na /\/w\k JENN

-/
80 80
70~ . T . + . + . T . + 70~ . - . T . T . T . +
1 51 101 151 201 251 1 51 101 151 201 251
(c) (d)
Figure 2.3

(@) shows the result of using the basic interpolation equation to generate a random walk
from 90 to 110 in 250 steps, (b) shows the result of using a linear function to shape the walk,
(c) shows the result of using the smoothstep function, and (d) shows the result of using the
quarter circle function.
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110 credits and provides us with the basic shape of the movement we want and add to it a
random walk that is bounded by the interpolation equation to start and end at zero.

For example, we might want the price to move roughly linearly between the xed points
so we would use the linear function

x 901 t 11Q (2.5)

to provide the basic shape. Here, for convenience, t has been scaled so that it has the value
zero at the start of the hour and one at the end. By adding the random walk to values of
x generated by this formula and using the interpolation formula to generate the random
walk in such a way that it starts and ends at zero, the sum of x and the random walk will be
90 at the start of the hour, 110 at the end, and move roughly linearly in between but with
some random variation, as shown in Figure 2.3b.

Of course, we do not always have to use a linear function to provide the basic form.
Other useful functions are the step function, which produces a sudden jump, the smooth
step function

x 90 203t2 2° (2.6)

which provides a smoothly curving transition, and the quarter circle function

x 90 2Q/1 1t°? 2.7)

which rises rapidly at rst and then levels out. Random walks based on the smoothstep
and quarter circle functions are shown in Figure 2.3c and d respectively.

2.7 Using Additive Functions to Allow for Player Interaction

We now know how to extrapolate and interpolate random walks and bend and manipu
late them in interesting ways, but how can we make them interactive so that the player
can in uence where they go? Fortunately, player interaction is just another way in which
random walks are manipulated and hence all of the techniques that have already been
described can be used to produce player interaction.

For example, the player might start a research program that producesed2gtion
in the basic cost of a particular weapon class over the course of 15 minutes. is e ect
could be produced by simulating the price using a random walk with zero mean added
to a function that represents the average price, which declines byu2ig the course
of the research program. is will produce a price that randomly wanders around but is
typically 25 lower once the research program has completed than it was before it was
started.

Similarly, a player might sell a large quantity of a particular commodity, and we might
want to simulate the e ect of a temporary excess of supply over demand by showing a
temporary reduction in its price. is could be done either by recording an observation
of an arti cially reduced price immediately a er the sale and generating future prices by
extrapolation or by subtracting an exponentially decaying function from the commodity’s
price and allowing the randomness of the walk to hide the function’s simple form.

In the case of the research program, we must permanently record the action of the
player, and its e ect on price because the e ect was permanent. In the case of the excess
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of supply over demand, the e ect is essentially temporary because the exponential decay
will ensure that it will eventually become so small that it can be ignored, at which point
the game can forget about it unless it might need to create a price history at some point in
the future.

2.8 Combining Walks to Simulate Dependent Variables

We have so far discussed how to generate independent random walks and provided a
simple set of tools for controlling and manipulating them. In practice, we might need to
generate random walks that are in some way related: perhaps we need two random walks
that tend to go up and down at the same time, or one that tends to go up when another
goes down or vice versa. ese e ects can easily be achieved by adding and multiplying
random walks together and through the use of dummy variables.

Imagine that we need to simulate the prices of electronics and robotics products. Since
electronics products are a core component of robotics products, we would expect the price
of robotics products to increase if the price of electronics products increased—>but not for
either price to track the other exactly. is e ect can be achieved by modeling the price of
electronics products using a random walk and then using another random walk to model
a dummy variable that represents either the di erence in the prices of electronics and
robotics products or their ratio.

If we decide to use a dummy variable to represent the di erence between the prices, we
could use a random walk with anof 100 and 2 of 100 to model the price of electronics
products and a walk with >of 25 and 2 of 100 to model the di erence in the price of
electronics products and robotics products. Since the price of robotics products would be
the sum of the values of these two random walks, it would itself be a random walk, and it
would have an »f 125 and an 2 of 200 and would tend to increase and decrease with the
prices of electronics products, as shown in Figure 2.4.

Combinations of random walks can be made arbitrarily complex. e price of a space
cra , for example, could be a weighted sum of the prices of its various components plus
the value of a dummy variable that represents the deviation of the actual sale price from
the total cost of its components. In general, if a random walk is formed by a sum of N
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Figure 2.4

The lower random walk has x *=100and " =100 and represents the price of electronics
products. The upper random walk is the sum of the lower random walk and another with
X' =25and " =100 and represents the price of robotics products.
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component random walks, x.x, with means x...x  and variances ... 2, which
have weights w.wy in the sum, it will have mean

N

X WhXp (2.8)
and variance

2 w2 2 (2.9

ni

It could be the case that the player can observe the values of all, some, or none of the
components in the sum. We might, for example, want to make the prices of a commaodity
in a space simulation more similar in star systems that are closer together, and one way
to do that is to use a dummy variable in each system to represent a dummy price that the
player cannot observe. e price that the player would see in any particular system would
then be the weighted sum of the dummy prices of neighboring systems with larger weights
being assigned to closer systems. It is interesting to note that if one of the components in
Equation 2.8 has a negative weight, then it produces a negative correlation; that is, when its
value increases, it will tend to reduce the value of the sum. is can be useful when walks
represent mutually competing interests such as the strengths of warring empires.

2.9 Generating Walks with Different Probability Distributions

If arandom walk is generated according to the so -bounded extrapolation equation, the
values it takes will, over a long period of time, have a normal distribution with mean x
and variance 2. is is perfect for most applications, but we will occasionally want to
generate a walk with a di erent distribution. For example, share prices have been mod
eled using log-normal distributions, and we can easily generate a log-normally-distrib
uted random walk by interpreting the extrapolation equation as modeling the natural
logarithm of the share price and producing the actual price by applying the exponential
function.

More generally, the inverse transformation method is o en used to convert a random
variable that is uniformly distributed between zero and one to another random variable
with a particular target distribution by applying a nonlinear transformation. For example,
taking the natural logarithm of a random variable that is uniformly distributed between
zero and one produces a random variable that has an exponential distribution that can be
used to realistically model the times between random events.

Although the random walks that have been described in this chapter have normal dis
tributions, they can be made uniformly distributed by hard bounding them to a xed
interval, as was described earlier, or by transforming them using the cumulative normal
distribution function. Speci cally, if a sample x from a random walk has mesmdxvari
ance 2, we can compute the variable

y Fx,x, 2 (2.10)
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whereF is the cumulative normal distribution function. e variable y will be uniformly
distributed between zero and one and hence can be used with the inverse transformation
method to generate random walks with a wide range of distributions. For example, a lin
ear transformation of y can be used to produce a random walk that is uniformly-distrib
uted over an arbitrary range of values, while taking the natural logarithm produces a walk
with an exponential distribution. It should be noted that, when the inverse transformation
method is used to change a random walk’s distribution, the sizes of the steps taken by the
walk will not be independent of its value. A walk that is bounded by the inverse transfor
mation method to lie in the range zero to one, for example, will take smaller steps when its
value is close to its bounds than when it is far from them.

2.10 Solving the Persistence Problem with Procedural Generation

At the heart of a computer-generated random walk lies a random number generator that
can be made to produce and reproduce a speci ¢ sequence of numbers by applying a seed.
By recording the seed values that were used in constructing parts of a random walk, those
parts can be exactly reconstructed if and when required. For example, if a player visited a
planet for the rsttime and looked at the history of the price of a commodity over the last
year, that history could be created by seeding the random number generator with the time
of the player’s visit and then applying the extrapolation equation backward in time. If the
player returned to the planet a couple of months later and looked at the same history, it
could easily be reconstructed based only on the original seed, and hence the history itself
would not need to be stored. is is a major bene t, particularly in large open world games
that contain many random walks with detailed and observable histories.

2.11 Conclusion

is chapter has provided a selection of simple but powerful techniques for generating
and manipulating random walks. e techniques make it possible to exploit the unpre
dictability and replay value that randomness adds while also providing the control that

is necessary to allow it to be both scripted and interactive when necessary. Spreadsheets
and C classes that demonstrate the key concepts that are described in this chapter have
been provided to make it as easy as possible to apply them in practice.
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