Skip to content

hemingkx/SpecDec

Repository files navigation

Speculative Decoding

Introduction

This repository contains the code used to reimplement our paper: Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation.

SpecDec

Download model

Description Model
wmt14.en-de ar-verifier-basenar-drafter-base (k=25)
wmt14.de-en ar-verifier-basenar-drafter-base (k=25)
wmt16.en-ro ar-verifier-basenar-drafter-base (k=25)
wmt16.ro-en ar-verifier-basenar-drafter-base (k=25)

Requirements

  • Python >= 3.7
  • Pytorch >= 1.5.0

Installation

conda create -n specdec python=3.7
cd SpecDec
pip install --editable .

Preprocess

The datasets we used can be obtained following the script released by Mask-Predict. We release the bpe codes and our dicts in ./data. The tokenized datasets are preprocessed as follows:

text=PATH_TO_YOUR_DATA
src=source_language
tgt=target_language
bin_path=PATH_TO_BIN_DIR

model_path=PATH_TO_MODEL_DICT_DIR

fairseq-preprocess --source-lang ${src} --target-lang ${tgt} \
    --trainpref $text/train --validpref $text/valid --testpref $text/test \
    --destdir ${bin_path} --workers 60 \
    --srcdict ${model_path}/dict.${src}.txt \
    --tgtdict ${model_path}/dict.${tgt}.txt

Encoder Initialization

We recommend using the AR verifier's encoder to initialize the weights of the NAR drafter. For preparing the initialization checkpoints, check encoder_initial.py.

Train

The AR verifier of SpecDec is a standard Transformer that can be trained with fairseq:

fairseq-train ${bin_path} --arch transformer --share-all-embeddings \
      --task translation --source-lang ${src} --target-lang ${tgt} \
      --criterion label_smoothed_cross_entropy --dropout ${dropout} \
      --label-smoothing 0.1 --lr ${lr} --clip-norm 3.0 \
      --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt \
      --weight-decay 0.00001 --update-freq ${update_freq} --fp16 --seed ${seed} \
      --warmup-updates ${warmup} --optimizer adam \
      --adam-betas '(0.9, 0.98)' --max-tokens ${max_tokens} --max-epoch ${max_epoch} \
      --save-dir ./checkpoints \
      --eval-bleu \
      --eval-bleu-args '{"beam":5}' \
      --eval-bleu-detok moses \
      --eval-bleu-remove-bpe \
      --eval-bleu-print-samples \
      --best-checkpoint-metric bleu --maximize-best-checkpoint-metric

For training the NAR drafter of SpecDec (check train.sh):

python train.py ${bin_path} --arch block --noise block_mask --share-all-embeddings \
    --criterion glat_loss --label-smoothing 0.1 --lr ${lr} --warmup-init-lr 1e-7 \
    --stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates ${warmup} \
    --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 \
    --task translation_lev_modified --max-tokens ${max_tokens} --weight-decay 0.01 \
    --dropout ${dropout} --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 \
    --decoder-embed-dim 512 --fp16 --max-source-positions 1000 \
    --max-target-positions 1000 --max-update ${update} --seed ${seed} --clip-norm 5 \
    --save-dir ./checkpoints --src-embedding-copy --log-interval 1000 \
    --user-dir specdec_plugins --block-size ${size} --total-up ${update} \
    --update-freq ${update_freq} --decoder-learned-pos --encoder-learned-pos \
    --apply-bert-init --activation-fn gelu \
    --restore-file ./checkpoints/initial_checkpoint.pt \
    --reset-optimizer --reset-meters --reset-lr-scheduler --reset-dataloader

Hyperparameters

The hyperparameters of the NAR drafter are shown as follows:

Hyperparameters \ Datasets WMT14 EN-DE WMT16 EN-RO
learning rate 0.0005 0.001
dropout 0.1 0.2
warm up 10000 4000
max update 300K 50K
batch size (tokens) 128K 64K

the effective batch size of tokens is calculated by GPU_NUM * MAX_TOKENS * UPDATE_FREQ.

Inference

For SpecDec (check inference.sh, set beta=1 for identical results to AR greedy decoding):

python inference.py ${data_dir} --path ${checkpoint_path} --user-dir specdec_plugins \
    --task translation_lev_modified --remove-bpe --max-sentences 20 \
    --source-lang ${src} --target-lang ${tgt} --iter-decode-max-iter 0 \
    --iter-decode-eos-penalty 0 --iter-decode-with-beam 1 --gen-subset test \
    --AR-path ${AR_checkpoint_path} --input-path ${input_path} \
    --output-path ${output_path} --block-size ${block_size} --beta ${beta} --tau ${tau} \
    --batch ${batch} --beam ${beam} --strategy ${strategy}

We test the inference latency of SpecDec with batch 1 implementation, check inference_paper.py for details.

check inference_drafter.py for inference with our NAR drafter only.

Calculating compound split bleu:

./ref.sh

Example

We put the first three tokenized sentences of WMT14 EN-DE in data/wmt14.en-de/example.en. Put this file in the input_path of the inference script. The results below were obtained by running inference.sh with inference_paper.py (on 1 Nvidia P100 GPU, Pytorch 1.10, CUDA 11).

Model Accepted Tokens (average) Latency (s)
Fairseq (beam5) 1.00 0.83
Fairseq (beam1) 1.00 0.81
SpecDec 6.18 0.27

You can find the translation results in ./output.

Extra Memory Cost

Since there is no need to save intermediate variables during inference, SpecDec can achieve 3x~5x decoding speedup (by alternating NAR and AR decoding) with only ~300MiB of extra memory cost. Below is the nvidia-smi memory cost comparison of AR and SpecDec, tested on WMT14 EN-DE:

Model \ Batch Size Model States (Params) 1 4 8 16 32
Fairseq (beam1) 232.38 1670 1712 1758 1844 2028
SpecDec 469.75 (AR + NAR) 1902 1938 2012 2108 2298
Extra Memory 237.38 (NAR) 232 226 254 264 270

Note

This code is based on GLAT (https://github.com/FLC777/GLAT).

Citation

If you find the resources in this repository useful, please cite our paper:

@inproceedings{xia-etal-2023-speculative,
    title = "Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation",
    author = "Xia, Heming  and
      Ge, Tao  and
      Wang, Peiyi  and
      Chen, Si-Qing  and
      Wei, Furu  and
      Sui, Zhifang",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-emnlp.257",
    pages = "3909--3925",
}

About

Codes for our paper "Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation" (EMNLP 2023 Findings)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages