# hemmecke/fricas

Switch branches/tags
Nothing to show
Fetching contributors…
Cannot retrieve contributors at this time
192 lines (151 sloc) 6.57 KB
 )if false \documentclass{article} \usepackage{axiom, amsthm, amsmath, amsfonts, url} \newtheorem{ToDo}{ToDo}[section] \newcommand{\Axiom}{{\tt Axiom}} \begin{document} \title{dirichlet.spad} \author{Martin Rubey} \maketitle \begin{abstract} The domain defined in this file models the Dirichlet ring, \end{abstract} \tableofcontents \section{The Dirichlet Ring} The Dirichlet Ring is the ring of arithmetical functions $$f : \mathbb N_+ \rightarrow R$$ (see \url{http://en.wikipedia.org/wiki/Arithmetic_function}) together with the Dirichlet convolution (see \url{http://en.wikipedia.org/wiki/Dirichlet_convolution}) as multiplication and component-wise addition. Since we can consider the values an arithmetic functions assumes as the coefficients of a Dirichlet generating series, we call $R$ the coefficient ring of a function. In general we only assume that the coefficient ring $R$ is a ring. If $R$ happens to be commutative, then so is the Dirichlet ring, and in this case it is even an algebra. Apart from the operations inherited from those categories, we only provide some convenient coercion functions. )endif )abbrev domain DIRRING DirichletRing ++ Author: Martin Rubey ++ Description: DirichletRing is the ring of arithmetical functions ++ with Dirichlet convolution as multiplication DirichletRing(Coef : Ring): Exports == Implementation where PI ==> PositiveInteger FUN ==> PI -> Coef Exports ==> Join(Ring, Eltable(PI, Coef)) with if Coef has CommutativeRing then IntegralDomain if Coef has CommutativeRing then Algebra Coef coerce : FUN -> % coerce : % -> FUN coerce : Stream Coef -> % coerce : % -> Stream Coef zeta : constant -> % ++ zeta() returns the function which is constantly one multiplicative? : (%, PI) -> Boolean ++ multiplicative?(a, n) returns true if the first ++ n coefficients of a are multiplicative additive? : (%, PI) -> Boolean ++ additive?(a, n) returns true if the first ++ n coefficients of a are additive Implementation ==> add Rep := Record(function : FUN) per(f : Rep) : % == f pretend % rep(a : %) : Rep == a pretend Rep elt(a : %, n : PI) : Coef == f : FUN := (rep a).function f n coerce(a : %) : FUN == (rep a).function coerce(f : FUN) : % == per [f] indices : Stream Integer := integers(1)$StreamTaylorSeriesOperations(Integer) coerce(a : %) : Stream Coef == f : FUN := (rep a).function map((n : Integer) : Coef +-> f(n::PI), indices)$StreamFunctions2(Integer, Coef) coerce(f : Stream Coef) : % == ((n : PI) : Coef +-> f.(n::Integer))::% coerce(f : %) : OutputForm == f::Stream Coef::OutputForm 1 : % == ((n : PI) : Coef +-> (if one? n then 1$Coef else 0$Coef))::% 0 : % == ((n : PI) : Coef +-> 0$Coef)::% zeta : % == ((n : PI) : Coef +-> 1$Coef)::% (f : %) + (g : %) == ((n : PI) : Coef +-> f(n)+g(n))::% - (f : %) == ((n : PI) : Coef +-> -f(n))::% (a : Integer) * (f : %) == ((n : PI) : Coef +-> a*f(n))::% (a : Coef) * (f : %) == ((n : PI) : Coef +-> a*f(n))::% import from IntegerNumberTheoryFunctions (f : %) * (g : %) == conv := (n : PI) : Coef +-> _ reduce((a : Coef, b : Coef) : Coef +-> a + b, _ [f(d::PI) * g((n quo d)::PI) for d in divisors(n::Integer)], 0) $ListFunctions2(Coef, Coef) conv::% unit?(a : %) : Boolean == not (recip(a(1$PI))$Coef case "failed") qrecip : (%, Coef, PI) -> Coef qrecip(f : %, f1inv : Coef, n : PI) : Coef == if one? n then f1inv else -f1inv * reduce(_+, [f(d::PI) * qrecip(f, f1inv, (n quo d)::PI) _ for d in rest divisors(n)], 0) _$ListFunctions2(Coef, Coef) recip f == if (f1inv := recip(f(1$PI))$Coef) case "failed" then "failed" else mp := (n : PI) : Coef +-> qrecip(f, f1inv, n) mp::%::Union(%, "failed") multiplicative?(a, n) == for i in 2..n repeat fl := factorList(factor i)$Factored(Integer) rl := [a.(((f.factor)::PI)^((f.exponent)::PI)) for f in fl] if a.(i::PI) ~= reduce((r : Coef, s : Coef) : Coef +-> r*s, rl) then output(i::OutputForm)$OutputPackage output(rl::OutputForm)$OutputPackage return false true additive?(a, n) == for i in 2..n repeat fl := factorList(factor i)$Factored(Integer) rl := [a.(((f.factor)::PI)^((f.exponent)::PI)) for f in fl] if a.(i::PI) ~= reduce((r : Coef, s : Coef) : Coef +-> r+s, rl) then output(i::OutputForm)$OutputPackage output(rl::OutputForm)$OutputPackage return false true --Copyright (c) 2010, Martin Rubey -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.