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Problem:
Suppose we have stored n keys in a hash table of size m, with collisions

resolved by chaining, and that we know the length of each chain, including
the length L of the longest chain. Describe a procedure that selects a key
uniformly at random from among the keys in the hash table and returns it
in expected time O(L * (1 + m/n)).
Solution:

There is a correct solution on this site: stackoverflow-efficiently-picking-
a-random-element-from-a-chained-hash-table And it says:

Repeat the following steps until an element is returned:

• Randomly select a bucket. Let k be the number of elements
in the bucket.

• Select p uniformly at random from 1...L. If p <= k then
return the pth element in the bucket.

It should be clear that the procedure returns an element uni-
formly at random. We are sort of applying rejection sampling to
the elements placed in a 2D array.
The expected number of elements per bucket is n/m. The prob-
ability that the sampling attempt succeeds is (n/m)/L. The ex-
pected number of attempts needed to find a bucket is therefore
L ∗m/n. Together with the O(L) cost of retrieving the element
from the bucket, the expected running time is O(L∗(1+m/n)) =
O(L · (1 + α)).
[?]

Perhaps the most confusing thing will be the first paragraph. Why does
this algorithm succeed in sampling randomly? Well, the reasoning behind
this is pretty simple.

1

https://stackoverflow.com/questions/8629447/efficiently-picking-a-random-element-from-a-chained-hash-table
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The probability of any element being selected is equal to the probability
of being selected as the first legal element. So it is equal to the probability
of being selected in the first selection plus being selected in the second selec-
tion(of course it has selected an illegal element in the first step) plus being
selected at the third time with previous two times selecting illegal elements
and so on. We know that the probability of selecting an illegal element is
1− n

mL
. So the probability of being selected as the first legal element is
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Of course we are not done yet. Note that when n = mL we will lose the
last but one equation. But under such circumstance, it is, as the solution
says, obvious that the algorithm selects every element randomly.
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