Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
2075 lines (2054 sloc) 30.3 KB
name: "TestModel"
input:"data"
input_dim:1
input_dim:3
input_dim:128
input_dim:128
layer {
name: "conv1_1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 2
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv1_1_1"
top: "conv1_1_1"
name: "conv1_1_1_bn"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1_1_1"
top: "conv1_1_1"
name: "conv1_1_1_scale"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv1_1_1_relu"
type: "ReLU"
bottom: "conv1_1_1"
top: "conv1_1_1"
}
layer {
name: "conv1_2_1"
type: "Convolution"
bottom: "data"
top: "conv1_2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv1_2_1"
top: "conv1_2_1"
name: "conv1_2_1_bn"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1_2_1"
top: "conv1_2_1"
name: "conv1_2_1_scale"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv1_2_1_relu"
type: "ReLU"
bottom: "conv1_2_1"
top: "conv1_2_1"
}
layer {
name: "conv1_2_2"
type: "Convolution"
bottom: "conv1_2_1"
top: "conv1_2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 2
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv1_2_2"
top: "conv1_2_2"
name: "conv1_2_2_bn"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1_2_2"
top: "conv1_2_2"
name: "conv1_2_2_scale"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv1_2_2_relu"
type: "ReLU"
bottom: "conv1_2_2"
top: "conv1_2_2"
}
layer {
name: "conv1_3_1"
type: "Convolution"
bottom: "data"
top: "conv1_3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 2
pad: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv1_3_1"
top: "conv1_3_1"
name: "conv1_3_1_bn"
type: "BatchNorm"
batch_norm_param {
use_global_stats: true
}
}
layer {
bottom: "conv1_3_1"
top: "conv1_3_1"
name: "conv1_3_1_scale"
type: "Scale"
scale_param {
bias_term: true
}
}
layer {
name: "conv1_3_1_relu"
type: "ReLU"
bottom: "conv1_3_1"
top: "conv1_3_1"
}
layer {
name: "conv1_3_2"
type: "Convolution"
bottom: "conv1_3_1"
top: "conv1_3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1_3_2_relu"
type: "ReLU"
bottom: "conv1_3_2"
top: "conv1_3_2"
}
layer {
name: "conv1_3_3"
type: "Convolution"
bottom: "conv1_3_2"
top: "conv1_3_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1_3_3_relu"
type: "ReLU"
bottom: "conv1_3_3"
top: "conv1_3_3"
}
layer {
name: "feature1"
type: "Concat"
bottom: "conv1_1_1"
bottom: "conv1_2_2"
bottom: "conv1_3_3"
top: "feature1"
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "feature1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_1_relu"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_2_relu"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "conv2_3"
type: "Convolution"
bottom: "conv2_2"
top: "conv2_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_3_relu"
type: "ReLU"
bottom: "conv2_3"
top: "conv2_3"
}
layer {
name: "conv2_4"
type: "Convolution"
bottom: "conv2_3"
top: "conv2_4"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_4_relu"
type: "ReLU"
bottom: "conv2_4"
top: "conv2_4"
}
layer {
name: "conv2_5"
type: "Convolution"
bottom: "conv2_4"
top: "conv2_5"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_5_relu"
type: "ReLU"
bottom: "conv2_5"
top: "conv2_5"
}
layer {
name: "conv2_6"
type: "Convolution"
bottom: "conv2_5"
top: "conv2_6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_6_relu"
type: "ReLU"
bottom: "conv2_6"
top: "conv2_6"
}
layer {
name: "conv2_7"
type: "Convolution"
bottom: "conv2_6"
top: "conv2_7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_7_relu"
type: "ReLU"
bottom: "conv2_7"
top: "conv2_7"
}
layer {
name: "conv2_8"
type: "Convolution"
bottom: "conv2_7"
top: "conv2_8"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv2_8_relu"
type: "ReLU"
bottom: "conv2_8"
top: "conv2_8"
}
layer {
name: "feature2"
type: "Concat"
bottom: "conv2_2"
bottom: "conv2_4"
bottom: "conv2_6"
bottom: "conv2_8"
top: "feature2"
}
layer {
name: "conv3_1_1b"
type: "Convolution"
bottom: "feature2"
top: "conv3_1_1b"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv3_1_1"
type: "Convolution"
bottom: "feature2"
top: "conv3_1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_1_1"
type: "ReLU"
bottom: "conv3_1_1"
top: "conv3_1_1"
}
layer {
name: "conv3_1_2"
type: "Convolution"
bottom: "conv3_1_1"
top: "conv3_1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_1_2"
type: "Eltwise"
bottom: "conv3_1_1b"
bottom: "conv3_1_2"
top: "res_conv3_1_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_1_2"
type: "ReLU"
bottom: "res_conv3_1_2"
top: "res_conv3_1_2"
}
layer {
name: "conv3_2_1"
type: "Convolution"
bottom: "res_conv3_1_2"
top: "conv3_2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_2_1"
type: "ReLU"
bottom: "conv3_2_1"
top: "conv3_2_1"
}
layer {
name: "conv3_2_2"
type: "Convolution"
bottom: "conv3_2_1"
top: "conv3_2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_2_2"
type: "Eltwise"
bottom: "res_conv3_1_2"
bottom: "conv3_2_2"
top: "res_conv3_2_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_2_2"
type: "ReLU"
bottom: "res_conv3_2_2"
top: "res_conv3_2_2"
}
layer {
name: "conv3_3_1"
type: "Convolution"
bottom: "res_conv3_2_2"
top: "conv3_3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_3_1"
type: "ReLU"
bottom: "conv3_3_1"
top: "conv3_3_1"
}
layer {
name: "conv3_3_2"
type: "Convolution"
bottom: "conv3_3_1"
top: "conv3_3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_3_2"
type: "Eltwise"
bottom: "res_conv3_2_2"
bottom: "conv3_3_2"
top: "res_conv3_3_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_3_2"
type: "ReLU"
bottom: "res_conv3_3_2"
top: "res_conv3_3_2"
}
layer {
name: "conv3_4_1"
type: "Convolution"
bottom: "res_conv3_3_2"
top: "conv3_4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_4_1"
type: "ReLU"
bottom: "conv3_4_1"
top: "conv3_4_1"
}
layer {
name: "conv3_4_2"
type: "Convolution"
bottom: "conv3_4_1"
top: "conv3_4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_4_2"
type: "Eltwise"
bottom: "res_conv3_3_2"
bottom: "conv3_4_2"
top: "res_conv3_4_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_4_2"
type: "ReLU"
bottom: "res_conv3_4_2"
top: "res_conv3_4_2"
}
layer {
name: "conv3_5_1"
type: "Convolution"
bottom: "res_conv3_4_2"
top: "conv3_5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_5_1"
type: "ReLU"
bottom: "conv3_5_1"
top: "conv3_5_1"
}
layer {
name: "conv3_5_2"
type: "Convolution"
bottom: "conv3_5_1"
top: "conv3_5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_5_2"
type: "Eltwise"
bottom: "res_conv3_4_2"
bottom: "conv3_5_2"
top: "res_conv3_5_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_5_2"
type: "ReLU"
bottom: "res_conv3_5_2"
top: "res_conv3_5_2"
}
layer {
name: "conv3_6_1"
type: "Convolution"
bottom: "res_conv3_5_2"
top: "conv3_6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv3_6_1"
type: "ReLU"
bottom: "conv3_6_1"
top: "conv3_6_1"
}
layer {
name: "conv3_6_2"
type: "Convolution"
bottom: "conv3_6_1"
top: "conv3_6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv3_6_2"
type: "Eltwise"
bottom: "res_conv3_5_2"
bottom: "conv3_6_2"
top: "res_conv3_6_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv3_6_2"
type: "ReLU"
bottom: "res_conv3_6_2"
top: "res_conv3_6_2"
}
layer {
name: "feature3"
type: "Concat"
bottom: "res_conv3_2_2"
bottom: "res_conv3_4_2"
bottom: "res_conv3_6_2"
top: "feature3"
}
layer {
name: "conv4_1_1b"
type: "Convolution"
bottom: "feature3"
top: "conv4_1_1b"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_1_1"
type: "Convolution"
bottom: "feature3"
top: "conv4_1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_1_1"
type: "ReLU"
bottom: "conv4_1_1"
top: "conv4_1_1"
}
layer {
name: "conv4_1_2"
type: "Convolution"
bottom: "conv4_1_1"
top: "conv4_1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_1_2"
type: "Eltwise"
bottom: "conv4_1_1b"
bottom: "conv4_1_2"
top: "res_conv4_1_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_1_2"
type: "ReLU"
bottom: "res_conv4_1_2"
top: "res_conv4_1_2"
}
layer {
name: "conv4_2_1"
type: "Convolution"
bottom: "res_conv4_1_2"
top: "conv4_2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_2_1"
type: "ReLU"
bottom: "conv4_2_1"
top: "conv4_2_1"
}
layer {
name: "conv4_2_2"
type: "Convolution"
bottom: "conv4_2_1"
top: "conv4_2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_2_2"
type: "Eltwise"
bottom: "res_conv4_1_2"
bottom: "conv4_2_2"
top: "res_conv4_2_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_2_2"
type: "ReLU"
bottom: "res_conv4_2_2"
top: "res_conv4_2_2"
}
layer {
name: "conv4_3_1"
type: "Convolution"
bottom: "res_conv4_2_2"
top: "conv4_3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_3_1"
type: "ReLU"
bottom: "conv4_3_1"
top: "conv4_3_1"
}
layer {
name: "conv4_3_2"
type: "Convolution"
bottom: "conv4_3_1"
top: "conv4_3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_3_2"
type: "Eltwise"
bottom: "res_conv4_2_2"
bottom: "conv4_3_2"
top: "res_conv4_3_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_3_2"
type: "ReLU"
bottom: "res_conv4_3_2"
top: "res_conv4_3_2"
}
layer {
name: "conv4_4_1"
type: "Convolution"
bottom: "res_conv4_3_2"
top: "conv4_4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_4_1"
type: "ReLU"
bottom: "conv4_4_1"
top: "conv4_4_1"
}
layer {
name: "conv4_4_2"
type: "Convolution"
bottom: "conv4_4_1"
top: "conv4_4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_4_2"
type: "Eltwise"
bottom: "res_conv4_3_2"
bottom: "conv4_4_2"
top: "res_conv4_4_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_4_2"
type: "ReLU"
bottom: "res_conv4_4_2"
top: "res_conv4_4_2"
}
layer {
name: "conv4_5_1"
type: "Convolution"
bottom: "res_conv4_4_2"
top: "conv4_5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_5_1"
type: "ReLU"
bottom: "conv4_5_1"
top: "conv4_5_1"
}
layer {
name: "conv4_5_2"
type: "Convolution"
bottom: "conv4_5_1"
top: "conv4_5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_5_2"
type: "Eltwise"
bottom: "res_conv4_4_2"
bottom: "conv4_5_2"
top: "res_conv4_5_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_5_2"
type: "ReLU"
bottom: "res_conv4_5_2"
top: "res_conv4_5_2"
}
layer {
name: "conv4_6_1"
type: "Convolution"
bottom: "res_conv4_5_2"
top: "conv4_6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv4_6_1"
type: "ReLU"
bottom: "conv4_6_1"
top: "conv4_6_1"
}
layer {
name: "conv4_6_2"
type: "Convolution"
bottom: "conv4_6_1"
top: "conv4_6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv4_6_2"
type: "Eltwise"
bottom: "res_conv4_5_2"
bottom: "conv4_6_2"
top: "res_conv4_6_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv4_6_2"
type: "ReLU"
bottom: "res_conv4_6_2"
top: "res_conv4_6_2"
}
layer {
name: "feature4"
type: "Concat"
bottom: "res_conv4_2_2"
bottom: "res_conv4_4_2"
bottom: "res_conv4_6_2"
top: "feature4"
}
layer {
name: "conv5_1_1b"
type: "Convolution"
bottom: "feature4"
top: "conv5_1_1b"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 1
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_1_1"
type: "Convolution"
bottom: "feature4"
top: "conv5_1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 1
kernel_size: 1
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_1_1"
type: "ReLU"
bottom: "conv5_1_1"
top: "conv5_1_1"
}
layer {
name: "conv5_1_2"
type: "Convolution"
bottom: "conv5_1_1"
top: "conv5_1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_1_2"
type: "Eltwise"
bottom: "conv5_1_1b"
bottom: "conv5_1_2"
top: "res_conv5_1_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_1_2"
type: "ReLU"
bottom: "res_conv5_1_2"
top: "res_conv5_1_2"
}
layer {
name: "conv5_2_1"
type: "Convolution"
bottom: "res_conv5_1_2"
top: "conv5_2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_2_1"
type: "ReLU"
bottom: "conv5_2_1"
top: "conv5_2_1"
}
layer {
name: "conv5_2_2"
type: "Convolution"
bottom: "conv5_2_1"
top: "conv5_2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_2_2"
type: "Eltwise"
bottom: "res_conv5_1_2"
bottom: "conv5_2_2"
top: "res_conv5_2_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_2_2"
type: "ReLU"
bottom: "res_conv5_2_2"
top: "res_conv5_2_2"
}
layer {
name: "conv5_3_1"
type: "Convolution"
bottom: "res_conv5_2_2"
top: "conv5_3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_3_1"
type: "ReLU"
bottom: "conv5_3_1"
top: "conv5_3_1"
}
layer {
name: "conv5_3_2"
type: "Convolution"
bottom: "conv5_3_1"
top: "conv5_3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_3_2"
type: "Eltwise"
bottom: "res_conv5_2_2"
bottom: "conv5_3_2"
top: "res_conv5_3_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_3_2"
type: "ReLU"
bottom: "res_conv5_3_2"
top: "res_conv5_3_2"
}
layer {
name: "conv5_4_1"
type: "Convolution"
bottom: "res_conv5_3_2"
top: "conv5_4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_4_1"
type: "ReLU"
bottom: "conv5_4_1"
top: "conv5_4_1"
}
layer {
name: "conv5_4_2"
type: "Convolution"
bottom: "conv5_4_1"
top: "conv5_4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_4_2"
type: "Eltwise"
bottom: "res_conv5_3_2"
bottom: "conv5_4_2"
top: "res_conv5_4_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_4_2"
type: "ReLU"
bottom: "res_conv5_4_2"
top: "res_conv5_4_2"
}
layer {
name: "conv5_5_1"
type: "Convolution"
bottom: "res_conv5_4_2"
top: "conv5_5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_5_1"
type: "ReLU"
bottom: "conv5_5_1"
top: "conv5_5_1"
}
layer {
name: "conv5_5_2"
type: "Convolution"
bottom: "conv5_5_1"
top: "conv5_5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_5_2"
type: "Eltwise"
bottom: "res_conv5_4_2"
bottom: "conv5_5_2"
top: "res_conv5_5_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_5_2"
type: "ReLU"
bottom: "res_conv5_5_2"
top: "res_conv5_5_2"
}
layer {
name: "conv5_6_1"
type: "Convolution"
bottom: "res_conv5_5_2"
top: "conv5_6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu_conv5_6_1"
type: "ReLU"
bottom: "conv5_6_1"
top: "conv5_6_1"
}
layer {
name: "conv5_6_2"
type: "Convolution"
bottom: "conv5_6_1"
top: "conv5_6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "res_conv5_6_2"
type: "Eltwise"
bottom: "res_conv5_5_2"
bottom: "conv5_6_2"
top: "res_conv5_6_2"
eltwise_param {
operation: SUM
}
}
layer {
name: "relu_res_conv5_6_2"
type: "ReLU"
bottom: "res_conv5_6_2"
top: "res_conv5_6_2"
}
layer {
name: "feature5"
type: "Concat"
bottom: "res_conv5_2_2"
bottom: "res_conv5_4_2"
bottom: "res_conv5_6_2"
top: "feature5"
}
layer {
name: "fc5_"
type: "InnerProduct"
bottom: "feature5"
top: "fc5_"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 1.0
decay_mult: 1.0
}
inner_product_param {
num_output: 512
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
You can’t perform that action at this time.