Chapter 5

Register Packing

In this chapter we introduce a novel AVX-512 in-register file storage layout that enables
single instruction broadcasting, regardless of the vector lane the value is stored in. Both
the packing scheme and the method for broadcasting are detailed in Section 5.1. The
strategy is evaluated against the reference LIBXSMM on the PyFR suite and synthetic
suite. Finally, Intel VTune profiling results are used to further discuss the results.

5.1 Solution

5.1.1 AVX-512 Shuffle Instruction

The storage layout was designed to be able to use the VSHUFF64X2 AVX-512 instruction.
On Skylake-SP, it has a 3 cycle latency [11]. The instruction has two source vector register
operands, an 8-bit integer operand and one destination vector operand. The 8-bit integer
is encoded at compilation time.

The vector registers are split into sections of 128-bits, so each source and destination
register has four sections. The VSHUFF64X2 instruction copies 128-bit sections from the
source registers to the destination.

The 8-bit integer, called the selector, selects which source sections to copy for a destination
register. The selector is split into four groups of 2-bits. The lowest 2-bits select for the
lowest 128-bits in the destination, and the highest 2-bits select for the highest 128-bits in
the destination.

The lowest 4-bits of the selector, select for the first two 128-bit sections in the destination
register, which are chosen from the first source register. A 2-bit selector can choose any of
the four 128-bit sections from the source register.

So the lowest half (256-bits) of the destination register is given two 128-bit sections from
the first source register. The 128-bit sections chosen can be the same or different. Similarly,
the highest 4-bits of the selector choose 128-bit sections from the second source register.
The highest half (256-bits) of the destination register is given two 128-bit sections from
the second source register. The entire operation is illustrated in Figure 5.1 [1].

Figure 5.1: Illustration of VSHUFF64X2 [1]

27



5.1.2 Single Instruction Broadcasting

To make use of the VSHUFF64X2 instruction for a single-instruction broadcast, the 128-
bit sections have to contain only the desired value to be broadcast. This means that the
value must be repeated for 128-bits. For double precision, this means storing the value
twice. For single precision, the value must be stored four times. The logical register layout
is shown in Figure 5.2, which shows that the are four 128-bits sections in a register. A
trade-off is made by repeating values to obtain a single-instruction broadcast, that uses
only one temporary register to hold the broadcasted value. Alternative methods could pack
more value in the registers, but would require more instructions and temporary registers
to broadcast the values.

Packing Scheme in Register (DP) Packing Scheme in Register (SP)
X3 1 x3 | x2 t x2 | x1 ! x1 [ x0 i x0 X31x31x31x3 [x21x21x21x2 x1ix1ix1ix1|x01x0 X0 i x0
0b511 0b0 0b511 0bo
(a) Double Precision (b) Single Precision

Figure 5.2: Layout within Register for DP and SP values

Figure 5.3 shows how the VSHUFF64X2 instruction can be used with the logical storage
layout from Figure 5.2 to achieve a single-instruction broadcast, regardless of which lanes
(groups of sequential lanes due to repetition) the value is stored in. The same register is
used as both source operands, which can be seen in Figure 5.3 by both the source registers
being zmm0. This allows the selector to choose the same 128-bit source section, for all
four 128-bit sections in the destination register. The end result is that the selected source
section is broadcast to all four sections - a 1 — 4 broadcast operation. The same process
would apply to SP, and would also be a 1 — 4 broadcast, as the SP value must be repeated
four times to fill the 128-bit section.

Source Register A Source Register B
Ob11 0b10 0b01 0b00 Ob11 0b10 0bO01 0b00
zmmO| x3 E x3 x2 i X2 x1 E x1 x0 E x0 zmmO| x3 i x3 x2 i x2 x1 E x1 x0 i x0
Selector
Ob 0101 0101 0b01 0b01 0b01 0b01
zmm1| x1 x1 x1 x1 x1 x1 x1 x1
Ob11 0b10 0b01 0b00

Destination Register

Figure 5.3: Using VSHUFF64X2 to Broadcast

Figure 5.4 showcases the four possible broadcasts and the corresponding selector values
required to achieve them. The binary values show that a 2-bit value is repeated, which is
due to the same source 128-bit section being chosen for all four destination sections.

28



Source Register Selector Destination Register

x3 1 x3 | x2 i x2 X0 i x0 0b 0000 0000 —> X0 | x0 | x0 | x0 | x0 | x0 | x0 | x0

X3 1 x3 | x2 ! x2 X0 | x0 0b 0101 0101 —> x| x1 | x1 | xt | x| x1 | x1

3

X3 1 x3 | x2 i x2 X0 | x0 0b 1010 1010 —> x2 | x2 | x2 | x2 | x2 | x2 | x2

xz‘

X3 1 x3 | x2 i x2 X0 | x0 0b 1111 1111 —> x3 | x3 | x3 | x3 x3 | x3 | x3 | x3

Figure 5.4: The four possible effective broadcasts

5.1.3 Register Packing for the MM routine

By fully storing A in the register file with the packing scheme, no memory access is
required for A during the MM routine. The adaptation made to the routine from Section
2.3.2 is to broadcast the required value of A from the register file using the VSHUFF64X2
instruction. Figure 5.5 shows that the 31% register is used as the temporary register to
hold the broadcasted value. This is then multiplied with the stride of B (loaded from
memory) in the FMA to calculate (part of the accumulation of) the stride of C.

Hypothesis

1: Kernels for operator matrices where the number of unique non-zeros (U), is bound by
U < 31, should not have decreased performance when using register packing compared to
other strategies deployed by LIBXSMM. The run-time broadcasting should not add to the
critical path of execution.

2: Kernels for operator matrices where the number of unique non-zeros (U), is bound by
31 < U < 120, should have increased performance compared to other strategies deployed
by LIBXSMM.

AVX-512 Register File

zmmO| a3 ' a3 | a2 : a2 | al : al | a0 : a0
zmmi| a7 ' a7 | a6 : a6 | a5 : a5 | a4 : a4
zmm2| alt : all | al0 : al0 | a9 : a9 | a8 : a8
: ; . :

[}

n
zmm29 ai19 i al19 | al18 : al18 | al17 : al17 | al16 : al16
zmm30 Broadcast aX destination
zmm31 C-Stride Accumulation

Figure 5.5: The Vector Register File logical layout when using register packing for the
SpMM routine

29



