Skip to content
A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"
Branch: master
Clone or download
Latest commit f021990 Feb 28, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.gitignore Initial commit Feb 10, 2018
LICENSE Initial commit Feb 10, 2018
README.md Update README.md Feb 10, 2018
dataset.py Add files via upload Feb 10, 2018
main.py Update main.py Feb 10, 2018
networks.py Add files via upload Feb 10, 2018
results.png Add files via upload Feb 10, 2018
run.sh Add files via upload Feb 10, 2018
wavelet_weights_c2.pkl Add files via upload Feb 28, 2018

README.md

WaveletSRNet

A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"

Prerequisites

  • Python 2.7
  • PyTorch

Run

Use the default hyparameters except changing the parameter "upscale" according to the expected upscaling factor(2, 3, 4 for 4, 8, 16 upcaling factors, respectively).

CUDA_VISIBLE_DEVICES=1 python main.py --ngpu=1 --test --start_epoch=0 --test_iter=1000 --batchSize=64 --test_batchSize=32 --nrow=4 --upscale=3 --input_height=128 --output_height=128 --crop_height=128 --lr=2e-4 --nEpochs=500 --cuda

Results

Citation

If you use our codes, please cite the following paper:

@inproceedings{huang2017wavelet,
  title={Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution},
  author={Huang, Huaibo and He, Ran and Sun, Zhenan and Tan, Tieniu},
  booktitle={IEEE International Conference on Computer Vision},
  pages={1689--1697},    
  year={2017}
}

The released codes are only allowed for non-commercial use.

You can’t perform that action at this time.