
Construction Safety for “OutForIn” Functions 1

🚧
Construction Safety for “OutForIn”
Functions

Created by

Created at

Last updated by

Last updated at

The task here is to prove that the checks at the end of the functions hTokenOutForUnderlyingIn and
underlyingOutForHTokenIn are in fact superfluous. Specifically, these checks are:

if (hTokenReserves < newHTokenReserves) {
 revert YieldSpace__LossyPrecisionUnderflow(hTokenReserves, newHTokenReserves);
}

And:

if (normalizedUnderlyingReserves < newNormalizedUnderlyingReserves) {
revert YieldSpace__LossyPrecisionUnderflow(normalizedUnderlyingReserves, newNormalizedUnderlyingReserves);
}

For ease of calculation, we will use the following variables:

normalizedUnderlyingReserves

underlyingIn

 hTokenReserves

 = hTokenIn

, using the appropriate value of (G1 for hTokenOUtForUnderlyingIn , G2 for
underlyingOutForHTokenIn)

Note that the negation of and will represent underlyingOut and hTokenOut , respectively, for the
appropriate functions.

@January 15, 2022 12:43 AM

@January 31, 2022 10:31 PM

x =s

Δ =x

y =s

Δy

a = 1 − gt g

Δx Δy

Construction Safety for “OutForIn” Functions 2

The function hTokenOutForUnderlyingIn calculates the amount of hToken a user would receive for a
given amount of underlying. This is represented mathematically as :

The value is equal to the reserves of HToken after the trade. Assume by way of
contradiction that hTokenReserves < newHTokenReserves . Then we would have:

This would represent the amount of hTokenOut being positive, or in other words the contract receives
underlyingIn from the user, while also adding more hToken to its reserves. This violates the
YieldSpace equation, and so therefore is always true, meaning that the condition
hTokenReserves < newHTokenReserves is never satisfied.

A similar argument holds for underlyingOutForHTokenIn by switching the roles of Underlying and
HToken.

y −s Δ =y (x +s
a y −s

a (x +s Δ))x
a 1/a

y −s Δy

y <s y −s Δ ⇒y Δ <y 0 ⇒ −Δ >y 0

y ≥s y −s Δy

