Bidirectorial LSTMがもつ問題を、各wordに対してpararell stateを保持することにより解決。

https://github.com/leuchine/S-LSTM/blob/master/sequence_tagging/model/base_model.py

Figure 1: Sentence-State LSTM

shown in Figure 1, the main idea is to model the hidden states of all words simultaneously at each recurrent step, rather than one word at a time. In

mation (Sabour et al., 2017). In contrast, S-LSTM uses a global sentence-level node to assemble and back-distribute local information in the recurrent state transition process, suffering less information loss compared to pooling.

baselineとなるBi-LSTMのモデル

$$s : < s >, w_1, w_2, ..., w_i, ..., w_n,$$

 $oldsymbol{h}_i$: hidden vector for each input word $oldsymbol{w}_i$

The BiLSTM model uses the concatenated value of \overrightarrow{h}^t and \overleftarrow{h}^t as the hidden vector for w_t :

$$oldsymbol{h}^t = [\overrightarrow{oldsymbol{h}}^t; \overleftarrow{oldsymbol{h}}^t]$$

A single hidden vector representation g of the whole input sentence can be obtained using the final state values of the two LSTM components:

$$g = [\overrightarrow{h}^{n+1}; \overleftarrow{h}^{0}]$$

As shown in Figure 1, the value of each h_i^t is computed based on the values of x_i , h_{i-1}^{t-1} , h_i^{t-1} , h_{i+1}^{t-1} and g^{t-1} , together with their corresponding cell values:

g_tの生成過程まで式で述べられている (実装見ないと多分全ては分からない)

– 24 for test. For NER, we follow the standard split, and use the BIOES tagging scheme (Ratinov and Roth, 2009). Statistics of the four datasets are shown in Table 1.

NERにも使えるので、まずこれを目標にしたい!