Sentence-State LSTM for Text Representation
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shown in Figure 1, the main idea is to model the
hidden states of all words simultaneously at each
recurrent step, rather than one word at a time. In

mation (Sabour et al., 2017). In contrast, S-LSTM
uses a global sentence-level node to assemble and
back-distribute local information in the recurrent
state transition process, suffering less information
loss compared to pooling.

Figure 1: Sentence-State LSTM
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h; : hidden vector for each input word w;

The BILSTM model uses the concatenated
value of h ! and %t as the hidden vector for wy:

pb_ [ﬁt; %_t]

A single hidden vector representation g of the
whole input sentence can be obtained using the fi-
nal state values of the two LSTM components:

gi= [Tl)n+l; ‘Eo]
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As shown in Figure 1, the value of each h! is
computed based on the values of x;, hﬁ:}, hf‘l,

hf;} and g'~!, together with their corresponding

cell values:
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— 24 for test. For NER, we follow the standard
split, and use the BIOES tagging scheme (Ratinov

and Roth, 2009). Statistics of the four datasets are
shown 1n Table 1.
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