
System V Application Binary Interface
Linux Extensions

Version 0.1

Edited by
H.J. Lu1

November 28, 2018

1hongjiu.lu@intel.com

Linux ABI 0.1 – November 28, 2018 – 9:23

Contents

1 About this Document 4
1.1 Related Information . 4

2 Object Files 5
2.1 Sections . 5

2.1.1 Special Sections . 6
2.1.2 EH_FRAME section . 7
2.1.3 EH_FRAME_HDR section 11
2.1.4 .note.gnu.build-id section 12
2.1.5 .note.gnu.property section 13
2.1.6 .note.ABI-tag section 15
2.1.7 Alignment of Note Sections 16

2.2 Symbol Table . 17
2.2.1 STT_GNU_IFUNC Symbol 17

3 Program Loading and Dynamic Linking 19
3.1 Program header . 19
3.2 Note Section . 19

4 Development Environment 21

1

Linux ABI 0.1 – November 28, 2018 – 9:23

List of Tables

2.1 Section types . 5
2.2 Special sections . 6
2.3 Common Information Entry (CIE) 8
2.4 CIE Augmentation Section Content 9
2.5 Frame Descriptor Entry (FDE) 10
2.6 FDE Augmentation Section Content 11
2.7 .eh_frame_hdr Section Format 11
2.8 The Build ID Note Format . 12
2.9 The Program Property Note Format 13
2.10 Program Property Types . 15
2.11 The ABI Tag Note Format . 16
2.12 Linux Specific Symbol Types . 17

3.1 Program Header Types . 19
3.2 Note Descriptor Types . 20

4.1 Predefined Pre-Processor Symbols 21

2

Linux ABI 0.1 – November 28, 2018 – 9:23

List of Figures

Revision History
0.1 — 2016-02-08 Initial draft.

3

Linux ABI 0.1 – November 28, 2018 – 9:23

Chapter 1

About this Document

This document contains extensions to to generic System V Application Binary
Interface (gABI) available at http://www.sco.com/developers/gabi/
latest/contents.html, for Linux.

This document describes the conventions and constraints on the implementa-
tion of these extensions for interoperability between various tools.

1.1 Related Information
Links to useful documents:

• Generic System V Application Binary Interface: http://www.sco.com/
developers/gabi/latest/contents.html

• Itanium C++ ABI, Revised March 20, 2001: http://mentorembedded.
github.io/cxx-abi/

4

Linux ABI 0.1 – November 28, 2018 – 9:23

http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://mentorembedded.github.io/cxx-abi/
http://mentorembedded.github.io/cxx-abi/

Chapter 2

Object Files

2.1 Sections
The following section types are defined.

Table 2.1: Section types

Name Value
SHT_GNU_INCREMENTAL_INPUTS 0x6fff4700
SHT_LLVM_ODRTAB 0x6fff4c00
SHT_GNU_ATTRIBUTES 0x6ffffff5
SHT_GNU_HASH 0x6ffffff6
SHT_GNU_LIBLIST 0x6ffffff7

SHT_GNU_INCREMENTAL_INPUTS Incremental build data.

SHT_LLVM_ODRTAB LLVM ODR table.

SHT_GNU_ATTRIBUTES Object attributes.

SHT_GNU_HASH GNU style symbol hash table.

SHT_GNU_LIBLIST List of prelink dependencies.

The section type range 0x6fff4c00 to 0x6fff4cff is reserved for LLVM.

5

Linux ABI 0.1 – November 28, 2018 – 9:23

2.1.1 Special Sections

Table 2.2: Special sections

Name Type Attributes
.eh_frame SHT_PROGBITS SHF_ALLOC
.eh_frame_hdr SHT_PROGBITS SHF_ALLOC
.note.ABI-tag SHT_NOTE SHF_ALLOC
.note.gnu.build-id SHT_NOTE SHF_ALLOC
.note.gnu.property SHT_NOTE SHF_ALLOC
.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.sbss SHT_NOBITS SHF_ALLOC+SHF_WRITE
.lrodata SHT_PROGBITS SHF_ALLOC
.ldata SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.lbss SHT_NOBITS SHF_ALLOC+SHF_WRITE
.data.rel.ro SHT_PROGBITS SHF_ALLOC+SHF_WRITE
.data.rel.local.ro SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.eh_frame This section holds the unwind function table. The contents are de-
scribed in Section 2.1.2 of this document.

.eh_frame_hdr This section holds information about .eh_frame section. The
contents are described in Section 2.1.3 of this document.

.note.ABI-tag This section holds an ABI note. The contents are described in
Section 2.1.6 of this document.

.note.gnu.build-id This section holds a build ID note. The contents are described
in Section 2.1.4 of this document.

.note.gnu.property This section holds a program property note. The contents are
described in Section 2.1.5 of this document.

.sdata This section holds small initialized data that contribute to the program’s
memory image.

6

Linux ABI 0.1 – November 28, 2018 – 9:23

.sbss This section holds small uninitialized data that contribute to the program’s
memory image. By definition, the system initializes the data with zeros
when the program begins to run.

.lrodata This section holds large read-only data that typically contribute to a non-
writable segment in the process image.

.ldata This section holds large initialized data that contribute to the program’s
memory image.

.lbss This section holds large uninitialized data that contribute to the program’s
memory image. By definition, the system initializes the data with zeros
when the program begins to run.

.data.rel.ro This section holds read-only data that typically contribute to a writable
segment in the process image which becomes non-writable after relocation
is completed.

.data.rel.local.ro This section holds read-only data that typically contribute to a
writable segment in the process image which becomes non-writable after
relocation is completed. All relocations contained in this section must be to
local objects.

2.1.2 EH_FRAME section
The call frame information needed for unwinding the stack is output into one sec-
tion named .eh_frame. An .eh_frame section consists of one or more sub-
sections. Each subsection contains a CIE (Common Information Entry) followed
by varying number of FDEs (Frame Descriptor Entry). A FDE corresponds to an
explicit or compiler generated function in a compilation unit, all FDEs can access
the CIE that begins their subsection for data. If the code for a function is not one
contiguous block, there will be a separate FDE for each contiguous sub-piece.

If an object file contains C++ template instantiations there shall be a separate
CIE immediately preceding each FDE corresponding to an instantiation.

Using the preferred encoding specified below, the .eh_frame section can be
entirely resolved at link time and thus can become part of the text segment.

EH_PE encoding below refers to the pointer encoding as specified in Sec-
tion DWARF Exception Header Encoding of Linux Standard Base Core
Specification.

7

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.3: Common Information Entry (CIE)

Field Length (byte) Description
Length 4 Length of the CIE (not including this 4-

byte field)
CIE id 4 Value 0 for .eh_frame (used to distin-

guish CIEs and FDEs when scanning the
section)

Version 1 Value One (1)
CIE Augmenta-
tion String

string Null-terminated string with legal values
being "" or ’z’ optionally followed by sin-
gle occurrances of ’P’, ’L’, or ’R’ in any
order. The presence of character(s) in the
string dictates the content of field 8, the
Augmentation Section. Each character has
one or two associated operands in the AS
(see table 2.4 for which ones). Operand
order depends on position in the string (’z’
must be first).

Code Align Fac-
tor

uleb128 To be multiplied with the "Advance Lo-
cation" instructions in the Call Frame In-
structions

Data Align Fac-
tor

sleb128 To be multiplied with all offsets in the Call
Frame Instructions

Ret Address Reg 1/uleb128 A "virtual" register representation of the
return address. In Dwarf V2, this is a byte,
otherwise it is uleb128. It is a byte in gcc
3.3.x

Optional CIE
Augmentation
Section

varying Present if Augmentation String in Aug-
mentation Section field 4 is not 0. See ta-
ble 2.4 for the content.

Optional Call
Frame Instruc-
tions

varying

8

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.4: CIE Augmentation Section Content

Char Operands Length (byte) Description
z size uleb128 Length of the remainder of the Augmen-

tation Section
P personality_enc 1 Encoding specifier - preferred value is a

pc-relative, signed 4-byte
personality
routine

(encoded) Encoded pointer to personality routine
(actually to the PLT entry for the per-
sonality routine)

R code_enc 1 Non-default encoding for the
code-pointers (FDE members
initial_location and
address_range and the operand for
DW_CFA_set_loc) - preferred value
is pc-relative, signed 4-byte

L lsda_enc 1 FDE augmentation bodies may contain
LSDA pointers. If so they are encoded
as specified here - preferred value is pc-
relative, signed 4-byte possibly indirect
thru a GOT entry

9

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.5: Frame Descriptor Entry (FDE)

Field Length (byte) Description
Length 4 Length of the FDE (not including this 4-

byte field)
CIE pointer 4 Distance from this field to the nearest pre-

ceding CIE (the value is subtracted from
the current address). This value can never
be zero and thus can be used to distin-
guish CIE’s and FDE’s when scanning the
.eh_frame section

Initial Location var Reference to the function code correspond-
ing to this FDE. If ’R’ is missing from
the CIE Augmentation String, the field is
an 8-byte absolute pointer. Otherwise, the
corresponding EH_PE encoding in the CIE
Augmentation Section is used to interpret
the reference

Address Range var Size of the function code corresponding to
this FDE. If ’R’ is missing from the CIE
Augmentation String, the field is an 8-byte
unsigned number. Otherwise, the size is
determined by the corresponding EH_PE
encoding in the CIE Augmentation Section
(the value is always absolute)

Optional FDE
Augmentation
Section

var Present if CIE Augmentation String is non-
empty. See table 2.6 for the content.

Optional Call
Frame Instruc-
tions

var

10

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.6: FDE Augmentation Section Content

Char Operands Length (byte) Description
z length uleb128 Length of the remainder of the Augmen-

tation Section
L LSDA var LSDA pointer, encoded in the format

specified by the corresponding operand
in the CIE’s augmentation body. (only
present if length > 0).

The existence and size of the optional call frame instruction area must be com-
puted based on the overall size and the offset reached while scanning the preceding
fields of the CIE or FDE.

The overall size of a .eh_frame section is given in the ELF section header.
The only way to determine the number of entries is to scan the section until the
end, counting entries as they are encountered.

2.1.3 EH_FRAME_HDR section
.eh_frame_hdr section contains information about .eh_frame section for
optimizing stack unwinding.

Table 2.7: .eh_frame_hdr Section Format

Encoding Field Required
unsigned byte version Yes
unsigned byte eh_frame_ptr_enc Yes
unsigned byte fde_count_enc Yes
unsigned byte table_enc Yes
[encoded] eh_frame_ptr No
[encoded] fde_count No

binary search table No

11

Linux ABI 0.1 – November 28, 2018 – 9:23

version Version of .eh_frame_hdr section format. It should be 1.

eh_frame_ptr_enc EH_PE encoding of pointer to start of .eh_frame section.

fde_count_enc EH_PE encoding of total FDE count number. DW_EH_PE_omit
if there is no binary search table.

table_enc EH_PE encoding of binary search table. DW_EH_PE_omit
if there is no binary search table.

eh_frame_ptr Pointer to start of .eh_frame section.

fde_count Total number of FDEs in .eh_frame section.

binary search table A binary search table containing fde_count entries. Each
entry consists of FDE initial location and address. The entries are sorted in
the increasing order by FDE initial location value.

2.1.4 .note.gnu.build-id section
.note.gnu.build-id section contains a build ID note which is unique among
the set of meaningful contents for ELF files and identical when the output file
would otherwise have been identical. It can be merged with other SHT_NOTE
sections.

Table 2.8: The Build ID Note Format

Field Length Contents
n_namsz 4 4
n_descsz 4 The note descriptor size
n_type 4 NT_GNU_BUILD_ID
n_name 4 GNU
n_desc n_descsz The build ID

n_namsz Size of the n_name field. A 4-byte integer in the format of the target
processor. It should be 4.

n_descsz Size of the n_desc field. A 4-byte integer in the format of the target
processor.

12

Linux ABI 0.1 – November 28, 2018 – 9:23

n_type Type of the note descriptor. A 4-byte integer in the format of the target
processor. It should be NT_GNU_BUILD_ID.

n_name Owner of the build ID note. A null-terminated character string. It should
be GNU.

n_desc The note descriptor. The first n_descsz bytes in n_desc is the build
ID.

2.1.5 .note.gnu.property section
.note.gnu.property section contains a program property note which de-
scribes special handling requirements for linker and run-time loader. It can be
merged with other SHT_NOTE sections.

Table 2.9: The Program Property Note Format

Field Length Contents
n_namsz 4 4
n_descsz 4 The note descriptor size
n_type 4 NT_GNU_PROPERTY_TYPE_0
n_name 4 GNU
n_desc n_descsz The program property array

n_namsz Size of the n_name field. A 4-byte integer in the format of the target
processor. It should be 4.

n_descsz Size of the n_desc field. A 4-byte integer in the format of the target
processor.

n_type Type of the note descriptor. A 4-byte integer in the format of the target
processor. It should be NT_GNU_PROPERTY_TYPE_0.

n_name Owner of the program property note. A null-terminated character string.
It should be GNU.

n_desc The note descriptor. The first n_descsz bytes in n_desc is the pro-
gram property array.

13

Linux ABI 0.1 – November 28, 2018 – 9:23

The program property array

Each array element represents one program property with type, data size and data.
In 64-bit objects, each element is an array of 8-byte integers in the format of the
target processor. In 32-bit objects, each element is an array of 4-byte integers in
the format of the target processor. An array element has the following structure:

typedef struct {
Elf_Word pr_type;
Elf_Word pr_datasz;
unsigned char pr_data[PR_DATASZ];
unsigned char pr_padding[PR_PADDING];

} Elf_Prop;

pr_type The type of program property. A 4-byte integer in the format of the
target processor.

pr_datasz The size of the pr_data field. A 4-byte integer in the format of the
target processor.

pr_data The program property descriptor which is aligned to 4 bytes in 32-bit
objects and 8 bytes in 64-bit objects.

pr_padding The padding. If necessary, it aligns the array element to 8 or 4-byte
alignment (depending on whether the file is a 64-bit or 32-bit object).

PR_DATASZ The value in the pr_datasz field. A constant.

PR_PADDING The size of the pr_padding field. A constant.

The array elements are sorted by the program property type in ascending order.

Types of program properties

The following program property types are defined:

14

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.10: Program Property Types

Name Value
GNU_PROPERTY_STACK_SIZE 1
GNU_PROPERTY_NO_COPY_ON_PROTECTED 2
GNU_PROPERTY_LOPROC 0xc0000000
GNU_PROPERTY_HIPROC 0xdfffffff
GNU_PROPERTY_LOUSER 0xe0000000
GNU_PROPERTY_HIUSER 0xffffffff

GNU_PROPERTY_STACK_SIZE Its pr_data field contains a 4-byte integer
in 32-bit objects and 8-byte integer in 64-bit objects, in the format of the
target processor. Linker should select the maximum value among all input
relocatable objects and copy this property to the output. Run-time loader
should raise the stack limit to the value specified in this property.

GNU_PROPERTY_NO_COPY_ON_PROTECTED This indicates that there
should be no copy relocations against protected data symbols. If a relocat-
able object contains this property, linker should treat protected data symbol
as defined locally at run-time and copy this property to the output share
object. Linker should add this property to the output share object if any pro-
tected symbol is expected to be defined locally at run-time. Run-time loader
should disallow copy relocations against protected data symbols defined in
share objects with GNU_PROPERTY_NO_COPY_ON_PROTECTED prop-
erty. Its PR_DATASZ should be 0.

GNU_PROPERTY_LOPROC through GNU_PROPERTY_HIPROC Values
in this inclusive range are reserved for processor-specific semantics.

GNU_PROPERTY_LOUSER through GNU_PROPERTY_HIUSER Values in
this inclusive range are reserved for application-specific semantics.

2.1.6 .note.ABI-tag section
.note.ABI-tag section contains an ABI note which is used to identify OS and
version targeted. It can be merged with other SHT_NOTE sections.

15

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 2.11: The ABI Tag Note Format

Field Length Contents
n_namsz 4 4
n_descsz 4 16
n_type 4 NT_GNU_ABI_TAG
n_name 4 GNU
n_desc 16 The ABI tag

n_namsz Size of the n_name field. A 4-byte integer in the format of the target
processor. It should be 4.

descsz Size of the n_desc field. It should be 16.

n_type Type of the note descriptor. A 4-byte integer in the format of the target
processor. It should be NT_GNU_ABI_TAG.

n_name Owner of the build ID note. A null-terminated character string. It should
be GNU.

n_desc The note descriptor. Four 4-byte integers in the format of the target pro-
cessor. The first 4-byte integer should 0. The second, third, and fourth
4-byte integers contain the earliest compatible kernel version. For example,
if the 3 integers are 2, 2, and 5, this signifies a 2.2.5 kernel.

2.1.7 Alignment of Note Sections
All entries in a PT_NOTE segment have the same alignment which equals to the
p_align field in program header.

According to gABI, each note entry should be aligned to 4 bytes in 32-bit
objects or 8 bytes in 64-bit objects. But .note.ABI-tag section (see Sec-
tion 2.1.6) and .note.gnu.build-id section (see Section 2.1.4) are aligned
to 4 bytes in both 32-bit and 64-bit objects. Note parser should use p_align for
note alignment, instead of assuming alignment based on ELF file class.

16

Linux ABI 0.1 – November 28, 2018 – 9:23

2.2 Symbol Table

Table 2.12: Linux Specific Symbol Types

Name Value
STT_GNU_IFUNC 10

2.2.1 STT_GNU_IFUNC Symbol
This symbol type is the same as STT_FUNC except that it always points to a
resolve function or piece of executable code which takes no arguments and re-
turns a function pointer. If an STT_GNU_IFUNC symbol is referred to by a re-
location, then evaluation of that relocation is delayed until load-time. The value
used in the relocation is the function pointer returned by an invocation of the
STT_GNU_IFUNC symbol.

The purpose of the STT_GNU_IFUNC symbol type is to allow the run-time to
select between multiple versions of the implementation of a specific function. The
selection made in general will take the currently available hardware into account
and select the most appropriate version.

Implementation Considerations

The calling convention of the STT_GNU_IFUNC resolve function, which takes
no arguments and returns a function pointer, should follow the processor-specific
ABI. All rules for caller-saved and callee-saved registers apply.

There are special considerations for GOT when PLT is required:

• All references to a STT_GNU_IFUNC symbol, including function call and
function pointer, should go through the PLT slot, which jumps to the ad-
dress stored in the GOT entry. If the STT_GNU_IFUNC symbol is locally
defined, a processor-specific IRELATIVE relocation should be applied to
the GOT entry at load time. Otherwise, dynamic linker will lookup the
symbol at the first reference to the function and update the GOT entry. This
applies to all usages of STT_GNU_IFUNC symbols in shared library, dy-
namic executable and static executable.

17

Linux ABI 0.1 – November 28, 2018 – 9:23

Instead of branching to an STT_GNU_IFUNC symbol directly, calling a
function always branches to its PLT entry, which simply loads its GOTPLT
entry and branches to it. Its GOTPLT entry has the real function address.

• An STT_GNU_IFUNC symbol has an optional GOT entry for the function
pointer value of the symbol. To load an STT_GNU_IFUNC symbol function
pointer value:

– Use its GOTPLT entry in a shared object if it is forced local or not
dynamic.

– Use its GOTPLT entry in a non-shared object if pointer equality isn’t
needed.

– Use its GOTPLT entry in a position independent executable (PIE).

– Use its GOTPLT entry if no normal GOT, other than GOTPLT, is used.

– Otherwise use its GOT entry. We only need to relocate its GOT entry
in a shared object.

• We need dynamic relocation for STT_GNU_IFUNC symbol only when there
is a non-GOT reference in a shared object.

• When a shared library references a STT_GNU_IFUNC symbol defined in
executable, the address of the resolved function may be used. But in non-
shared executable, the address of its GOTPLT entry may be used. Pointer
equality may not work correctly. PIE should be used if pointer equality is
required.

18

Linux ABI 0.1 – November 28, 2018 – 9:23

Chapter 3

Program Loading and Dynamic
Linking

3.1 Program header
The following Linux program header types are defined:

Table 3.1: Program Header Types

Name Value
PT_GNU_EH_FRAME 0x6474e550
PT_GNU_PROPERTY 0x6474e553

PT_GNU_EH_FRAME The segment contains .eh_frame_hdr section. See
Section 2.1.3 of this document.

PT_GNU_PROPERTY The segment contains .note.gnu.property sec-
tion. See Section 2.1.5 of this document.

3.2 Note Section
The following note descriptor types are defined:

19

Linux ABI 0.1 – November 28, 2018 – 9:23

Table 3.2: Note Descriptor Types

Name Value
NT_GNU_ABI_TAG 1
NT_GNU_BUILD_ID 3
NT_GNU_PROPERTY_TYPE_0 5

NT_GNU_ABI_TAG The ABI tag note. See Section 2.1.6 of this document.

NT_GNU_BUILD_ID The build ID note. See Section 2.1.4 of this document.

NT_GNU_PROPERTY_TYPE_0 The program property note. See Section 2.1.5
of this document.

20

Linux ABI 0.1 – November 28, 2018 – 9:23

Chapter 4

Development Environment

During compilation of C or C++ code at least the symbols in table 4.1 are defined
by the pre-processor.

Table 4.1: Predefined Pre-Processor Symbols

__linux
__linux__
__unix
__unix__

21

Linux ABI 0.1 – November 28, 2018 – 9:23

	About this Document
	Related Information

	Object Files
	Sections
	Special Sections
	EH_FRAME section
	EH_FRAME_HDR section
	.note.gnu.build-id section
	.note.gnu.property section
	.note.ABI-tag section
	Alignment of Note Sections

	Symbol Table
	STT_GNU_IFUNC Symbol

	Program Loading and Dynamic Linking
	Program header
	Note Section

	Development Environment

