
COMP4035 Database System Implementation Project Assignment

Project Assignment – Implementing B+-Tree

Due: 11:00am April 12, 2017

 Students are required to work in groups of 2 - 3 members. Students are responsible

to form groups among themselves.

 Register groups online (http://www.comp.hkbu.edu.hk/~comp4035/proj/reg.html), by

March 1 2, 2017. Successful registration will earn each member 5 marks (out of 100).

Those who fail to register their groups by the deadline will be grouped by random by the

instructor.

 Start early and proceed in steps. Read the project description carefully before you start.

 This assignment is worth 10% of your overall grade.

Project Description

In this assignment, you will implement a B+-tree index:

 Assume the whole B+-tree is kept in the main memory.

 Assume the fan-out of each node is 7 (i.e., 6 index/data entries per page).

 Assume Alternative 2 is used for data entries.

 For simplicity, we only handle integer search keys; we don’t maintain actual data

records (so the rids in data entries can be set to null).

 Your implementation should also deal with duplicate key values (refer to Page 357 in

the (3rd edition) textbook).

 You can use any language (e.g., C, Java, C++, C#, etc.) for the implementation.

Group Members

 You are required to work in groups of 2-3 members.

 A 3-member group will be graded in the same way as a 2-member group. Under

special circumstances, students may form groups of a single student, but prior

approval from the instructor is required. 4-member groups are not allowed.

 Each member of the same group will receive the same mark, so you need to distribute

the work among yourselves evenly. Under exceptional cases, if the members of the

same group wish to receive different grades, you should attach one separate page in

the documentation, justifying the reason and identifying individual contributions (in

percentage).

Assignment Requirements

In this assignment, you are required to implement a class, BTree, link it with the main test

program, and make sure that all test programs run successfully. Note that a successful run

does not mean that your program is correct. You should also ensure that your program will

work for all possible test cases.

http://www.comp.hkbu.edu.hk/~comp4035/proj/reg.html

COMP4035 Database System Implementation Project Assignment

The details of the functions that you have to implement are given below. We have also

provided some sample code that illustrates the use of the class BTree. However, these samples

are extremely simple and do not reflect the actual coding that we expect from you. For

example, we do not show any error checking in these samples. You are expected to write

robust programs by signaling errors when necessary.

BTree::BTree

The constructor for the BTree takes in a filename, and checks if a file with that name already

exists. If the file exists, we "open" the file and build an initial B+-tree based on the key values

in the file. Otherwise, we return an error message and the program terminates.

BTree::~BTree

The destructor of BTree just "closes" the index. This includes de-allocating the memory

space for the index. Note that it does not delete the file.

BTree::Insert

This method inserts a pair (key, rid) into the B+-Tree Index (rid can always be assumed to be

0 in your implementation). The actual pair (key, rid) is inserted into a leaf node. But this

insertion may cause one or more (key, pid) pair to be inserted into index nodes. You should

always check to see if the current node has enough space before you insert. If you don't have

enough space, you have to split the current node by creating a new node, and copy some of

the data over from the current node to the new node.1 Splitting will cause a new entry to be

added in the parent node.

Splitting of the root node should be considered separately, since if we have a new root, we

need to update the root pointer to reflect the changes. Splitting of a leaf node should also be

considered separately since the leaf nodes are linked as a link list.

Due to the complexity of this function, we recommend that you write separate functions for

different cases. For example, it is a good idea to write a function to insert into a leaf node,

and a function to insert into an index node.

BTree::Delete

This method deletes an entry (key, rid) from a leaf node. Deletion from a leaf node may cause

one or more entries in the index node to be deleted. You should always check if a node

underflows (less than 50% full) after deletion. If a node becomes underflows, merging or

redistribution will occur (read and implement the algorithm in the notes).

You should consider different scenarios separately (maybe write separate functions for them).

You should consider deletion from a leaf node and index node separately. Deletion from the

root should also be considered separately.

The following code fragment may be helpful:

1 Assume the re-distribution option is NOT used.

COMP4035 Database System Implementation Project Assignment

Checking if a node is half full:

if (node->AvailableEntries() < (Fanout-1)/2)

{

// Try to re-distribute, borrowing from sibling

// (adjacent node with same parent as this node).

// If re-distribution fails, merge this node and sibling.

}

BTree::Search

This method implements range queries. Given a search range (key1, key2), the method returns

all the qualifying key values in the range of between key1 and key2 in the B+-tree. If such

keys are not found, it returns “none”. Be careful with the duplicate keys that span over

multiple pages.

BTree::DumpStatistics

In this method, you are required to collect statistics to reflect the performance of your B+-

Tree implementation. This method should print out the following statistics of your B+-Tree.

1. Total number of nodes in the tree

2. Total number of data entries in the tree

3. Total number of index entries in the tree

4. Average fill factor (used space/total space) of the nodes.

5. Height of tree

These statistics should serve you in making sure that your code executes correctly. For

example, the fill factor of each node should be greater than 0.5. You should make sure that

DumpStatistics performs this operation.

BTree::PrintTree, BTree::PrintNode

These are helper functions that should help you debug, by showing the tree contents. PrintTree

must be implemented and PrintNode is optional.

User Interface

You should run the program interactively. The program should take one argument, which

specifies the data file storing the search key values on which the initial B+-tree is built. After

you launch the program, the program will wait for commands on stdin. An example interface

is given below (the bold lines are your input, while the others are the output of your program):

> btree -help
Usage: btree [fname]

fname: the name of the data file storing the search key values

> btree data.txt

Building an initial B+-Tree...

Launching B+-Tree test program…

COMP4035 Database System Implementation Project Assignment

Waiting for your commands:

insert 10 20 2
2 data entries with keys randomly chosen between [10, 20] are inserted!

delete 15 16

The data entries for values in [15, 16] are deleted.

print
print out your B+-tree here; the format is up to you as long as it’s clear …

stats

Statistics of the B+-tree:

Total number of nodes: 10
Total number of data entries: 30

Total number of index entries: 3

Average fill factor of leaf nodes:

60%

Height of tree: 3

quit
Thanks! Byebye 



>

The data file containing the search key values has the format of one value per line. An

example data file is:

13

2

16

14

10

13

16

7

Below are the commands your program should support:

insert <low> <high> <num> Insert num records randomly chosen in the range [low, high]

delete <low> <high> Delete records with key values in the range [low, high]

search <low> <high> Return the keys that fall in the range [low, high]

print Print the whole B+ tree (format up to you, but be clear!)

stats Show stats

quit Terminate the program

Submission Procedure

COMP4035 Database System Implementation Project Assignment

1) Zip the entire set of source code, together with a report, and make files if any, and email

the zip file to the TA (Mr. Xu Cheng: chengxu@comp.hkbu.edu.hk). Further details will

be provided later.

2) The report should describe (expected to be 2-5 pages long):

 Brief description of this project and the B+-tree

 The data structures used in the implementation

 Algorithms used

 The platform (Windows or Unix), the usage of your program, and the installation

procedure if needed

 Highlight of features, if any, beyond the required specification

Grading Criteria

 Group Registration (5%): You will get 5 marks upon successful registration of your

group before the deadline (March 2, 2016).

 Correctness (65%): You will get full marks if your implementation is correct. Partial

credit will be given to a partially correct submission.

 Coding Style (10%): We expect you to write neat code. Code should be nicely

indented and commented. We also expect you to follow the coding conventions.
 Documentation (20%): The report should be short, clear, concise, and informative

(see the guidelines above).

Coding Conventions

You need to follow certain coding conventions for all your assignments.

 Name for all classes/methods/types should start with a capital letter. Break multiple

words with caps. For example InsertLeafEntry.

 Name for all members/variables should start with small letters. Break multiple words

with caps. For example numOfNodes;

 Name for all enum/macro should be all caps. Break multiple words with underscore.

For example NODE_FANOUT.

VERY IMPORTANT Advice

 Start early.

 Do this assignment in increasingly more difficult steps. For example, you might want

to implement BTree::Insert and for tree with only one node (a root) and assume no

overflow. Then implement BTree::Insert that handles overflows in leaf nodes, and

then implement BTree::Insert to handle overflows in index nodes.

 The project must be done by the individual group. No sharing of code and copying of

code from others are allowed. Once detected, all the involved will be given some

penalty in the final grade in addition to zero mark to the project.

mailto:chengxu@comp.hkbu.edu.hk

