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This article presents Point-LIO: a robust and high-bandwidth LiDAR-inertial odometry with the capability to estimate extremely
aggressive robotic motions. Building on the incremental k-d tree (ikd-Tree) for efficient map organization and a tightly-coupled on-
manifold Kalaman filter for state estimation, Point-LIO has two key novelties that enable a high-bandwidth LiDAR-inertial odome-
try (LIO). The first one is a point-by-point LIO framework, where the state is updated at each LiDAR point measurement without
accumulating them into a frame. This point-by-point update allows an extremely high-frequency odometry output, significantly in-
creases the odometry bandwidth, and also fundamentally removes the artificial in-frame motion distortion in aggressive motions. The
second main novelty is a stochastic process-augmented kinematic model which models the IMU measurements as an output, instead
of input as in existing filter-based odometry or SLAM systems, of the model. This new modeling method enables accurate localiza-
tion and reliable mapping for aggressive motions even when IMU measurements are saturated in the middle of the motion. Various
real-world indoor and outdoor experiments on solid-state LiDARs with small field-of-view are conducted for performance evaluation.
Overall, Point-LIO is able to provide accurate, high-frequency odometry (4-8 kHz) and reliable mapping under severe vibrations and
aggressive motions with high angular velocity (75 rad s−1) beyond the IMU measuring ranges. We further conduct an exhaustive
benchmark comparison in 12 sequences from a variety of open LiDAR datasets collected by multi-line spinning LiDARs and solid-
state LiDARs. Point-LIO achieves consistently comparable accuracy and time consumption, showing that Point-LIO is computa-
tionally efficient (e.g., comparable time consumption with fewer computation resources), robust (e.g., reliable pose estimation under
various environments), versatile (e.g., applicable to both multi-line spinning and solid-state LiDARs, automobile vehicles, robot cars,
UAVs, and hand-held platforms). Finally, two example applications of Point-LIO are demonstrated, one is a racing quadrotor and
the other is a self-rotating UAV, both subject to high angular velocities (e.g., 59 rad s−1 and 25 rad s−1) beyond the IMU measuring
ranges. Our system will be open on Github https://github.com/hku-mars/Point-LIO.git for the benefit of the community.

1 Introduction

Over the past decades, due to the direct, dense, active and accurate measurements of depth, three-dimensional
(3-D) light detection and ranging (LiDAR) sensors have been playing an increasingly important role in
autonomous applications, such as view-based SLAM [1, 2], robotic exploration and inspection [3, 4], and
autonomous driving [5–8]. Recent developments [9, 10] in LiDAR technologies have enabled the com-
mercialization and mass production of lightweight, cost-efficient and high-performance LiDAR sensors,
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with the potential to benefit a range of existing and emerging applications such as autonomous naviga-
tion [11] and object detection [12, 13].
A fundamental requirement of LiDAR sensors applied in navigation tasks is to provide accurate posi-
tion estimations for robot control, and consistent and high-rate mappings for timely perception of the
environment. By measuring points at an extremely high rate (e.g., millions per second), LiDAR sen-
sors could enable considerably high-rate odometry and mapping, which allows the tracking of extremely
high-speed motions. However, existing approaches are all based on a frame architecture similar to vision-
based methods, where the points in a frame are processed periodically at a certain frame rate (e.g., 10
Hz). While, in reality, the LiDAR points are sampled sequentially at different time instants, accumulat-
ing these points into a frame will introduce artificial motion distortion and adversely affect the mapping
result and odometry accuracy. The low frame rate also increases latency in the odometry and limits the
attainable bandwidth, where the odometry bandwidth is defined in analogy to the bandwidth of a dy-
namic system, which is the frequency where the system gain drops below 0.707. An odometry bandwidth
represents how fast a motion could be such that the odometry can estimate satisfactorily.
In this work, we address these issues by two key novel techniques: point-by-point state update and stochastic-
process-augmented kinematic model. More specifically, our contributions are as follows:

1. We propose a point-wise LiDAR-inertial odometry framework, which fuses a LiDAR point at its
actual sampling time without accumulating into a frame. The elimination of points accumulation
removes the in-frame motion distortion and allows high odometry output and mapping update at
nearly the point sampling rate, which further enables the system to track very fast motions.

2. To further advance the system bandwidth beyond the IMU measuring range, we use a stochastic
process model [14] to model the IMU measurements. Then, we augment this model into the system
kinematics and treat the IMU measurements as system output. The stochastic process-augmented
kinematic model allows the smooth estimation of system state, including angular velocity and linear
acceleration, even when IMU saturates.

3. We integrate these two key techniques into a full tightly-coupled LiDAR-inertial odometry system,
termed as Point-LIO. The system uses an on-manifold extended Kalman filter to update the system
state by fusing each LiDAR point or IMU data at its respective sampling time. By exploiting the
system sparsity and linearity, the developed system achieves real-time state estimation even on low-
power ARM-based computer onboard a micro aerial vehicle.

4. The developed system is tested in various challenging real-world data collected by an emerging solid-
state LiDAR with very small FoV. The results show the ability of Point-LIO on motion distortion
compensation, high odometry output rate (4-8 kHz) and high bandwidth (> 150 Hz). The system
is also able to estimate states under extremely aggressive motions (of angular velocity more than
75 rad s−1) with saturated IMU measurements after the initial stage. Furthermore, an exhaustive
benchmark comparison on 12 sequences from various open LiDAR datasets shows that Point-LIO
achieves consistently comparable accuracy and efficiency to other counterparts while costing fewer
computation resources. Real-world applications on actual UAVs are finally demonstrated.

The remaining paper is organized as follows: In section 2, we discuss relevant research works. We give
an overview of the complete system pipeline in section 3. section 4 presents the system formulation, an
EKF-based state estimator, and summarizes the algorithm. The evaluations of the system are presented
in section 5 and benchmark comparison on open datasets is reported in section 6. Finally, applications of
the system in real-world UAVs are shown in section 7, followed by conclusions in section 8.

2 Related Works
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2.1 LiDAR(-inertial) odometry

2.1 LiDAR(-inertial) odometry

Many recent works on 3D LiDAR odometry and mapping are based on the LiDAR-odometry and map-
ping (LOAM) structure [15], where raw LiDAR points are accumulated into a frame (also called a scan)
to extract feature points (e.g., edge and plane). The extracted feature points are then registered to the
previous scan to produce an odometry output at the scan rate (i.e., 10 Hz), and a few recent scans are
accumulated into a small sub-map which is finally registered and merged to the global map at a lower
rate (i.e., 1 Hz) to refine the LiDAR pose with respect to the map. The separate structure between scan-
to-scan and scan-to-map in LOAM has been adopted in many following-up works, such as Lego-LOAM [16],
which considers the constraints arising from the ground during the scan-to-scan match to improve the
odometry accuracy, LINS [17], which fuses the IMU data with scan registration, and others such as [18,
19] , which focus on the the improvements of computation efficiency or accuracy.
While the separation between scan-to-scan and scan-to-map can significantly alleviate the computation
load required for the odometry, the scan-to-scan registration in odometry often leads to quick drift accu-
mulation. Moreover, scan-to-scan registration requires large overlaps between consecutive scans, which
may not be available in small FoV solid-state LiDARs [20]. To address these problems, direct scan-to-
map (or scan-to-local map) has been widely adopted, such as those based on point maps [11, 21], (G-
)ICP [22], NDT [22], Surfel maps [23–26], or voxel maps [27]. In particular, [20] proposes a parallel scan-
to-map method to deal with the small FoV problems of solid-state LiDARs. [28] fuses the IMU measure-
ments into the scan-to-map registration in an efficient iterated Kalman filter framework. A key problem
in the scan-to-map framework is how to maintain the map structure such that it can incrementally add
points from new scans while allowing efficient queries. To address this problem, [29] proposes an incre-
mental k-d tree, ikd-Tree, as the map structure. Benefiting from this efficient incremental mapping struc-
ture, the system FAST-LIO2 is able to perform odometry and mapping in real-time at 10 Hz for spin-
ning LiDARs and 100 Hz for solid-state LiDARs, even on low-power ARM-based computers.
One major drawback of scan-to-map registration is that the odometry is estimated at the rate of the
scan (or frame), limiting the odometry output frequency at the frame rate. The limited output frequency
will cause a delay in the odometry equal to the scan duration. Furthermore, the limited state estima-
tion rate will put an unnecessary upper bound for the odometry bandwidth due to the Nyquist-Shannon
sampling theorem. This problem has been partially addressed in Lola-SLAM [30] and LLOL [31], which
propose to slice a scan to multiple sub-scans and register each to the map once it is received, achieving
an odometry at 160 Hz and 80 Hz, respectively. Compared with these methods (i.e., the scan-to-scan
[15–19], the scan-to-map [11, 21–26], and the sub-scan-to-map [30, 31]), our proposed system is a point-
to-map framework, which registers each individual point to the map once it is received. This point-to-
map framework allows an odometry at the point sampling rate in theory and 4-8 kHz in practice. The
unprecedented high-frequency state update reduces the latency down to microseconds while significantly
increasing the odometry bandwidth.

2.2 Motion distortion compensation

As mentioned above, existing works on LiDAR (-inertial) odometry and mapping are almost all based
on scans (i.e., frames), which will suffer from in-frame motion distortion resulted from the continuous
LiDAR motion during a frame. To correct such distortion, compensation methods are often necessary.
Most of efforts assume a constant-velocity motion within the frame to compensate the motion distortion,
such as in [15, 17–19, 32–39]. The constant-velocity motion assumption is valid when the scan duration
is short or the motion is gentle. But for very aggressive motions where the velocity may change during a
scan, e.g., in drone aerobatics, the constant-velocity method will often cause large drift or even failures
in odometry.
Another popular method for motion compensation is based on continuous-time trajectory optimization,
such as those based on B-Splines [26, 40–42] and Gaussian Process model [43–45]. Continuous-time tra-
jectories allow the evaluation of pose at any time instant, hence can compensate the distortion of each
individual point. However, continuous-time trajectory optimization is very time-consuming and often
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2.3 Formulation of inertial measurements

implemented offline [41, 42, 44, 45]. Although there are some online implementations [26, 40, 43], the
odometry rate is often low (e.g., 10Hz) to ensure real-time optimization. Moreover, they require to ac-
cumulate sufficient points for reliable trajectory parameter optimization, which introduces considerable
odometry latency. The inherent smoothness of continuous-time trajectories also prevents the description
of highly aggressive motions experienced by the robot.
Leveraging IMU measurements is another effective method for motion compensation [29, 46]. These meth-
ods integrate the LiDAR pose using the IMU data within a frame to undistort the contained points. Due
to the high-frequency of IMU measurements (e.g., 200 Hz), the IMU-based motion compensation is quite
effective for usual robot motions and even in fast-rolling drone maneuvers [29] (up to 1242 ◦ s−1). How-
ever, the method is still limited by the IMU frequency, and also suffer from IMU measurement noises
and bias estimation errors.
The ad-hoc motion compensation reviewed above is ultimately due to the frame-based odometry frame-
work in existing methods. In our system, we fuse each individual LiDAR point at its true sampling time
instead of accumulating points into a frame. The elimination of frame accumulation fundamentally re-
moves the motion distortion from the very beginning, hence suffering from no drawbacks mentioned above.

2.3 Formulation of inertial measurements

To fuse IMU measurements with LiDAR point registration, two mainstream methods are often used, i.e.,
loosely-coupled and tightly-coupled. Loosely-coupled methods integrate the IMU measurements to ob-
tain a pose prior estimation and use this prior estimation as an initial pose for the subsequent scan reg-
istration [15, 38, 47–49]. On the other hand, tightly-coupled approaches fuse IMU measurements and Li-
DAR points in a joint optimization. Two implementations have been proposed for tightly-coupled ap-
proaches: extended Kalman filter (EKF) based [17, 29, 50, 51] and optimization based [18, 52, 53]. EKF-
based methods [17, 29, 50, 51] integrate the IMU measurements in an EKF’s propagation procedure to
obtain pose estimates, which are subsequently fused with the LiDAR measurements in an EKF update
step. In contrast, optimization-based methods pre-integrate the IMU measurements to obtain the rela-
tive pose constraints, and then fuse this pre-integrated relative pose constraints with point registration
errors [18, 52, 53].
Tightly-coupled methods often have higher robustness and accuracy than loosely-coupled methods. Yet,
in all above tightly-coupled methods, IMU data are used as an input of a kinematic model, so it can be
propagated in the EKF propagation or pre-integrated for one frame duration [54]. Such EKF propaga-
tion or pre-integration would suffer from saturation problems if the robot motion exceeds the IMU mea-
suring range. In [26, 44, 45], IMU data is used to provide measurements of the angular velocity and lin-
ear acceleration predicted from the continuous-time trajectory, based on which the trajectory parame-
ters are optimized along with the LiDAR scan registration factors. Viewing IMU data as measurements
of the model output could naturally deal with IMU saturation caused by aggressive motions, although
this capability is limited by the continuous-time model as reviewed above. Our method is similar to [26,
44, 45] by viewing IMU data as measurements of the model output, but models the robot motion as a
stochastic process, which is then augmented with the kinematics. Such stochastic process-augmented
kinematic model allows the IMU to update the state along with LiDAR points in an EKF framework.
The developed system is able to deal with saturated IMU measurement in extremely aggressive motions,
like vibration and high-speed motion. To the best of our knowledge, it has not been demonstrated in any
prior work that the LiDAR-inertial systems could work with saturated IMU measurements.

3 System Overview

Our design philosophy is to truthfully recognize that 1) the LiDAR points are sequentially sampled at
respective time, instead of as a frame sampled at the same time; 2) IMU data are measurements, instead
of the input, of the system. We fuse these two measurements in an on-manifold extended Kalman filter
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Figure 1: System overview of Point-LIO. ⊕ indicates information addition.

framework [55] once the respective measurements (each LiDAR point or IMU data) are received.
The overview of our designed system is shown in Figure 1, the sequentially sampled LiDAR points and
IMU data are both used to update states at their respective time stamp, leading to an extremely high-
rate odometry output, i.e., 4-8 kHz in practice. In particular, for each LiDAR point received, a corre-
sponding plane from the map is searched. If the point is matched with a plane fitted from the points in
the map, a residual is computed to update the system state using an on-manifold Kalman filter. The op-
timized pose finally registers the LiDAR point into global frame and merges to the map, and then pro-
ceeds to the next measurement (LiDAR point or IMU data). Otherwise, if the point has no matched
plane, it is directly added to the map by the Kalman filter-predicted pose. To enable fast plane corre-
spondence search meanwhile admitting new registered points, we use an incremental k-d tree structure,
ikd-Tree, originally developed in FAST-LIO2 [29]. For each IMU measurement, the saturation check for
each channel of the IMU is conducted separately, the channels that have saturated values would not be
used for state update.

4 State Estimation

The state estimation of Point-LIO is a tightly-coupled on-manifold Kalman filter. Here, we briefly ex-
plain the essential formulations and workflow of the filter and refer readers to [55] for more detailed and
theoretical explanations of the on-manifold Kalman filter.

4.1 Notations

To ease the explanation, we adopt notations as follows:

Symbol Meaning
xk State x at the k-th measurement sampling time.
x Ground-true value of state x.
x̂,x̄ Propagated and updated value of state x.
δx Error between ground-true state x

and its estimation x̂.

Furthermore, we introduce two encapsulated operations, ⊞ (“boxplus”) and its inverse ⊟ (“boxminus”)
defined in [55] to describe the system on a manifold M of dimension n and parameterize the state error
in an Euclidean space Rn. Also, these operations can describe the system state space model in discrete
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4.2 Kinematic model

time more compactly. We refer readers to [55] for more detailed definitions and derivations, in this pa-
per, we are only concerned with the manifold SO(3) and Rn:

⊞ :M× Rn → M; ⊟ : M×M → Rn

SO(3) :R⊞ r = R · Exp(r); R1 ⊟R2 = Log(RT
2 ·R1)

Rn :a⊞ b = a+ b; a⊟ b = a− b

where Exp(r) = I + sin(∥r∥) ⌊r⌋∥r∥ + (1 − cos(∥r∥)) ⌊r⌋
2

∥r∥2 is the exponential map on SO(3) and Log is its
inverse map. For a compound manifold M = SO(3)× Rn that is the Cartesian product between the two
sub-manifolds M = SO(3) and Rn, we have:[

R
a

]
⊞

[
r
b

]
=

[
R⊞r
a+b

]
,

[
R1

a

]
⊟

[
R2

b

]
=

[
R1⊟R2

a−b

]
. (1)

4.2 Kinematic model

We first derive the system model, which consists of a state transition model and a measurement model.

4.2.1 State transition model

Taking the IMU frame (denoted as I) as the body frame and the first IMU frame as the global frame
(denoted as G), the continuous kinematic model is

GṘI =
GRI⌊Iω⌋, GṗI =

GvI ,
Gv̇I =

GRI
Ia+ Gg, Gġ = 0

ḃg = nbg , ḃa = nba ,
Iω̇ = wg,

I ȧ = wa

(2)

where GRI , GpI and GvI represent the IMU attitude, position and velocity in the global frame, Gg is
the gravity vector in the global frame. bg, ba are random-walk IMU biases driven by Gaussian noises
nbg ∼ N (0,Qbg) and nba ∼ N (0,Qba), respectively. The notation ⌊a⌋ is the skew-symmetric cross
product matrix of a ∈ R3. Iω and Ia denote the angular velocity and acceleration of IMU in the body
frame, i.e., IMU frame. As proposed in [14], a certain robot motion (the angular velocity Iω and linear
acceleration Ia) can always be viewed as a sample of a collection or ensemble of signals, which enables
us to describe, statistically, the robot motion by a random process. Moreover, as suggested in [14], since
the motion of robotic systems usually possesses certain smoothness (e.g., due to actuator delay), quick
changes in angular velocities and accelerations are relatively unlikely and a N -th order integrator ran-
dom process would often suffice the actual use. In particularly, we choose first order integrator models
driven by Gaussian noises wg ∼ N (0,Qg) and wa ∼ N (0,Qa) to model the angular velocity Iω and
linear acceleration Ia, respectively.
The continuous model (2) is then discretized at each measurement step k. Denote ∆tk the current mea-
surement interval, which is the time difference between the previous measurement (an IMU data or Li-
DAR point) and the current measurement (an IMU data or LiDAR point). The continuous model (2) is
descretized by assuming the input holds constant for the interval ∆tk, leading to

xk+1 = xk ⊞ (∆tkf(xk,wk)) (3)

where the manifold M, function f , state x and the process noise w are defined as:

M ≜ SO(3)× R21, dim(M) = 24

x ≜
[
GRI

GpI
GvI bg ba

Gg Iω Ia
]

w ≜
[
nbg nba wg wa

]
∼ N (0,Q)

f(x,w) ≜
[
Iω GvI

GRI
Ia+ Gg nbg nba 03×1 wg wa

]
∈ R24

(4)

where Q = diag(Qbg ,Qba ,Qg,Qa) is the covariance matrix of the process noise w.
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4.3 Extended Kalman filter

Figure 2: Illustration of direct registration of LiDAR point to map. Gqi and ui refer to a point in the map and the normal
vector of the plane in blue.

4.2.2 Measurement model

The system has two measurements, a LiDAR point or an IMU data (consists of angular velocity and ac-
celeration measurements). These two measurements are often sampled and received by the system at dif-
ferent time, so we model them separately.
Assume the LiDAR frame coincides with the body (i.e., IMU) frame or has pre-calibrated extrinsic, a Li-
DAR point Ipmk

is equal as the true position in the local IMU coordinate frame Ipgt
k , which is unknown,

contaminated by an additive Gaussian noise nLk
∼ N (0,RLk

):

Ipmk
= Ipgt

k + nLk
(5)

This true point, after projecting to the global frame using the true (yet unknown) IMU pose GTIk =
(GRIk ,

GpIk), should lie exactly on a local small plane patch in the map (see Figure 2), i.e.,

0 = GuT
k (

GTIk(
Ipmk

− nLk
)− Gqk)︸ ︷︷ ︸

hL(xk,Ipmk
,nLk

)

(6)

where Guk is the normal vector of the corresponding plane and Gqk is any point lying on the plane. Note
that GTIk is contained in the state vector xk. (6) imposes an implicit measurement model for the state
vector xk.
The IMU measurement consists of angular velocity measurement (Iωm) and acceleration measurement
(Iam): [

Iωmk
Iamk

]
=

[
Iωk + bgk + ngk
Iak + bak + nak

]
︸ ︷︷ ︸

hI(xk,nIk
)

(7)

where ng ∼ N (0,Rg), na ∼ N (0,Ra) are both Gaussian noises. Collectively, nI =
[
nT
g nT

a

]T ∼
N (0,RI) = N (0, diag(Rg,Ra)) is the measurement noise of the IMU. As can be seen, the two states ω,
bg (and similarly a, ba), which are separate in the state equation (2) are now correlated in the angular
velocity measurement ωm (or acceleration measurement a).
To sum, the measurement model of the system could be presented in the following compact form:

0 = hL(xk,
Ipmk

,nLk
),[

Iωmk
Iamk

]
= hI(xk,nIk).

(8)

4.3 Extended Kalman filter

A tightly-coupled extended Kalman filter is used for the state estimation of Point-LIO. The workflow of
the EKF is presented in this section.
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4.3 Extended Kalman filter

4.3.1 State Propagation

Assume we have received measurements up to step k and the updated state at that time step is x̄k along
with the updated covariance matrix P̄k. The state propagation from step k to next measurement step
k + 1 follows directly the state transition model in equation (3) by setting wk = 0:

x̂k+1 = x̄k ⊞ (∆tkf(x̄k,0)) (9)

And the covariance is propagated as:

P̂k+1 = Fxk
P̄kF

T
xk

+ Fwk
QkF

T
wk

(10)

where Qk is the covariance of the process noise wk, and the matrices Fxk
, Fwk

are computed as:

Fxk
= ∂(xk+1⊟x̂k+1)

∂δxk

∣∣∣
δxk=0,wk=0

=
∂

((
(x̄k⊞δxk)⊞(∆tkf(x̄k⊞δxk,0))

)
⊟
(
x̄k⊞(∆tkf(x̄k,0))

))
∂δxk

=



F11 0 0 0 0 0 I∆tk 0
0 I I∆tk 0 0 0 0 0
F31 0 I 0 0 I∆tk 0 F38

0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I



Fwk
= ∂(xk+1⊟x̂k+1)

∂wk

∣∣∣
δxk=0,wk=0

=
∂

((
x̄k⊞(∆tkf(x̄k,wk))

)
⊟
(
x̄k⊞(∆tkf(x̄k,0))

))
∂wk

=



0 0 0 0
0 0 0 0
0 0 0 0
I 0 0 0
0 I 0 0
0 0 0 0
0 0 I 0
0 0 0 I


,

(11)

where xk+1 is true value of state vector at time step k+1, and F11 = Exp(−Iω̄k∆tk), F31 = −GR̄Ik⌊I āk⌋∆tk,
F38 =

GR̄Ik∆tk.

4.3.2 Residual computation

LiDAR measurement With the predicted pose GT̂Ik+1
= (GR̂Ik+1

, Gp̂Ik+1
) from the Kalman propaga-

tion (9), we project the measured LiDAR point Ipmk+1
to the global frame Gp̂k+1 = GR̂Ik+1

Ipmk+1
+

Gp̂Ik+1
and search its nearest 5 points (within 5 m distance from Gp̂k+1) in the map organized by ikd-

Tree. The found nearest neighbouring points are then used to fit a local small plane patch with normal
vector Guk+1 and centroid Gqk+1 as shown in the measurement model (see equation (6) and also Figure
2). If the 5 nearest points do not lie on the fitted plane path (i.e., distance of any point to the plane is
larger than 0.1 m), current measurement of LiDAR point Gp̂k+1 is directly merged into the map without
residual computation or state update. Otherwise, if the local plane succeeds to fit, a residual (rLk+1

) is
calculated according to equation (8) as:

rLk+1
= 0− hL(x̂k+1,

Ipmk+1
,0) = hL(xk+1,

Ipmk+1
,nLk+1

)− hL(x̂k+1,
Ipmk+1

,0)

≈ HLk+1
δxk+1 +DLk+1

nLk+1

(12)

where δxk+1 = xk+1 ⊟ x̂k+1 with xk+1 being the true value of state vector at time step k + 1, and

HLk+1
=

∂hL(x̂k+1⊞δx,Ipmk+1
,0)

∂δx
|δx=0 =

[
−GuT

k+1
GR̂Ik+1

⌊Ipmk+1
⌋ GuT

k+1 01×18

]
DLk+1

=
∂hL(x̂k+1,

Ipmk+1
,n)

∂n
|n=0 = −GuT

k+1
GR̂Ik+1

.
(13)
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4.3 Extended Kalman filter

IMU measurement For an IMU measurement, we first assess if any channel of the IMU is saturated
by checking the gap between the current measurement and the rated measuring range. If the gap is too
small, this channel of IMU measurement is discarded without updating the state. Then, acceleration
and angular velocity measurements from unsaturated IMU channels are collected to calculate the IMU
residual (rIk+1

) according to equation (7) (to simplify the notation, we use all six channel measurements
here):

rIk+1
=

[
Iωmk+1
Iamk+1

]T
− hI(x̂k+1,0) = hI(xk+1,nIk+1

)− hI(x̂k+1,0) = HIk+1
δxk+1 +DIk+1

nIk+1
(14)

where δxk+1 = xk+1 ⊟ x̂k+1 with xk+1 being the true value of state vector at time step k + 1, and

HIk+1
= ∂hI(x̂k+1⊞δx,0)

∂δx
|δx=0 =

[
06×9 I6×6 06×3 I6×6

]
DIk+1

= ∂h2(x̂k+1,n)

∂n
|n=0 = I6×6

(15)

To sum, the residual, from either LiDAR point measurement the (12) or IMU measurement (14), is re-
lated to the state xk+1 and the respective measurement noise by the following relation:

rk+1 ≈ Hk+1δxk+1 +Dk+1nk+1, nk+1 ∼ N (0,Rk+1). (16)

where for a LiDAR point measurement we have rk+1 = rLk+1
,Hk+1 = HLk+1

,Dk+1 = DLk+1
,Rk+1 =

RLk+1
, and for an IMU measurement we have rk+1 = rIk+1

,Hk+1 = HIk+1
,Dk+1 = DIk+1

,Rk+1 = RIk+1
.

4.3.3 State Update

The propagated state x̂k+1 in (9) and covariance P̂k+1 in (10) impose a prior Gaussian distribution for
the unknown state xk+1, as follows:

δxk+1 = xk+1 ⊟ x̂k+1 ∼ N (0, P̂k+1). (17)

And the observation model (16) gives another Gaussian distribution for δxk+1:

Dk+1nk+1=rk+1−Hk+1δxk+1 ∼ N
(
0, R̄k+1

)
, R̄k+1 = Dk+1Rk+1D

T
k+1. (18)

Then combining the prior distribution in (17) with the measurement model from (18) yields the poste-
rior distribution of the state xk+1 (which is represented by δxk+1 equivalently):

argmin
δxk+1

(
∥rk+1−Hk+1δxk+1∥2R̄k+1

+ ∥δxk+1∥2P̂k+1

)
(19)

where ∥x∥2A = xTA−1x. The optimization problem in (19) is a standard quadratic programming and the
optimal solution δxo

k+1 can be easily obtained, which is essentially the Kalman update [56]:

δxo
k+1 = Kk+1rk+1

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1

Sk+1 = Hk+1Pk+1|kH
T
k+1 + R̄k+1

Pk+1 = (I−Kk+1Hk+1)P̂k+1

(20)

Then the update of xk+1 is:
x̄k+1 = x̂k+1 ⊞ δxo

k+1. (21)
The updated state will be used in the next step propagation. To do so, we need also to estimate the co-
variance, denoted by P̄k+1, of the error between the state estimate x̄k+1 and ground-truth xk+1 defined
as xk+1 ⊟ x̄k+1.

xk+1 ⊟ x̄k+1 = (x̂k+1 ⊞ δxk+1)⊟ x̄k+1

≈
(
x̂k+1 ⊞ δxo

k+1

)
⊟ x̄k+1︸ ︷︷ ︸

=0

+Jk+1(δxk+1 − δxo
k+1) (22)
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4.4 Analysis

where Jk+1 is the projection matrix

Jk+1 =
∂((x̂k+1⊞δx)⊟x̄k+1)

∂δx

∣∣∣
δx=δxo

k+1

=

[
A(θk+1)

−T 03×21

03×21 I21×21

]
A(u)−1 = I− ⌊u⌋

2
+ (1− ∥u∥

2
cot(∥u∥

2
)) ⌊u⌋∥u∥ ,θk+1 =

GR̄Ik+1
⊟ GR̂Ik+1

.

(23)

and the covariance of (δxk+1 − δxo
k+1) is the inversion of the Hessian matrix in (19), which is also the

matrix Pk+1 in (20). As a result, the covariance of xk+1 ⊟ x̄k+1, according to (22), is:

P̄k+1 = Jk+1Pk+1J
T
k+1. (24)

The updated state x̄k+1 along with the covariance matrix P̄k+1 are used in propagation of the next mea-
surement. The overall procedure of our state estimation is summarized in Algorithm 1.

Algorithm 1 State Estimation at Step k + 1

Input:
Last odometry output x̄k and P̄k;
A LiDAR point or an IMU measurement;

Output:
New odometry output x̄k+1, P̄k+1;

Workflow:
1: State propagation from the last time step k to current time step k + 1 via (9) and (10) to obtain state prediction x̂k+1

and its covariance P̂k+1.
2: if A LiDAR point then
3: Gp̂k+1 = GR̂Ik+1

Ipmk+1
+ Gp̂Ik+1

;
4: if PlaneCorrespondenceExist( Gp̂k+1) then
5: Compute rLk+1

, HLk+1
, DLk+1

via (12), (13);
6: Compute update state x̄k+1 via (20), (21);
7: Compute update covariance P̄k+1 via (23), (24);
8: Add the point transformed with the updated state x̄k+1 to the map;
9: else

10: Add point Gp̂k+1 into the map;
11: end if
12: else if An IMU measurement then
13: if NoSaturation(Iωmk+1

, Iamk+1
) then

14: Compute rIk+1
, HIk+1

, DIk+1
via (14), (15);

15: Compute update state x̄k+1 via (20), (21);
16: Compute update covariance P̄k+1 via (23), (24);
17: end if
18: end if

4.4 Analysis

In our proposed LIO framework, the state is updated by consuming each LiDAR point at its reception,
leading to a point-wise odometry. This point-wise architecture is completely different from existing frame-
based LiDAR odometry and mapping frameworks [11, 15–17, 21, 29–31] and enables an extremely high-
rate odometry output that is ideally equal to the point rate of the LiDAR sensor (from hundreds of thou-
sands to million points per second). The high-rate state update provides timely correction of the state
estimate before the estimation error increases too large in the forward propagation step, leading to a po-
tential high-bandwidth odometry that could even survive in extremely high-speed movements.
Another benefit of the point-wise LIO framework is the fundamental removal of in-frame motion dis-
tortion. Existing frame-based framework [11, 15–17, 21, 29–31] accumulates the sequentially-sampled
points into a frame and uses to update the state by assuming the frame is sampled at the same time.
Since the points in a frame are actually sampled at different times, this accumulation would cause mo-
tion distortion for points in a frame. To compensate such distortion, ad-hoc methods, such as IMU inte-
gration [17, 18, 21, 29, 38, 44, 53, 57], constant velocity assumption [15, 32–37, 58], or continuous time
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trajectory [26, 45, 52], must be used. In contrast, our point-wise LIO framework updates the state at
each point’s true sampling time, suffering from no such motion distortion.
The second main difference of our LIO framework is how we model the IMU measurements. Unlike ex-
isting methods [17, 29, 50, 51], where the IMU measurements are modeled as the input to a kinematic
model, we used a colored stochastic process to describe a robot’s dynamic behaviors, i.e., angular veloc-
ity and acceleration in (2), and model the IMU measurements as the model output (7). Modeling the
IMU measurements as the output provides an elegant way to cope with saturated IMU measurements,
which allows the estimation of motion beyond the IMU measuring range.
In our system, we adopted an extended Kalman filter, instead of an iterated Kalman filter used in frame-
based methods such as FAST-LIO2 [29] and LINS [17]. This is because for the LiDAR measurement, the
update rate is very high, so we do not need to iterate the state update exhaustively at each time step;
while for IMU measurement, the measurement equation (7) is essentially linear. The elimination of itera-
tion can effectively lower the time on state update. Moreover, since the state is updated by the LiDAR
measurements at a point-by-point base, the measurement model of LiDAR points is of one dimension
as shown in equation (6). The low-dimension measurement equation along with the great sparsity (e.g.,
Fxk

,Fwk
in (11), HLk+1

in (13) and HIk+1
in (15)) in the system can also effectively lower the computa-

tion time.

5 Evaluation

In this section, we evaluate the performance of our developed system in three aspects: 1) removal of mo-
tion distortion, 2) high odometry frequency with high bandwidth, and 3) state estimation with saturated
IMU measurements in the middle.

5.1 Implementation

The proposed Point-LIO is implemented in C++ and Robots Operating System (ROS). The extended
Kalman filter is implemented based on the IKFoM toolbox developed in our previous work [55]. We use
the incremental k-d tree, ikd-Tree, developed in FAST-LIO2 [29]) as our mapping structure with its de-
fault parameters: local map size L = 2000 m, spatial downsample resolution l = 0.25 m, the re-balancing
thresholds of ikd-Tree are αbal = 0.6, αdel = 0.5, and the sub-tree size threshold for parallel rebuilding (in
a second thread) is Nmax = 1500.
Although our system is designed to perform state estimate after each LiDAR point reception, in prac-
tice, limited by the available drivers provided by LiDAR manufacturers, LiDAR points are packaged af-
ter accumulating a complete scan and then sent to the LIO systems. To cater for this practical limita-
tion, Point-LIO sorts all LiDAR points and IMU data contained in a received package according to their
respective timestamps. Then, the sorted data are processed one by one by Point-LIO.
In all the evaluations, we compare Point-LIO to a state-of-the-art frame-based odometry, FAST-LIO2
[29]. All the experiment results for FAST-LIO2 are collected using the public version of FAST-LIO2 with
its default parameter values (which are essentially also the values of our parameters as detailed above).
Since FAST-LIO2 performs a spatial downsampling with resolution 0.3 for each received LiDAR scan,
for a fair comparison, we also perform such spatial downsampling in Point-LIO before the data sorting
and point by point update.
In addition, to study the effect of point-by-point update, we provide a system that only integrates this
scheme but not applies the colored stochastic model as an ablation study. The ablation-study system
is the same as FAST-LIO2, which models the IMU measurements as the input to the system kinematic
model, but differs in that the each individual LiDAR point in a scan is used to update the system se-
quentially as our proposed system does. This leads to a state update frequency similar to ours. In the
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5.2 Platforms

Figure 3: Experimental platforms for evaluations. (a) The sensor suite consisting of a Livox Avia LiDAR, a first-person view
(FPV) camera and five Vicon Markers. The sensor suite is carried by (b) a robot car, (c) a rotating platform driven by a
step motor, and (d) a pendulum.

following, we denote our developed system Point-LIO as “Point-LIO” and the above ablation-study sys-
tem as “Point-LIO-input" to distinguish the role of IMU measurements in the two systems.

5.2 Platforms

To collect real-world data, we develop a sensor suite, shown in Figure 3 (a), which consists of a solid-
state 3D LiDAR, Livox Avia, a first-person-view (FPV) camera and five Vicon markers for ground-truth
measurement. With a 70.4 ◦ (horizontal) × 77.2 ◦ (vertical) circular FoV and an unconventional non-
repetitive scanning pattern, the Livox Avia LiDAR produces 230,000 Hz point measurements and a built-
in IMU (model BMI088) producing 200 Hz IMU data. The points and IMU data are packaged at a fre-
quency adjustable from 10 Hz to 100 Hz. To produce different types of motion, three different platforms
are constructed to carry the sensor suite, including a robot car (see Figure 3 (b)), the RoboMaster 2019
AI developed by DJI Shenzhen; a rotating platform driven by a step motor (see Figure 3 (c)), Nimotion
STM4260A; and a pendulum (see Figure 3 (d)).

5.3 Resolving motion distortion

To verify the effectiveness of the proposed point-by-point update scheme in addressing motion distor-
tion, we collect some sequences using the robot car shown in Figure 3 (b). Three different scenes are
tested, i.e., the Belcher Bay Park (a unstructured scene), the Centennial Small Square of HKU (a semi-
structured scene), and a corridor in the Haking Wong building of HKU (a structured scene). The three
sequences are denoted as “Park", “Square" and “Corridor", respectively. In all sequences, the robot car
returns to the starting point, which enables the drift computation. The LiDAR package frequency is 10
Hz.
One challenge of this experiment is the strong vibration when the robot car moves on the ground. Since
the sensor suite is attached to the chassis without any vibration absorber, the vibration will directly pass
to the sensor and cause severe jerky motions, as indicated by the built-in IMU data shown in Figure 4.
When the robot car is stationary in the beginning, the MU measurements are stably small. As the car
starts moving, the measurements of IMU changes rapidly.

5.3.1 Mapping results

The mapping results of Park, Square and Corridor are shown in Figure 5, Figure 6 and Figure 7 respec-
tively. In each figure, we first present an global view of the final mapping results (i.e., sub-figure (a)),
then focus on certain local areas (sub-figure (b)) containing large planes (e.g., a wall). We investigate
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5.3 Resolving motion distortion

Figure 4: Measurements of IMU for three robot car sequences, i.e., Park, Square and Corridor.

the consistency of points on the wall (sub-figure (c)), from which we can compare the mapping accuracy
of FAST-LIO2 (i.e., (b1), (c1)), Point-LIO-input (i.e., (b2), (c2)) and Point-LIO (i.e., (b3), (c3)). Fi-
nally, to show the in-frame motion distortion, points of one scan (accumulation over one scan period 0.1
s) in the above-selected local areas are shown (sub-figure (d)) together with the further zoom-in (sub-
figure (e)) for FAST-LIO2 (i.e., (d1), (e1)), Point-LIO-input (i.e., (d2), (e2)) and Point-LIO (i.e., (d3),
(e3)), where the red points refer to registered LiDAR points in the current scan, and the white points
are map results accumulated up to the current scan.
As can be seen from the sub-figures (c) of Figure 5, Figure 6 and Figure 7, the overall map of FAST-
LIO2 (c1) is obviously thicker than the Point-LIO-input (c2), and the Point-LIO (c3) produces a further
thinner wall than the Point-LIO-input. The reason for this phenomenon lies in the in-frame motion com-
pensation in each individual scan as shown in sub-figure (e) of Figure 5, Figure 6 and Figure 7. As can
be seen, all red points around the selected wall are supposed to belong to the same plane, but they actu-
ally scatter off the wall for FAST-LIO2 (e1) due to the in-frame motion distortion. This in-frame distor-
tion phenomenon for the Point-LIO-input and Point-LIO is much alleviated ((e2) and (e3)).
FAST-LIO2 uses a backward propagation based on IMU measurements to project all the points of a scan
to the scan-end pose. This process is easily disturbed by the IMU measurement noises, biases estima-
tion error, and the limited IMU sampling rate. In particularly, caused by the sensor vibration, the ac-
celeration and angular velocity are changing in a high rate even within one sample interval of the IMU,
leading to large IMU propagation errors which assume the angular velocity and acceleration are con-
stant during one sampling interval. Moreover, the low frame rate (i.e., 10 Hz) also requires a long-time
(i.e., 100 ms) IMU propagation, which accumulates pose erros and results in large in-frame distortions as
shown in sub-figures (b1) and (c1).
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5.3 Resolving motion distortion

Figure 5: Illustration of motion distortion for the Park sequence.

In contrast, Point-LIO fuses the LiDAR point at its true sampling time without any points accumula-
tion, which fundamentally eliminates the motion distortion as shown in sub-figures (c2) for the Point-
LIO-input and sub-figures (c3) for the Point-LIO. Furthermore, when comparing the Point-LIO-input
(c2) with the Point-LIO (c3) both with the point-by-point update scheme, the Point-LIO performs slightly
better. This is because the Point-LIO-input still uses the IMU measurements to propagate the state (al-
though for only one LiDAR point interval), hence still suffering from the IMU measurements noise and
bias estimation errors. In contrast, the Point-LIO uses the filtered but not the raw data of IMU mea-
surements to propagate the state, which slightly reduces the motion distortion as observed in (e3). The
video of an example sequence, the Park, is available online https://youtu.be/oS83xUs42Uw.
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5.4 High odometry output frequency and high bandwidth

Figure 6: Illustration of motion distortion for the Square sequence.

5.3.2 Drift results

The drifts of FAST-LIO2, Point-LIO-input and Point-LIO are summarized in Table 1. Due to the imper-
fect operation of the robot car, the distance between the starting and ending position is not exactly zero,
but less than 10 cm. As can be seen, all the FAST-LIO2, Point-LIO-input and Point-LIO have compara-
ble drifts for Square and Corridor sequences, while for the Park sequence, FAST-LIO2 fails to return the
starting point. This is because that the Park is an unstructured environment, which makes the effect of
motion distortion on odometry accuracy more evident.

Table 1: Comparison of odometry drifts (meters)
FAST-LIO2 Point-LIO-input Point-LIO

Park: 1.242 0.064 0.080

Square: 0.041 0.038 0.039

Corridor: 0.047 0.043 0.047

5.4 High odometry output frequency and high bandwidth

We test the frequency of odometry output of FAST-LIO2, Point-LIO-input and Point-LIO on an indoor
dataset (denoted as “Odo”) collected using the rotating platform (see Figure 3 (c)) by giving quickly-
varying speed commands to the step motor, the package rate of LiDAR is 100 Hz in this experiment.
Even though the dataset is collected with LiDAR rate of 100 Hz, the framework of FAST-LIO2 is nat-
urally extendable to higher state update frequency by splitting one frame into multiples (but below the
IMU rate 200 Hz). Thus we divide one LiDAR frame into two for FAST-LIO2. Figure 8 shows the dis-
tribution of number of odometry output per second. The output frequency for FAST-LIO2 is 200 Hz,
which is the frame rate. As comparison, output frequencies for the Point-LIO-input and the Point-LIO

15



5.4 High odometry output frequency and high bandwidth

Figure 7: Illustration of motion distortion for the Corridor sequence.

are in the range of 4 kHz and 8 kHz, which is the number of points that pass the plane correspondence
check.
To enable the bandwidth analysis, the above experiment is re-conducted with ground-truth measure-
ments from Vicon Tracker recorded at the highest frequency 300 Hz. Dividing system output (the yaw
angle estimated from the odometry) by the system input (the ground-true yaw angle measured by the
Vicon system), we obtain the magnitude response (dB) of FAST-LIO2, Point-LIO-input and Point-LIO,
at different input frequencies as shown in Figure 9. As can be seen, the magnitude response of FAST-
LIO2 starts dropping when the input frequency is near to 100 Hz, suggesting a 100 Hz bandwidth (see
Table 2). 100 Hz is also the highest attainable bandwidth when the odometry output frequency is 200
Hz according to the Nyquist–Shannon sampling theorem. In contrast, both the Point-LIO-input and the
Point-LIO have bandwidth larger than 150 Hz which is beyond the measuring capability of Vicon sys-
tem.
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5.5 Extremely aggressive motion with saturated IMU measurements

Figure 8: Number of output odometry per second of FAST-LIO2 and Point-LIO-input and Point-LIO.

Figure 9: Bandwidth analysis of FAST-LIO2, Point-LIO-input and Point-LIO.

Table 2: Comparison of average frequency of odometry output (Hz) and bandwidth (Hz)
FAST-LIO2 Point-LIO-input Point-LIO

Output Odo.: 200 6132 6955

Bandwidth: 100 > 150 > 150

5.5 Extremely aggressive motion with saturated IMU measurements

While the Point-LIO-input and Point-LIO have comparable performances so far, in this section, we show
that the Point-LIO is able to track extremely aggressive motions even beyond the IMU measuring ranges.
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5.5 Extremely aggressive motion with saturated IMU measurements

Figure 10: Test environments of the spinning motion experiment and the mapping results of Point-LIO.

Two types of motion are produced in the experiments, one is spinning motion (denoted as “Satu-1”) and
the other is a circling in the space (denoted as “Satu-2”). Both experiments suffer from IMU saturation
after initial stage caused by either the high spinning rate or the large centrifugal forces. To the best of
our knowledge, no prior SLAM systems could cope with such aggressive motions or the saturated IMU
measurements.

5.5.1 Spinning motion

This experiment is conducted using the rotating platform placed in a cluttered laboratory environment
(see Figure 10 (a1)-(a4)). During the experiment, the sensor suite is rotated by the step motor under
step angular speed commands, which increases from zero to a peak value step by step and then decreases
to zero at the end. The resultant peak angular velocity is 75 rad s−1 (in yaw), which far exceeds the IMU
measuring range, i.e., 35 rad s−1. The high angular velocity also causes a peak acceleration around 80 m
s−2, also far beyond the IMU measuring range, i.e., around 30 m s−2. The onboard FPV images shown
in Figure 10 (c1) and (c2) give an illustration of the rotation in process.
The mapping result of Point-LIO is shown in Figure 10 (b1), which shows a fairly consistent mapping
of the environment, and the estimated ending position coincides with the starting position very well as
shown in Figure 10 (b2). The estimated kinematic state, including rotation in Euler angles and position,
are compared with the ground-truth in Figure 11 (a), where the x axis is broken into three segments to
zoom in the time period 84-85 s. The continuous rapid change of yaw is due to the continuous rotation
driven by the step motor, and the sinusoidal-like fluctuations in positions are caused by the offset be-
tween the Vicon marker and the step motor shaft. As can be seen, the estimated yaw angle can closely
track the actual ones in the whole process, the overall rotation and translation error (in terms of RMSE)
are 4.60 ◦ and 0.233 m, respectively. The slightly large RMSE of translation is mostly caused by the y-
direction, where the constraints in this direction are insufficient from the beginning. Considering the ex-
treme motions in the experiment, this translation error is well acceptable.
Another benefit of our Point-LIO is the capability of estimating angular velocity and acceleration (which
are states of our system and can hence be estimated by the Kalman filter) where the IMU are saturated.
The estimation versus the IMU measurements are plotted in Figure 11 (b). As can be seen, during the
time period 50-106 s, the IMU saturates (z-axis for gyroscope and y-axis for accelerometer), while our
Point-LIO can still give a reasonable estimate. Outside this region, the estimation from our Point-LIO is
in good agreement with the IMU measurements albeit some high-frequency components are filtered.
We further challenge Point-LIO by starting it at different initial angular speed of the motor. As shown
by the map results in Figure 12 and the RMSE of rotation in Table 3, when the initial angular veloc-
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(a) (b)

Figure 11: (a) Estimation results of Point-LIO for rotation in Euler angles and position of spinning motion experiment. (b)
Comparison of angular velocity and acceleration between estimation of Point-LIO and measurements from IMU. The gray
dotted lines indicate the saturation values of the IMU.

ity is below the IMU saturation value, i.e., 35 rad s−1, the Point-LIO is able to survive by constructing
a reasonable map and state estimation. The quality of state estimation is slightly degraded when com-
pared to the above case where the sensor starts from a stationary pose. This performance degradation
is reasonable since the fast initial angular speed causes Point-LIO to build a biased map at the very be-
ginning, which further misleads the subsequent state estimate. This also causes the RMSE of rotation to
increase with the initial angular velocity as seen in Table 3. When the initial angular velocity is beyond
the IMU measuring range, Point-LIO fails due to the drastic large initial state estimate (e.g., the initial
angular velocity estimate is set to zero while the actual is above 35 rad s−1).

Figure 12: Map results of Point-LIO starting with different angular velocity.

19
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Table 3: Rotation RMSE (◦) for Point-LIO starting with different angular velocity (rad s−1).

Angular velocity at start (rad s−1): 6.28 12.56 18.84 25.12 31.40 34.85 37.68

RMSE of rotation (◦): 6.9 9.7 13.6 14.6 16.4 18.7 fail

Figure 13: Error comparison of FAST-LIO2, Point-LIO-input and Point-LIO, for rotation and position estimations.

Finally, as acomparison, we run the FAST-LIO2 and Point-LIO-input on the same dataset, and the er-
ror comparisons of rotation and position are presented in Figure 13. As can be seen, the estimations of
FAST-LIO2, Point-LIO-input and Point-LIO have comparable rotation error during the first 50 s, where
IMU works normally. From time 50 s where IMU starts saturating, the estimations of FAST-LIO2 and
Point-LIO-input start to diverge immediately for rotation, and the estimation of position also starts to
drift and then diverge. In conclusion, the FAST-LIO2 as well as the Point-LIO-input fails to work under
saturated IMU measurements while our proposed Point-LIO can survive well if the saturation does not
last from the beginning.

5.5.2 Circling motion

This experiment is conducted using the pendulum in the same laboratory environment (see Figure 14
(d)). In this experiment, the sensor suite is tied to one end of a rope that is swing into a circling trajec-
tory in the vertical plane (see Figure 14 (b)). This motion causes an acceleration at the bottom of the
circle up to 40 m s−2, which exceeds the IMU measuring range 30 m s−2. FPV images shown in Fig-
ure 14 (e) gives an visual illustration of the motion. More details are shown in a video available online
https://youtu.be/oS83xUs42Uw.
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Figure 14: Test environment of the circling motion experiment and the mapping results of Point-LIO.

Qualitatively, Figure 14 (c1) and (c2) show the mapping results of our proposed Point-LIO. Since the Li-
DAR is facing front with a 70.4 ◦ × 77.2 ◦ circular FoV, only one side of the laboratory is mapped. The
estimated trajectory is shown in Figure 14 (a), which is in high agreement with the actual sensor path
shown in Figure 14 (b).
Quantitatively, the estimated rotation in Euler angles and position are compared with ground-truth mea-
sured by Vicon in Figure 15 (a), where both the Euler angle estimation and the position estimation suc-
cessfully demonstrate the 12 sequential circles. The RMSE of the average rotation and translation errors
are 4.42 ◦ and 0.0990 m, respectively. Figure 15 (b) shows the estimated angular velocity and acceler-
ation by the Point-LIO versus the IMU measurements. As can be seen, the estimations agree with the
IMU measurements pretty well when those dynamic states are within the IMU measurements. Moreover,
our Point-LIO can give reasonable acceleration estimate even when the IMU saturates. Figure 16 further
shows the error comparison among the Point-LIO, the Point-LIO-input, and the frame-based odometry
FAST-LIO2. Similar to the last experiment, our Point-LIO achieves consistently lower estimation errors
than the other two due to the ability to cope with IMU saturation.
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(a) (b)

Figure 15: (a) Estimation results of Point-LIO for rotation in Euler angles and position of the circling motion experiment.
(b) Comparison of angular velocity and acceleration between estimation of Point-LIO and measurements from IMU. The
gray dotted lines refer to saturation values of the IMU.

Figure 16: Error comparison of FAST-LIO2, Point-LIO-input and Point-LIO.

5.6 Real-time performance

The average time costs of each step of the Point-LIO-output for processing one scan of LiDAR points are
shown in Figure 17, which are tested on an intel i7-based micro-UAV onboard computer, a DJI Manifold
2-C7 with a 1.8 GHz quad-core Intel i7-8550U CPU and 8 GB RAM. The mapping includes searching
of nearest points and adding of point to the map, which takes up the largest part of time consumption.
Even the system states are updated at each LiDAR point, the time for EKF filtering including state prop-
agation and update are less than 10 ms for 10 Hz sequences and less than 1 ms for 100 Hz sequences.
The average total time consumption for one scan is compared among FAST-LIO2, Point-LIO-input and
Point-LIO-output in Table 4. × indicates that the LIO fails in those sequences. As can be seen, our Point-
LIO, with either the Point-LIO-input (i.e., Point-LIO-input) or the output model (i.e., Point-LIO), have
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Figure 17: Time usage in each step of Point-LIO.

time consumption comparable to FAST-LIO2, and they all achieve real-time performance, i.e., within
100 ms for 10 Hz sequences and within 10 ms for 100 Hz sequences. Finally, the average number of points
processed per second (including those with and without plane correspondences) over all sequences are
33,710, and the average processing time per point is 9 us.

Table 4: Comparison of time consumption (milliseconds) per scan for Point-LIO and FAST-LIO2
FAST-LIO2 Point-LIO-input Point-LIO

10
H
z

Park: 39.84 32.09 32.94

Square: 21.89 25.20 25.41

Corridor: 28.36 28.76 30.59

10
0H

z

Odo: 1.18 1.70 1.69

Satu-1: × × 1.92

Satu-2: × × 2.38

6 Benchmark Results

In this section, we test Point-LIO on various public sequences, which have more gentle motion without
IMU saturation, and compare it with other state-of-the-art LiDAR-inertial odometry methods, includ-
ing FAST-LIO2 [29], LILI-OM [11], LIO-SAM [21], and LINS [17]. The computation platform for bench-
mark comparison is the same lightweight UAV onboard computer as used in FAST-LIO2 [29], which is a
DJI Manifold 2-C7 with a 1.8 GHz quad-core Intel i7-8550U CPU and 8 GB RAM, hence the results for
FAST-LIO2, LILI-OM, LIO-SAM, and LINS can be directly obtained from the original paper [29]. Since
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6.1 Accuracy Evaluation

Point-LIO uses the same mapping structure as FAST-LIO2, for a fair comparison, we set the mapping
parameters of Point-LIO to the default values of FAST-LIO2 used in [29], i.e., the local map size L =
1000 m, the LiDAR raw points are directly fed into state estimation after a 1 : 4 (one out of four LiDAR
points) temporal downsampling, and spatial downsample resolution l = 0.5 m with re-balancing thresh-
olds of ikd-Tree as αbal = 0.6, αdel = 0.5 and Nmax = 1500. For the EKF part of Point-LIO, the LiDAR
measurement noise of Kalman filter is set as R̄k = 10−2 · I (see (18)). These parameter values are kept
the same for all sequences.
We evaluate our method on the same 12 sequences used in FAST-LIO2 [29], which are drawn from 4 dif-
ferent public datasets, i.e., “lili” from LILI-OM [11], “utbm” [59], “ulhk” [60] and “liosam” from the work
LIO-SAM [21]. Among them, “lili” uses a solid-state 3D LiDAR, Livox Horizon while the other three
datasets use the spinning LiDARs, i.e., Velodyne HDL-32E LiDAR for “utbm” and “ulhk”, and VLP-16
LiDAR for “liosam”. These LiDARs have different scanning patterns. We refer the readers to [29] for
more detailed information about the dataset and the selected sequences.

6.1 Accuracy Evaluation

Similar to [29], two criteria, the root mean square deviation (RMSE) of average translation error (for se-
quences with good ground-true trajectory) and the end-to-end error (for sequences starting and ending
at the same location), are used for the accuracy evaluation.

6.1.1 RMSE benchmark

The RMSEs are computed using the same method of the publication [29] and reported in Table 5. Com-
pared with other LIO methods, our Point-LIO achieves the best performances in 4 out of 5 sequences,
especially an obvious improvement on utbm_9, while has a slightly higher RMSE in liosam_1. The over-
all accuracy of our method is on par to (and most cases better than) the counterparts.

Table 5: Comparison of RMSE (meters) for Point-LIO, FAST-LIO2 and other state-of-art LiDAR-inertial systems on public
sequences.

utbm_8 utbm_9 utbm_10 ulhk_4 liosam_1

Point-LIO 23.77 26.35 15.70 2.17 5.24

FAST-LIO2 27.29 51.60 16.80 2.57 4.58

LILI-OM 59.48 782.11 17.59 2.29 18.78

LIO-SAM × × × 3.52 4.75

LINS 48.17 54.35 60.48 3.11 880.92

6.1.2 Drift Benchmark

The end-to-end errors are reported in Table 6. The overall trend is similar to the RMSE benchmark re-
sults, that our Point-LIO achieves the lowest drifts in 5 out of 7 sequences. The result for sequence lili_8
is worse than LILI-OM and FAST-LIO2, which is because that the LILI-OM has tuned parameters for
each of their own sequences “lili”, while parameters of Point-LIO are kept the same among all the se-
quences. And since lili_8 has a much longer trajectory than the other two “lili” sequences, the drift caused
by inappropriate parameters would accumulate along the following process and result in more than 10
meters drift worse than FAST-LIO2. Also, Point-LIO shows slightly larger RMSE on sequence ulhk_6
relative to FAST-LIO2 albeit the margin is very small.
As can be seen from the above benchmark results, Point-LIO achieves higher accuracy in most sequences
while for the rests, the margin from the best method is not significant. Considering the various types of
LiDARs, environments, and moving platforms across all datasets and sequences, this effectively shows
the accuracy and robustness of our method on real-world data.
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6.2 Processing time evaluation

Table 6: Comparison of drifts (meters) for Point-LIO, FAST-LIO2 and other state-of-art LiDAR-inertial systems on public
sequences.

lili_6 lili_7 lili_8 ulhk_5 ulhk_6 liosam_2 liosam_3

Point-LIO < 0.1 < 0.1 28.64 < 0.1 2.30 < 0.1 7.85

FAST-LIO2 < 0.1 1.63 17.39 0.39 < 0.1 < 0.1 9.50

LILI-OM 0.8 4.13 15.6 1.84 7.89 1.95 13.79

LIO-SAM × × × 0.83 2.88 × 8.61

LINS × × × 0.9 6.92 × 29.9

6.2 Processing time evaluation

Table 7 shows the processing time of Point-LIO, FAST-LIO2, LILI-OM, LIO-SAM, and LINS in all the
sequences. Both Point-LIO and the FAST-LIO2 integrate odometry and mapping together, where the
map is updated immediately at each step the odometry is updated. Therefore, the total time (“Total”
presented in Table 7) counts all possible procedures occurring in the odometry, including point-to-map-
matching, state estimation, and mapping. On the other hand, LILI-OM, LIO-SAM, and LINS are all
based on a separate architecture of odometry (including feature extraction and rough pose estimation)
and mapping (such as back-end fusion in LILI-OM [11], incremental smoothing and mapping in LIO-
SAM [21], and map-refining in LINS [17]), whose average processing time per LiDAR scan are summed
up by those two parts (“Odo.” and “Map.” respectively presented in Table 7) when ranking the computa-
tion time.

Table 7: Comparison of time consumption (milliseconds) per scan for Point-LIO, FAST-LIO2 and other state-of-art LiDAR-
inertial systems on public sequences.

Point-LIO FAST-LIO2 LILI-OM LIO-SAM LINS

Total Total Odo. Map. Odo. Map. Odo. Map.
utbm_8 19.68 22.05 65.28 84.76 × × 37.44 153.92

utbm_9 19.70 25.44 68.94 97.90 × × 38.82 154.06

utbm_10 19.65 22.48 66.10 97.29 × × 33.61 166.12

lili_6 14.19 12.56 68.95 58.46 × × × ×
lili_7 11.77 17.61 40.01 83.71 × × × ×
lili_6 10.57 15.31 61.80 79.11 × × × ×
ulhk_4 20.54 20.14 52.40 74.80 39.50 95.29 34.72 93.70

ulhk_5 35.71 23.90 53.56 47.68 25.68 127.63 28.01 99.13

ulhk_6 43.01 31.56 64.46 70.43 15.16 164.36 41.54 199.96

liosam_1 10.85 14.77 48.45 84.28 13.47 135.39 24.13 179.44

liosam_2 24.77 19.77 42.58 99.01 13.09 154.69 20.71 160.66

liosam_3 12.79 16.64 38.42 64.02 11.32 124.35 40.47 117.25

Average 20.27 20.19 55.91 78.45 19.70 133.62 33.27 147.14

As can be seen, our proposed method and FAST-LIO2 achieve the least computation time when com-
pared with other methods. When compared to FAST-LIO2, our method takes less time on 7 out of 12
sequences. The average computation time of these two methods are very close. Note that, due to the
frame-based architecture, FAST-LIO2 uses 4 threads to parallelize the nearest point search, while our
method, due to the point-wise architecture, has to perform such operations sequentially. Still, our method
takes comparable average computation time, suggesting a fewer use of the computation resources, which
could be reserved for other modules (e.g., planning, control). This computation efficiency is attributed
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Figure 18: Platforms for application. (a) Racing drone; (b) self-rotating UAV.

to the great sparsity of the system and the elimination of iteration in the Kalman filter as explained in
section 4.4.
In summary, Point-LIO has accuracy and computation efficiency comparable to FAST-LIO2, while cost-
ing fewer computation resources. At the meantime, the Point-LIO is significantly faster than the current
state-of-the-art LIO algorithms, i.e., LILI-OM, LIO-SAM, LINS, while achieving highly competitive or
better accuracy.

7 Applications

In this section, we apply our proposed Point-LIO to the state estimation of two unmanned aerial vehicles
(UAVs): one is on a racing quadrotor drone shown in Figure 18 (a) which has a thrust to weight ratio
up to 5.4. The high thrust weight ratio enables the drone to perform extremely agile motions. The other
UAV is on an agile, single-actuated aircraft called self-rotating UAV as shown in Figure 18 (b). The pro-
peller blades are attached to the motor shaft through two passive hinges [61, 62], which, by modulating
momentary acceleration and deceleration on the propeller rotation speed, is able to produce the roll and
pitch moment necessary to stabilize the UAV’s attitude. Due to the uncompensated moment produced
by the motor, the UAV will produce a high-rate continuous yaw rotation.

7.1 Racing drone

As shown in Figure 18 (a), the racing drone is mounted with a Livox Avia LiDAR and a FPV camera.
The LiDAR FoV is aligned to that of the FPV camera, based on which an expert human pilot manually
controls the drone to perform extremely agile flight maneuvers. The flights are conducted above a farm-
land with vegetation, pond and buildings (see Figure 19 (b), (c)). Several aggressive maneuvers are per-
formed during the flight, including extremely fast rolling flips (see Figure 19 (e1)-(e3)), cliff-diving and
lateral accelerations. During the flip, the angular velocities reach 59.37 rad s−1, which exceeds the IMU
measuring range 35 rad s−1. Readers can refer to the accompanying video https://youtu.be/oS83xUs42Uw
for better visual illustration of the experiment.
We conducted two flights and our method succeeded on both of them. Due to the space limit, we present
the results of one flight only. The mapping results are shown in Figure 19 (d1)-(d3), it is seen that the
constructed map is consistent with easily distinguishable fine structures on the ground, such as trees
and buildings. The estimation of rotation in Euler angles, position and velocity are shown in Figure 20
(a), and the estimation of the angular velocities versus the IMU measurements are shown in Figure 20
(b). From these results, we can see that our method is able to estimate the drone’s states even with ex-
tremely aggressive motions. As noted, the maximum velocity on one axis reaches 14.63 m s−1, maximum
acceleration reaches 30 m s−2, and angular velocity reaches 59 rad s−1. Besides the extremely agile mo-
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7.2 Self-rotating UAV

Figure 19: Mapping results of Point-LIO.

tion, the LiDAR also occasionally faces the sky, which causes no LiDAR measurements, during the ma-
neuvering. Still, our method is able to estimate the state stably.

(a) (b)

Figure 20: (a) State estimation of Point-LIO. (b) Comparison of angular velocity and acceleration between estimation from
Point-LIO and measurements from IMU. The gray dotted lines indicate saturation values of the IMU.

7.2 Self-rotating UAV

Figure 18 (b) presents the self-rotating UAV. As shown in this figure, the Livox Avia LiDAR is front,
leading to a fast FoV change when the UAV undergoes continuous yaw rotation. We use the LiDAR built-
in IMU and set the measuring range to 17.5 rad s−1, while the average yaw rate of the UAV is around 25
rad s−1. The UAV is also equipped with an low-power, ARM-based computer, Khadas VIM3 Pro, which
has 2.2 GHz quad-core Cortex-A73 CPU and 4 GB RAM. The onboard computer runs our Point-LIO to
estimate the UAV state in real-time. The estimated state is then fed to the flight controller, Pixhawk 4
Mini, to do the real-time control task. Two experiments are conducted using this UAV, one is an out-
door experiment outside the Haking Wong building of the University of Hong Kong, as shown in Fig-
ure 21 (a1) and (a2), and the other is an indoor experiment in a cluttered laboratory shown in Figure 21
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Figure 21: Mapping results of Point-LIO.

(b1) and (b2).
The real-time mapping results of the two experiments are shown in Figure 21, i.e., (c) for the outdoor
experiment, and (d) for the indoor experiment. It is seen that our method manages to build maps of
both environments without noticeable mismatches. Figure 22 (a) and Figure 22 (b) further show the es-
timation of the kinematic state (i.e., rotation, position, and velocity), angular velocity and acceleration,
respectively. The plots are enlarged during the time interval 53 − 55s, to better show the estimation re-
sults. As can be seen, our method can produce stable state estimate that are in line with the IMU mea-
surements, despite the IMU saturation in the middle and quick FoV changes caused by the fast spinning.
The average processing time per LiDAR package of our method is 14.63 ms while the package rate is 50
Hz, ensuring real-time performance. This is also confirmed by the experiments, where the controller is
able to perform stable controlled flight with the state feedback from our method.

(a) (b)

Figure 22: (a) State estimation by the Point-LIO. (b) Comparison of angular velocity and acceleration between estimation
from Point-LIO and measurements from the IMU. The gray dotted lines indicate the saturation values of the IMU.

8 Conclusion
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This paper proposes Point-LIO, a robust and high-bandwidth LIO framework. The framework is based
on a novel point-by-point update scheme, which updates the system state at the true sampling time of
each point without accumulating points into a frame. The elimination of points accumulation removes
the long-standing in-frame motion distortion and allows high odometry output at nearly the point sam-
pling rate (4-8 kHz), which further enables the system to track very fast motions. To further boost the
system bandwidth beyond the IMU measuring range, a colored stochastic process is augmented into the
kinematic model treating the IMU measurements as system output. The bandwidth, robustness, accu-
racy and computation efficiency of the developed system are exhaustively tested in real-world experi-
ments with extremely aggressive motions and public datasets with diversified LiDAR types, environ-
ments, and motion patterns. In all tests, Point-LIO achieves comparable computation efficiency and odom-
etry accuracy to other state-of-the-art LIO algorithms while significantly boosting the system bandwidth.
As an odometry, Point-LIO could be used in various autonomous tasks, such as trajectory planning, con-
trol, and perception, especially in cases involving very fast ego-motions (e.g., in the presence of severe
vibration and high angular or linear velocity) or requiring high-rate odometry output and mapping (e.g.,
for high-rate feedback control and perception). Furthermore, in the future, the point-by-point strategy
could be explored in the LiDAR systems without inertial measurements, and dynamic object detection
systems.
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Table of Contents A high-bandwidth LiDAR-inertial system (LIO) is presented. The system updates
the state at the sampling time of each LiDAR point or IMU measurement without accumulating a frame.
The system is able to output a high-rate (4 kHz - 8 kHz), high-bandwidth (over 150Hz) odometry and
handles extremely aggressive motions where IMU saturates.

Figure 23: Table of content

33


	Introduction
	Related Works
	LiDAR(-inertial) odometry
	Motion distortion compensation
	Formulation of inertial measurements

	System Overview
	State Estimation
	Notations
	Kinematic model
	State transition model
	Measurement model

	Extended Kalman filter
	State Propagation
	Residual computation
	State Update

	Analysis

	Evaluation
	Implementation
	Platforms
	Resolving motion distortion
	Mapping results
	Drift results

	High odometry output frequency and high bandwidth
	Extremely aggressive motion with saturated IMU measurements
	Spinning motion
	Circling motion

	Real-time performance

	Benchmark Results
	Accuracy Evaluation
	RMSE benchmark
	Drift Benchmark

	Processing time evaluation

	Applications
	Racing drone
	Self-rotating UAV

	Conclusion

