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1 Introduction

The Breguet range equation is used to calculate aircraft fuel burn during cruise. It is possible
to develop multiple sets of GP compatible constraints that model the Breguet range equation.
However, when the objective is to minimize total fuel burn, there is a non-obvious upwards
pressure on aircraft weight. In one GP formulation, this pressure causes aircraft weight to be
pushed to infinity.

2 Derivation

During cruise, the rate of change of an aircraft’s gross weight is equal to the mass flow rate of
fuel out of the aircraft. Equation 1 is the differential equation modeling this process. W is the
aircraft gross weight at any instant in time.

−dW
dt

= gṁf (1)

In equation 2, the fuel mass flow rate is written in terms of thrust specific fuel consumption
(TSFC). T is net engine thrust.

gṁf = T (TSFC) (2)

Substituting equation 2 into equation 1 and multiplying though by dt yields equation 3. [1]

dW = −T (TSFC)dt (3)

From this point, two different forms of the Breguet range equation can be derived.

2.1 Breguet Range Derivation 1

Dividing equation 3 by gross weight (W ) and integrating yields equation 5, one form of the
Breguet range equation.

dW

W
=
−T (TSFC)

W
dt (4)

ln

(
Wstart

Wend

)
=
T (TSFC)

W
t (5)
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Assuming steady level flight during cruise (equation 9), thrust equals drag (D). Therefore,
equation 5 is equivalent to equation 6.

ln

(
Wstart

Wend

)
=
D(TSFC)

W
t (6)

2.2 Breguet Range Derivation 2 [1]

Noting TSFC is the inverse of specific impulse, Isp, equation 3 can be rewritten as equation 8.

TSFC =
1

Isp
(7)

dW = − T

Isp
dt (8)

Rewriting thrust with the steady level flight relations (equations 9 and 10) yields equation
11.

T = D, L = W (9)

W = D

(
L

D

)
= T

(
L

D

)
(10)

dW = − W

(L/D)Isp
dt (11)

Dividing through by gross weight produces equation 12, an easily integrated differential
equation.

dW

W
= − dt

(L/D)Isp
(12)

ln

(
Wi

Wf

)
= − t

(L/D)Isp
(13)

ln

(
Wi

Wf

)
(L/D)Isp = t (14)

Integration of equation 12 gives equation 13, which is rewritten as equation 14. After
multiplying both sides of equation 14 by V , and noting V (t) is range, the Breguet range
equation can be written as either equation 15 or 16.

ln

(
Wi

Wf

)
(L/D)IspV = Range (15)

ln

(
Wi

Wf

)
(L/D)V (1/TSFC) = Range (16)
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3 GP Modeling of the Breguet Range Equation

3.1 Removal of the Natural Logarithm

The natural logarithm in equations 5, 15, and 16 is not GP compatible. After rewriting the
weight ratio a Taylor expansion used to remove the natural logarithm. First, expand the weight
ratio, as done in equation 17.

Wstart

Wend
=
Wend +Wfuel

Wend
= 1 +

Wfuel

Wend
(17)

The natural log term is now set equal to a dummy variable, zbre.

ln

(
Wstart

Wend

)
= ln

(
1 +

Wfuel

Wend

)
= zbre (18)

The natural logarithm can be removed through exponentiation (equation 19). The fuel
weight ratio is now equated to the Taylor expansion of ezbre − 1, as shown in equation 20.

Wfuel

Wend
= ezbre − 1 (19)

zbre +
z2bre

2
+
z3bre

6
=
Wfuel

Wend
(20)

Substituting equation 18 into equations 5 and 15 allows the Breguet range equation to be
modeled with either equations 20 and 21 or equations 20 and 22.

zbre =
T (TSFC)

W
t (21)

zbre(L/D)V (Isp) = Range (22)

3.2 Weight Buildup

Taking the aircraft’s end weight as known (equivalent to assuming we know the aircraft’s zero
fuel weight) and assuming the only change in aircraft weight is due to fuel burn, the aircraft’s
start weight is simply its end weight plus the weight of fuel it burns.

Wstart = Wend +Wfuel (23)

3.3 Drag Modeling

It is assumed thrust equals drag during cruise (steady level flight). A drag model is required
if using equation 5 or 6. Similarly, a drag model is required to accurately estimate L/D in
equation 15 or 16. Any drag model will suffice. A good starting place is the parabolic drag
model given by equation 24. For the purposes of this report, CD0 and K are assumed constant.
However, they can be modeled if a higher fidelity model is desired.
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D = .5ρV 2(CD0
+KC2

L) (24)

Equation 24 requires some sort of lift model. Assuming steady level flight, lift is equal to
weight. Thus, W = .5ρS(V 2)CL. This introduces the question of what weight to use when
determining CL. Using the segment start or end weight introduces inaccuracy, and there is no
GP compatible constraint for determining the arithmetic average of the segment start and end
weight. However, it is easy to write a GP compatible constraint for the geometric average of the
segment start and end weights, as is done in equation 25. This is the recommended procedure.

Wavg =
√
WstartWend (25)

Using the geometric mean of segment weights has been shown to increase model stability.

3.4 Time Constraint

Assuming the aircraft’s cruise speed is a constant, or determined by another model, time is
constrained by the range relation, presented below.

Range = V (t) (26)

3.5 Fuel Burn Modeling

To accurately model fuel burn, an engine model is required. If this is desired, a GP compatible
Breguet range model could be linked to the Hoburg Research Group’s turbofan model. However,
for simplicity, this report assumes a fixed value for TSFC.

3.6 Relaxation of Equalities

The final step in developing a set of GP constraints that model the Breguet range equation is
to relax equalities between monomial and posynomial quantities. Note that equations 25 and
26 are of the form monomial equals monomial and are therefore valid GP equality constraints.

From this point on it, is assumed the objective is to minimize total fuel burn (Wfuel). This
determines the pressures on variables.

3.6.1 Relaxation of Drag Equality

To decrease fuel burn, it is beneficial to minimize drag (equivalent to minimzing thrust in steady
level flight). Thus, equation 24 can be rewritten as 27.

D ≥ .5ρV 2(CD0
+KC2

L) (27)

3.6.2 Relaxation of Equalities for Breguet Range Derivation 1

The downward pressure on fuel weight allows the equality in equation 20 to be replaced with a
less than or equal to sign. Equation 28 is now a valid GP constraint.

zbre +
z2bre

2
+
z3bre

6
≤ Wfuel

Wend
(28)

4



zbre +
z2
bre

2 +
z3
bre

6 ≥
Wfuel

Wend
zbre ≥ TSFC (t) D

Wavg

D ≥ 0.5(S)rho(V 2)(CD0
+K(C2

L)) Range = t(V )

Wavg = 0.5(S)rho(CL)V 2 Wavg =
√
WstartWend

Wstart ≥Wfuel +Wend

Table 1: Valid Breguet range constraints

Equation 28 provides an upper bound for zbre, therefore, the equality in equation 21 can be
replaced with a greater than or equal to sign.

zbre ≥
D(TSFC)

W
t (29)

Finally, the equality in equation 23 must be replaced. As the aircraft gets heavier, more lift
is required and induced drag increases. This increases the required thrust, and consequently
fuel burn (if a real turbofan model is used). There is also a downward pressure on weight due
to equation 29. The lighter the aircraft is, the larger, zbre will be for a given TSFC and drag.
The larger zbre is, the larger the fuel weight fraction in equation 28 will be. The downward
pressure on total weight allows equation 23 to become the constraint given by equation 30.

Wstart ≥Wend +Wfuel (30)

Combining equations 25, 26, 27, 28, 29 and 30 with a constraint on CL and a TSFC source
yields a complete GP compatible Breguet range model. The full set of constraints is presented
in table 1.

3.6.3 Relaxation of Equalities for Breguet Range Derivation 2

The drag, weight, and time constraints presented previously are still valid when modeling the
second form of the Breguet range equation.

There is an upwards pressure on range (the largest range per unit of fuel is optimal), so
equation 22 must become equation 31 in order to bound range.

zbre(L/D)V (Isp) ≥ Range (31)

This causes an upwards pressure on zbre (it is in the numerator of equation 31), so equation
20 must be written as equation 32 below.

zbre +
z2bre

2
+
z3bre

6
≤ Wfuel

Wend
(32)

L/D can be written as the following monomial equality constraint.

L/D =
Wavg

D
(33)

It is tempting to reuse equation 30 as a weight constraint. Physical intuition says that a
lighter aircraft will burn less fuel, so there must be a downward pressure on Wstart. However,
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zbre +
z2
bre

2 +
z3
bre

6 ≤
Wfuel

Wend
Range ≤ zbre(L/D)V

TSFC

D ≥ 0.5(S)rho(V 2)(CD0 +K(C2
L)) L/D =

Wavg

D

Wavg = 0.5(S)rho(CL)V 2 Wavg =
√
WstartWend

Wstart ≥Wfuel +Wend Range = t(V )

Table 2: Dual infeasible Breguet range constraints

this is not true when using this Breguet range formulation. L/D appears in the numerator of
equation 31 leading to an upward pressure on L/D. L/D can be artificially increased by in-
creasing the aircraft’s weight, i.e. there is an upward pressure on aircraft weight. Consequently,
the constraint given by equation 30 is not valid because Wstart will grow unbounded. If the
constraints given in table 2 are used to model the Breguet range equation, the model will be
dual infeasible. If the inequality in equation 30 is flipped, the constraint becomes a signomial.
This form of the Breguet range equation is not GP compatible. It is important to note this
holds true even if a real turbofan model is used. As aircraft weight increases, induced drag
increases. This increases the required thrust and consequently TSFC. However, this increase is
small relative to the increase in L/D, so it is still beneficial for the aircraft to be heavy.
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