Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

Code: Improving Natural Language Interaction With Robots Using Advice

Code for the NAACL 2019 Paper: Improving Natural Language Interaction with Robots Using Advice

All files are commented. Please read the paper and the code files. If you have any questions, please create an Issue.

Requirements

All code has been tested with Python 2.7 and Tensorflow 1.5. You can create an Anaconda environment to run the code like so: conda create -n advice_env python=2.7 anaconda pip tensorflow-gpu=1.5. Please use the data from Bisk et. al.

Baseline Model

You can run the basline Bisk et. al models. They also released their code, but ours is slightly different (in Tensorflow instead of Julia for example). Our code is based on theirs, though. To run the model, do:

python BaselineModel.py

To run for target coordinate prediction and saving the model in a folder called savedModels, do:

python BaselineModel.py --target=2 --model_save_path=savedModels/model.ckpt

Other parameters can be found at the top of the file.

The results should match the ones found in our paper. Our end-to-end model with advice is a simple extension of this model and is described in the paper.

Pre-trained models

The explanation for these models is provided in Section 2.3 of the paper, under the Advice Grounding section. In this code release, we only release the code to run these models on restrictive advice, not corrective. These pre-trained/grounding models are crucical to understand the advice text, especially in the input-specific model self-generated advice case.

You must run these models and save them in order to load them for the end-to-end model with advice.

To run the model to understand the 4 advice regions, saving the model in the savedModels directory:

python PreTrainedModel.py

To run the model for input-specific model self-generated advice (and thus have the model understand the text of many more regions):

python PreTrainedModel.py --self_generated_advice=True

Both models should achieve 99.99% accuracy, as described in the paper.

End-to-End Model with Advice

The explanation for these models is provided in Section 2.4 of the paper. In short, this is the baseline Bisk et. al model, along with advice.

In order to run this, you must have a pre-trained model saved. We will assume you ran it and saved it at: savedModels/pre_trained_advice_advice/model.ckpt. The tokens are saved at saved_tokens/tokens.npy. These are where the pretrainedmodel.py script saves it by default.

You also need the data files. We will assume it is saved at: data/STxyz_Blank/...

Now, you can run the end to end model:

python BaselineModelAdvice.py

End-to-End Model with Input Specific Self-Generated Advice

In order to run input specific self-generated advice, you must first generate it. To that, run the following command. This will save the advice in a file test_advice.npy. The FLAG test_advice_save_file controls where it is saved.

python BaselineModelAdvice.py --generate_advice=True

Once the advice has been saved, you can use it at test time to run the end-to-end model with input specific self-generated advice. To do this, run:

python BaselineModelAdvice.py --self_generated_advice=True

About

Code for the NAACL 2019 Paper: Improving Natural Language Interaction with Robots Using Advice

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.