Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
85 lines (55 sloc) 3.62 KB

YOLO with Core ML and MPSNNGraph

This is the source code for my blog post YOLO: Core ML versus MPSNNGraph.

YOLO is an object detection network. It can detect multiple objects in an image and puts bounding boxes around these objects. Read my other blog post about YOLO to learn more about how it works.

YOLO in action

Previously, I implemented YOLO in Metal using the Forge library. Since then Apple released Core ML and MPSNNGraph as part of the iOS 11 beta. So I figured, why not try to get YOLO running on these two other technology stacks too?

In this repo you'll find:

  • TinyYOLO-CoreML: A demo app that runs the Tiny YOLO neural network on Core ML.
  • TinyYOLO-NNGraph: The same demo app but this time it uses the lower-level graph API from Metal Performance Shaders.
  • Convert: The scripts needed to convert the original DarkNet YOLO model to Core ML and MPS format.

To run the app, just open the xcodeproj file in Xcode 9 and run it on a device with iOS 11 or better installed.

The reported "elapsed" time is how long it takes the YOLO neural net to process a single image. The FPS is the actual throughput achieved by the app.

NOTE: Running these kinds of neural networks eats up a lot of battery power. The app can put a limit on the number of times per second it runs the neural net. You can change this in setUpCamera() by changing the line videoCapture.fps = 50 to a smaller number.

Converting the models

NOTE: You don't need to convert the models yourself. Everything you need to run the demo apps is included in the Xcode projects already.

If you're interested in how the conversion was done, there are three conversion scripts:


The original network is in Darknet format. I used YAD2K to convert this to Keras. Since coremltools currently requires Keras 1.2.2, the included YAD2K source code is actually a modified version that runs on Keras 1.2.2 instead of 2.0.

First, set up a virtualenv with Python 3:

virtualenv -p /usr/local/bin/python3 yad2kenv
source yad2kenv/bin/activate
pip3 install tensorflow
pip3 install keras==1.2.2
pip3 install h5py
pip3 install pydot-ng
pip3 install pillow
brew install graphviz

Run the script to convert the Darknet model to Keras:

cd Convert/yad2k
python3 -p ../tiny-yolo-voc.cfg ../tiny-yolo-voc.weights model_data/tiny-yolo-voc.h5

To test the model actually works:

python3 model_data/tiny-yolo-voc.h5 -a model_data/tiny-yolo-voc_anchors.txt -c model_data/pascal_classes.txt 

This places some images with the computed bounding boxes in the yad2k/images/out folder.

The script takes the tiny-yolo-voc.h5 model created by YAD2K and converts it to TinyYOLO.mlmodel. Note: this script requires Python 2.7 from /usr/bin/python (i.e. the one that comes with macOS).

To set up the virtual environment:

virtualenv -p /usr/bin/python2.7 coreml
source coreml/bin/activate
pip install tensorflow
pip install keras==1.2.2
pip install h5py
pip install coremltools

Run the script to do the conversion (the paths to the model file and the output folder are hardcoded in the script):


The script takes the tiny-yolo-voc.h5 model created by YAD2K and converts it to weights files used by MPSNNGraph. Requires Python 3 and Keras 1.2.2.