
Oleg Smirnov1,2, Ian Heywood3,1, Simon Perkins2, Ruby van Rooyen2

shadeMS: Rapid Plotting Of BIG Radio Interferometry Data

1Centre for Radio Astronomy Techniques & Technologies (RATT), Rhodes University 2South African Radio Astronomy Observatory (SARAO) 3Oxford Astrophysics

The Context. Radio interferometry data is big. For example,
MeerKAT spits out billions of raw visibilities per hour. From the
end-user’s point of view, this data is deeply uninteresting, until it
is fed through the blender (aka the Fourier Transform) to make
beautiful radio maps such as these.

However, to those of us concerned with making the telescope
work, every visibility is sacred and every metadatum great.
Visualizing the visibility data and associated metadata at various
stages of calibration reveals instrumental and algorithmic
systematics that need to be addressed to make the resulting radio
maps both beautiful and useful. This calls for fast and flexible
visualization tools.

No, this is not a rendering of the coronavirus on acid.
This is a multi-frequency synthesis uv-coverage shadeMS
plot for a short observation using the MeerKAT
telescope, colour-coded by first antenna in each baseline
pair. This plot contains about 20 billion points.

The Workhorse. Despite decades of research into advanced
visualization techniques and even virtual reality, it is still
difficult to beat a good 2D scatter plot for insights into data
systematics.

The Problem. A scatter plot with a million points can be a
quick way to get valuable insights into your systematics. A
scatter plot with 10 billion points is often just an extremely
slow way to render an ugly and impenetrable mess.

The Solutions. The Datashader graphics pipeline
implements an aggregation approach to data rendering.
Rather than representing each datum by a point, it bins the
data into 2D pixels, and converts the aggregated
distributions into colour and alpha. Why this is a superior
way to render large datasets is aptly explained here.

Datashader works with standard data structures such as
Pandas dataframes and, crucially, Dask arrays. The dask-ms
framework (see talk & focus demo by Simon Perkins at this
conference) uses Dask to provide access to radio data stored
in the standard Measurement Set format, and to process it in
a highly parallel fashion (i.e. orders of magnitude faster).

Datashader + dask-ms ⇒ shadeMS

The Philosophy. The shadeMS way is to plot anything
versus anything, coloured by anything, all from a
simple command-line syntax.

Here is the simplest
possible plot: total
intensity versus
frequency, for a
calibrator source.

$ shadems data.ms -x FREQ
-y CORRECTED_DATA:I

There are ~10 billion data points here: colour
indicates the density of points in each pixel.
We can clearly see outliers (due to radio frequency
interference), but also a systematic causing a
deviation from the normal spectrum. We can identify
it by using colour as
a category instead:

$ shadems data.ms -x FREQ
-y CORRECTED_DATA:I

-c ANTENNA1 --cnum 64

The culprit is clear: confess,
antenna m003.

This plot illustrates the
Principle of Maximal Beigeness: when using
colour to categorize, good data is boring, bad data is
colourful. Fundamentally, this is because
Datashader blends colour and alpha when
aggregating bins, so datapoints following the same
statistical distribution will tend to blend into a
nondescript colour.

Colour need not only
represent density. Here we
give shadeMS a different
reduction, namely standard
deviation:

$ shadems data.ms -x FREQ
-y ANTENNA1 --field 0

-a CORRECTED_DATA:I --ared std
--cmap pride

Antenna m003’s sins are even clearer -- and now
m048 is a suspect too.

Antecedents. CASA includes an interactive tool called
plotms, which provides some of the same (anything vs
anything coloured by anything) plotting functionality via
standard matplotlib scatter plots.

Plotms has a hard limit of ~4
billion visibility points, so
we must average the data by
a factor of 4 to 8 in order to
make a comparison.
The “coronavirus” plot
demonstrates the
overplotting problem
inherent to crowded scatter
plots: points plotted later
mask points plotted previously, so colour is more indicative
of data ordering than any real category.

In terms of performance, plotms (CASA 5.5) takes over an
hour to render such a plot from 4x or 8x averaged-down
data. On the same (64 core) machine, shadeMS (v0.5.0) takes
<3m to render native resolution data. This is largely due to
the parallelism automatically leveraged by dask-ms.

You may not be interested in the ionosphere, but the
ionosphere is interested in you. Also, aggregation is not just
for scatter plots! Each visibility is a product of a baseline
formed by two antennas. The plots above aggregate visibilities
onto an antenna-vs-antenna (64×64) canvas, and uses
standard deviation as the reduction function. Colour now tells
us the scatter of visibility data measured by each antenna
pair. In the ideal and error-free case, this would be uniform.
The left plot is from a normal scan, showing nothing
particularly special. The right plot shows increased scatter on
higher-numbered antenna pairs, which predominantly form
longer baselines. We suspect that this is a signature of an
ionospheric disturbance passing over the array.

You may not be interested in the polarization either, but it
certainly makes for some interesting plots. What is going on
here? Answers on a postcard in Discord please.

This research is supported by the South African Research Chairs Initiative of the
Department of Science and Technology and National Research Foundation.

mailto:o.smirnov@ru.ac.za
https://github.com/ratt-ru/shadeMS
https://www.sarao.ac.za/media-releases/astronomers-stumble-upon-unexpected-features-in-a-distant-galaxy-using-meerkat-data/
https://datashader.org/
https://datashader.org/user_guide/Plotting_Pitfalls.html
https://docs.dask.org/en/latest/array.html
https://github.com/ska-sa/dask-ms
https://github.com/ratt-ru/shadeMS
https://casa.nrao.edu/
https://pypi.org/project/casaplotms/
https://matplotlib.org/

