Skip to content
ESPRNN: Epigenome-based Splicing Prediction using Recurrent Neural Network
Python Shell
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
scripts
.gitignore
ESPRNN-logo.jpg
README.md
__init__.py
model_eval.py
model_io.py
model_simpleML.py
model_train.py
postproc_modelPred.py
preproc_bed2npy.py
preproc_bw2npy.py
preproc_calcExonFPKM.py
preproc_exon2bed.py
preproc_fa2npy.py
preproc_gtf2bed.py
preproc_matrix2npy.py
preproc_npy2hdf5.py

README.md

ESPRNN-logo

ESPRNN: Epigenome-based Splicing Prediction using Recurrent Neural Network

Dependencies:

Python module

Note: At the time of writing (12/27/2019), the following versions of python modules were tested and confirmed working:

  • biopython 1.74
  • cudatoolkit 10.1.243
  • cudnn 7.6.5
  • h5py 2.10.0
  • numpy 1.18.0
  • pandas 0.25.3
  • pybedtools 0.8.0
  • pybigwig 0.3.17
  • pysam 0.15.3
  • python 3.6.9
  • scikit-learn 0.22
  • scipy 1.4.1
  • seaborn 0.9.0
  • tf-nightly-gpu 2.1.0.dev20191224

Standalone

  • RNA-STAR v2.7.3a
  • HTSeq v0.9.1
  • bedtools v2.27.1
  • samtools v1.9

Recommended Usage Examples

STEP 1: create a conda environment

conda create -n esprnn python=3.6 tensorflow-gpu scikit-learn biopython pybigwig pybedtools pandas seaborn jupyter
conda activate espenn

STEP 2: download data

  • genome: we used something like /genomes/Homo_sapiens/NCBI/GRCh38/Sequence/WholeGenomeFasta/genome.fa
  • annotation: we used something like gencode.v24.annotation.gtf
  • see supplementary table 1 for ENCODE reference epigenome accession

STEP 3: align RNA-seq fastq files

we used RNA-STAR v2.7.3a with the following command

STAR --runThreadN 12 --genomeDir {path_to_star_index} --outFilterType BySJout --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --readFilesCommand zcat --readFilesIn {path_to_fastq} --outFileNamePrefix {prefix}

STEP 4: make EXON annotation (based on this file, make 3' acceptor and 5' donor splice sites BED files)

python preproc_gtf2bed.py gencode.v24.annotation.gtf gencode.v24.annotation.esprnn-exon.bed

STEP 5-1: calculate FPKM

htseq-count -f bam -t exon --idattr=exon_id --additional-attr=gene_name --nonunique all {bam_file} gencode.v24.annotation.gtf > exon-count_XXX.tsv
python preproc_calcExonFPKM.py -s {sample_name} -o avgFPKM_XXX.tsv -p {path_to_count_file} -l {gene_length_file}

STEP 5-2: calculate PSI

calcPSI.sh {path_to_sam} {prefix_to_sam} {exon_annotation}

STEP 6: make genome input

bedtools getfasta -fi genome.fa -bed gencode.v24.annotation.esprnn-exon.3acc400span.bed -s -name -fo hg38_DNA_3acc_400span.fa
bedtools getfasta -fi genome.fa -bed gencode.v24.annotation.esprnn-exon.5don400span.bed -s -name -fo hg38_DNA_5don_400span.fa
python preproc_fa2npy.py -i hg38_DNA_3acc_400span.fa -o XXX_DNA_3acc_500span.npy
python preproc_fa2npy.py -i hg38_DNA_5don_400span.fa -o XXX_DNA_5don_500span.npy

Note: NT Mapping: {'A': 0, 'C': 1, 'T': 2, 'G': 3}

STEP 7: make epigenetic feature input

python preproc_bw2npy.py --bigwig {path_to_bigwig_file} --bed gencode.v24.annotation.esprnn-exon.3acc500span.bed --prefix XXX_3acc_input.npy
python preproc_bw2npy.py --bigwig {path_to_bigwig_file} --bed gencode.v24.annotation.esprnn-exon.5don500span.bed --prefix XXX_5don_input.npy

STEP 8: make HDF5 input

python preproc_npy2hdf5.py --path {path_to_npy_file} --x1 "hg38_DNA_3acc_400span.npy,XXX_DNase_3acc.npy,XXX_H3K27ac_3acc.npy,XXX_H3K27me3_3acc.npy,XXX_H3K36me3_3acc.npy,XXX_H3K4me1_3acc.npy,XXX_H3K4me3_3acc.npy,XXX_H3K9me3_3acc.npy" --x2 "hg38_DNA_5don_400span.npy,XXX_DNase_5don.npy,XXX_H3K27ac_5don.npy,XXX_H3K27me3_5don.npy,XXX_H3K36me3_5don.npy,XXX_H3K4me1_5don.npy,XXX_H3K4me3_5don.npy,XXX_H3K9me3_5don.npy" --y "XXX_PSI_binary.npy" --span 400 --prefix XXX_input

STEP 9: training

python model_train.py --prefix XXX_LSTM_200span --input XXX_input.hdf5 --model LSTM --span 400 --epoch 20 --batchsize 100
You can’t perform that action at this time.