# hoxo-m/densratio_py

A Python Package for Density Ratio Estimation
Python Makefile
Latest commit 76e7a19 May 24, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
densratio May 9, 2019
docs Nov 5, 2016
tests Apr 13, 2019
.gitignore
.travis.yml Mar 30, 2019
Makefile Dec 5, 2016
densratio_py.Rproj
requirements.txt Mar 30, 2019
setup.cfg Dec 10, 2016
setup.py May 24, 2019

# A Python Package for Density Ratio Estimation

## 1. Overview

Density ratio estimation is described as follows: for given two data samples `x1` and `x2` from unknown distributions `p(x)` and `q(x)` respectively, estimate `w(x) = p(x) / q(x)`, where `x1` and `x2` are d-dimensional real numbers.

The estimated density ratio function `w(x)` can be used in many applications such as the inlier-based outlier detection [1] and covariate shift adaptation [2]. Other useful applications for density ratio estimation were summarized by Sugiyama et al. (2012) in [3].

The package densratio provides a function `densratio()` that returns an object with a method to estimate density ratio as `compute_density_ratio()`.

Further, the alpha-relative density ratio `p(x)/(alpha * p(x) + (1 - alpha) * q(x))` (where alpha is in the range [0, 1]) can also be estimated. When alpha is 0, this reduces to the ordinary density ratio `w(x)`. The alpha-relative PE-divergence and KL-divergence between `p(x)` and `q(x)` are also computed.

For example,

```import numpy as np
from scipy.stats import norm
from densratio import densratio

np.random.seed(1)
x = norm.rvs(size=500, loc=0, scale=1./8)
y = norm.rvs(size=500, loc=0, scale=1./2)
alpha = 0.1
densratio_obj = densratio(x, y, alpha=alpha)
print(densratio_obj)```

gives the following output:

``````#> Method: RuLSIF
#>
#> Alpha: 0.1
#>
#> Kernel Information:
#>   Kernel type: Gaussian
#>   Number of kernels: 100
#>   Bandwidth(sigma): 0.1
#>   Centers: matrix([[-0.09591373],..
#>
#> Kernel Weights (theta):
#>   array([0.04990797, 0.0550548 , 0.04784736, 0.04951904, 0.04840418,..
#>
#> Regularization Parameter (lambda): 0.1
#>
#> Alpha-Relative PE-Divergence: 0.6187941335987046
#>
#> Alpha-Relative KL-Divergence: 0.7037648129307482
#>
#> Function to Estimate Density Ratio:
#>   compute_density_ratio(x)
#>
``````

In this case, the true density ratio `w(x)` is known, so we can compare `w(x)` with the estimated density ratio `w-hat(x)`. The code below gives the plot shown above.

```from matplotlib import pyplot as plt
from numpy import linspace

def true_alpha_density_ratio(sample):
return norm.pdf(sample, 0, 1./8) / (alpha * norm.pdf(sample, 0, 1./8) + (1 - alpha) * norm.pdf(sample, 0, 1./2))

def estimated_alpha_density_ratio(sample):
return densratio_obj.compute_density_ratio(sample)

sample_points = np.linspace(-1, 3, 400)
plt.plot(sample_points, true_alpha_density_ratio(sample_points), 'b-', label='True Alpha-Relative Density Ratio')
plt.plot(sample_points, estimated_alpha_density_ratio(sample_points), 'r-', label='Estimated Alpha-Relative Density Ratio')
plt.title("Alpha-Relative Density Ratio - Normal Random Variables (alpha={:03.2f})".format(alpha))
plt.legend()
plt.show()```

## 2. Installation

You can install the package from PyPI.

``````\$ pip install densratio
``````

Also, you can install the package from GitHub.

``````\$ pip install git+https://github.com/hoxo-m/densratio_py.git
``````

The source code for densratio package is available on GitHub at https://github.com/hoxo-m/densratio_py.

## 3. Details

### 3.1. Basics

The package provides `densratio()`. The function returns an object that has a function to compute estimated density ratio.

For data samples `x` and `y`,

```from scipy.stats import norm
from densratio import densratio

x = norm.rvs(size = 200, loc = 1, scale = 1./8)
y = norm.rvs(size = 200, loc = 1, scale = 1./2)
result = densratio(x, y)```

In this case, `result.compute_density_ratio()` can compute estimated density ratio.

```from matplotlib import pyplot as plt

density_ratio = result.compute_density_ratio(y)

plt.plot(y, density_ratio, "o")
plt.xlabel("x")
plt.ylabel("Density Ratio")
plt.show()```

### 3.2. The Method

The package estimates density ratio by the RuLSIF method.

RuLSIF (Relative unconstrained Least-Squares Importance Fitting) estimates the alpha-relative density ratio by minimizing the squared loss between the true and estimated alpha-relative ratios. You can find more information in Hido et al. (2011) [1] and Liu et al (2013) [4].

The method assumes that the alpha-relative density ratio is represented by a linear kernel model:

`w(x) = theta1 * K(x, c1) + theta2 * K(x, c2) + ... + thetab * K(x, cb)` where `K(x, c) = exp(- ||x - c||^2 / (2 * sigma ^ 2))` is the Gaussian RBF kernel.

`densratio()` performs the following: - Decides kernel parameter `sigma` by cross-validation. - Optimizes for kernel weights `theta`. - Computes the alpha-relative PE-divergence and KL-divergence from the learned alpha-relative ratio.

As the result, you can obtain `compute_density_ratio()`, which will compute the alpha-relative density ratio at the passed coordinates.

### 3.3. Result and Parameter Settings

`densratio()` outputs the result like as follows:

``````#> Method: RuLSIF
#>
#> Alpha: 0
#>
#> Kernel Information:
#>   Kernel type: Gaussian
#>   Number of kernels: 100
#>   Bandwidth(sigma): 0.1
#>   Centers: matrix([[0.92113356],..
#>
#> Kernel Weights (theta):
#>   array([0.08848922, 0.03377533, 0.0753727 , 0.06141277, 0.02543963,..
#>
#> Regularization Parameter (lambda): 1.0
#>
#> Alpha-Relative PE-Divergence: 0.9635169300831035
#>
#> Alpha-Relative KL-Divergence: 0.8388266265473269
#>
#> Function to Estimate Density Ratio:
#>   compute_density_ratio(x)
#>
``````
• Method is fixed as RuLSIF.
• Kernel type is fixed as Gaussian RBF.
• Number of kernels is the number of kernels in the linear model. You can change by setting `kernel_num` parameter. In default, `kernel_num = 100`.
• Bandwidth(sigma) is the Gaussian kernel bandwidth. In default, `sigma = "auto"`, the algorithm automatically select an optimal value by cross validation. If you set `sigma` a number, that will be used. If you set `sigma` a numeric array, the algorithm select an optimal value in them by cross validation.
• Centers are centers of Gaussian kernels in the linear model. These are selected at random from the data sample `x` underlying a numerator distribution `p(x)`. You can find the whole values in `result.kernel_info.centers`.
• Kernel weights(theta) are theta parameters in the linear kernel model. You can find these values in `result.theta`.
• The function to estimate the alpha-relative density ratio is named `compute_density_ratio()`.

## 4. Multi Dimensional Data Samples

So far, we have deal with one-dimensional data samples `x` and `y`. `densratio()` allows to input multidimensional data samples as `numpy.ndarray` or `numpy.matrix`, as long as their dimensions are the same.

For example,

```from scipy.stats import multivariate_normal
from densratio import densratio

np.random.seed(1)
x = multivariate_normal.rvs(size=3000, mean=[1, 1], cov=[[1. / 8, 0], [0, 1. / 8]])
y = multivariate_normal.rvs(size=3000, mean=[1, 1], cov=[[1. / 2, 0], [0, 1. / 2]])
alpha = 0
densratio_obj = densratio(x, y, alpha=alpha, sigma_range=[0.1, 0.3, 0.5, 0.7, 1], lambda_range=[0.01, 0.02, 0.03, 0.04, 0.05])
print(densratio_obj)```

gives the following output:

``````#> Method: RuLSIF
#>
#> Alpha: 0
#>
#> Kernel Information:
#>   Kernel type: Gaussian
#>   Number of kernels: 100
#>   Bandwidth(sigma): 0.3
#>   Centers: matrix([[1.01477443, 1.38864061],..
#>
#> Kernel Weights (theta):
#>   array([0.06151164, 0.08012094, 0.10467369, 0.13868176, 0.14917063,..
#>
#> Regularization Parameter (lambda): 0.04
#>
#> Alpha-Relative PE-Divergence: 0.653615870855595
#>
#> Alpha-Relative KL-Divergence: 0.6214285743087549
#>
#> Function to Estimate Density Ratio:
#>   compute_density_ratio(x)
#>
``````

In this case, as well, we can compare the true density ratio with the estimated density ratio.

```from matplotlib import pyplot as plt
from numpy import linspace, dstack, meshgrid, concatenate

def true_alpha_density_ratio(x):
return multivariate_normal.pdf(x, [1., 1.], [[1. / 8, 0], [0, 1. / 8]]) / \
(alpha * multivariate_normal.pdf(x, [1., 1.], [[1. / 8, 0], [0, 1. / 8]]) + (1 - alpha) * multivariate_normal.pdf(x, [1., 1.], [[1. / 2, 0], [0, 1. / 2]]))

def estimated_alpha_density_ratio(x):
return densratio_obj.compute_density_ratio(x)

range_ = np.linspace(0, 2, 200)
grid = np.concatenate(np.dstack(np.meshgrid(range_, range_)))
levels = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.5]

plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.contourf(range_, range_, true_alpha_density_ratio(grid).reshape(200, 200), levels)
plt.colorbar()
#> <matplotlib.colorbar.Colorbar object at 0x1a22fb04e0>
plt.title("True Alpha-Relative Density Ratio")
plt.subplot(1, 2, 2)
plt.contourf(range_, range_, estimated_alpha_density_ratio(grid).reshape(200, 200), levels)
plt.colorbar()
#> <matplotlib.colorbar.Colorbar object at 0x1a232486a0>
plt.title("Estimated Alpha-Relative Density Ratio")
plt.show()```

## 5. References

[1] Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., & Kanamori, T. Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems 2011.

[2] Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P. & Kawanabe, M. Direct importance estimation with model selection and its application to covariate shift adaptation. NIPS 2007.

[3] Sugiyama, M., Suzuki, T. & Kanamori, T. Density Ratio Estimation in Machine Learning. Cambridge University Press 2012.

[4] Liu, S., Yamada, M., Collier, N., & Sugiyama, M. Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation Neural Networks, 2013.

## 6. Related Work

You can’t perform that action at this time.