
pointing_weights

October 8, 2023

1 Pointing Matrix Weights

[1]: %matplotlib inline
%config InlineBackend.figure_format = "retina"
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set()
plt.rcParams['figure.figsize'] = (10.0, 6.0)

[2]: import sympy as sym
from sympy.vector import CoordSys3D

sym.init_printing()

1.1 Background
The “Pointing Matrix” in TOAST is represented by two types of operations. The first is the
mapping from geometric detector quaternion pointing to a pixelized representation of the sky.
The second is the model of the detector response to incoming polarized light. This model can be
expressed as the application of Mueller matrices representing optical elements in the system. The
incoming light can be expressed as a vector of Stokes parameters I, Q, U, and V.

The Stokes parameters are defined with respect to the local meridian at the detector line of sight.
In the TOAST formalism, the detector frame has the Z axis pointing along the detector line of sight
and the X axis aligned with the direction of maximum polarization response. For this exercise, we
will use the COSMO convention for the Stokes parameters, since it conveniently also has the Z axis
along the line of sight. The final result is easy to swap between COSMO / IAU simply by changing
the sign of the U Stokes parameter. In some scenarios, it can be convenient to look at the various
angles from the perspective of the instrument “looking out” at the sky (with the detector Z axis
going “into the page”). In other cases it makes more sense to visualize the situation “looking in”
from the sky. The figures below clearly label which case is being displayed.
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1.1.1 Definitions

We will use 𝑎𝑙𝑝ℎ𝑎 to represent the angle of right-handed rotation from the meridian to the detector
polarization orientation (the detector frame X axis) about the line of sight (detector Z axis). We use
𝑜𝑚𝑒𝑔𝑎 to represent the right-handed angle of rotation, about the line of sight, from the meridian to
a direction parallel to the HWP fast axis. The cross-polar leakage of the linearly polarized detector
is 𝑒𝑝𝑠𝑖𝑙𝑜𝑛. To visually simplify things, we define the polarization coefficient:

𝐶 = 1 − 𝜖
1 + 𝜖

And note that there is a factor of 1/2 that can be included in an overall calibration factor in the
resulting measured output power.

[3]: alpha = sym.Symbol(r"\alpha")
omega = sym.Symbol(r"\omega")
epsilon = sym.Symbol(r"\epsilon")
C = sym.Symbol("C")
alpha, omega, epsilon, C

[3]: (𝛼, 𝜔, 𝜖, 𝐶)

1.2 Mueller Matrix Representation
Assume we have an input Stokes vector:

⃗𝑆𝑖𝑛 =
⎡
⎢⎢
⎣

𝐼𝑖𝑛
𝑄𝑖𝑛
𝑈𝑖𝑛
𝑉𝑖𝑛

⎤
⎥⎥
⎦

In the case of no HWP and just a partial linear polarizer followed by a total power measurement,
the resulting measured power is:

𝑃𝑜𝑢𝑡 = T𝑝𝑜𝑤𝑒𝑟 ⋅ M𝑑𝑒𝑡 ⃗𝑆𝑖𝑛

2



Where the total power measurement T is simply the sum of the top row of the final Mueller
matrix. If we introduce a rotating HWP followed by the fixed linear polarizer and then a total
power measurement we get:

𝑃𝑜𝑢𝑡 = T𝑝𝑜𝑤𝑒𝑟 ⋅ M𝑑𝑒𝑡 ⋅ M𝐻𝑊𝑃 (𝑡) ⃗𝑆𝑖𝑛

The detector and HWP Mueller matrices include a rotational coordinate transform:

M𝐻𝑊𝑃 = R−1
𝐻𝑊𝑃 M𝐹𝑖𝑥𝑒𝑑 𝐻𝑊𝑃 R𝐻𝑊𝑃

Where the rotation matrix transforms from the measurement frame to the local coordinates of the
HWP. Similarly the detector Mueller matrix is an (imperfect) linear polarizer with some rotation
from the measurement frame:

M𝑑𝑒𝑡 = R−1
𝑑𝑒𝑡 M𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑜𝑙 R𝑑𝑒𝑡

1.2.1 HWP Matrix

The ideal, local HWP has Mueller matrix of:

[4]: # Ideal HWP in local frame:
Lhwp = sym.Matrix([

[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1],

])
Lhwp

[4]:
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥
⎦

and the rotation matrix from the coordinate frame to the local frame is:

[5]: Rhwp = sym.Matrix([
[1, 0, 0, 0],
[0, sym.cos(2 * omega), sym.sin(2 * omega), 0],
[0, -sym.sin(2 * omega), sym.cos(2 * omega), 0],
[0, 0, 0, 1],

])
Rhwp

[5]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (2𝜔) sin (2𝜔) 0
0 − sin (2𝜔) cos (2𝜔) 0
0 0 0 1

⎤
⎥⎥
⎦
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For simplifying the algebra below, we use 𝑏 = 2𝜔. The inverse coordinate transform is a result of
swapping 𝜔 for −𝜔.

[6]: b = sym.Symbol(r"b")

Rhwp = sym.Matrix([
[1, 0, 0, 0],
[0, sym.cos(b), sym.sin(b), 0],
[0, -sym.sin(b), sym.cos(b), 0],
[0, 0, 0, 1],

])
Rhwp

[6]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (𝑏) sin (𝑏) 0
0 − sin (𝑏) cos (𝑏) 0
0 0 0 1

⎤
⎥⎥
⎦

[7]: Rhwpinv = sym.Matrix([
[1, 0, 0, 0],
[0, sym.cos(b), -sym.sin(b), 0],
[0, sym.sin(b), sym.cos(b), 0],
[0, 0, 0, 1],

])
Rhwpinv

[7]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (𝑏) − sin (𝑏) 0
0 sin (𝑏) cos (𝑏) 0
0 0 0 1

⎤
⎥⎥
⎦

And then the final HWP Mueller matrix becomes:

[8]: Mhwp = sym.simplify(Rhwpinv * Lhwp * Rhwp)
Mhwp

[8]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (2𝑏) sin (2𝑏) 0
0 sin (2𝑏) − cos (2𝑏) 0
0 0 0 −1

⎤
⎥⎥
⎦

1.2.2 Linearly Polarized Detector

A (partial) linear polarizer has the local Mueller matrix:

[9]: Ldet = sym.Matrix([
[1, C, 0, 0],
[C, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
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])
Ldet

[9]:
⎡
⎢⎢
⎣

1 𝐶 0 0
𝐶 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥
⎦

The Mueller matrix which rotates a Stokes vector in a right-handed counter-clockwise sense is again
given by:

[10]: Rdet = sym.Matrix([
[1, 0, 0, 0],
[0, sym.cos(2 * alpha), sym.sin(2 * alpha), 0],
[0, -sym.sin(2 * alpha), sym.cos(2 * alpha), 0],
[0, 0, 0, 1],

])
Rdet

[10]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (2𝛼) sin (2𝛼) 0
0 − sin (2𝛼) cos (2𝛼) 0
0 0 0 1

⎤
⎥⎥
⎦

For simplifying the algebra below, we use 𝑎 = 2𝛼.

[11]: a = sym.Symbol(r"a")
Rdet = sym.Matrix([

[1, 0, 0, 0],
[0, sym.cos(a), sym.sin(a), 0],
[0, -sym.sin(a), sym.cos(a), 0],
[0, 0, 0, 1],

])
Rdet

[11]:
⎡
⎢⎢
⎣

1 0 0 0
0 cos (𝑎) sin (𝑎) 0
0 − sin (𝑎) cos (𝑎) 0
0 0 0 1

⎤
⎥⎥
⎦

The inverse transform can be obtained by evaluating this at −𝛼
[12]: Rdetinv = sym.Matrix([

[1, 0, 0, 0],
[0, sym.cos(a), -sym.sin(a), 0],
[0, sym.sin(a), sym.cos(a), 0],
[0, 0, 0, 1],

])
Rdetinv

[12]:
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⎡
⎢⎢
⎣

1 0 0 0
0 cos (𝑎) − sin (𝑎) 0
0 sin (𝑎) cos (𝑎) 0
0 0 0 1

⎤
⎥⎥
⎦

The final detector Mueller matrix in the measurement frame is then:

[13]: Mdet = sym.simplify(Rdetinv * Ldet * Rdet)
Mdet

[13]:
⎡
⎢
⎢
⎣

1 𝐶 cos (𝑎) 𝐶 sin (𝑎) 0
𝐶 cos (𝑎) cos2 (𝑎) sin (2𝑎)

2 0
𝐶 sin (𝑎) sin (2𝑎)

2 sin2 (𝑎) 0
0 0 0 0

⎤
⎥
⎥
⎦

1.2.3 Final Expression - Without HWP

The optical response without a HWP is just the linear polarized detector result above. The output
Stokes weights are:

[14]: s_I = Mdet[0, 0]
s_I

[14]: 1
[15]: s_Q = Mdet[0, 1]

s_Q

[15]: 𝐶 cos (𝑎)

[16]: s_U = Mdet[0, 2]
s_U

[16]: 𝐶 sin (𝑎)
So the final measured power is:

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2𝛼) + 𝑈𝑖𝑛 sin (2𝛼)]] (𝐶𝑂𝑆𝑀𝑂)

OR

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2𝛼) − 𝑈𝑖𝑛 sin (2𝛼)]] (𝐼𝐴𝑈)

1.2.4 Final Expression - Including HWP

The combined optical response of the HWP and detector matrices are then:

[17]: Mopt = sym.simplify(Mdet * Mhwp)
Mopt
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[17]:
⎡
⎢
⎢
⎣

1 𝐶 cos (𝑎 − 2𝑏) −𝐶 sin (𝑎 − 2𝑏) 0
𝐶 cos (𝑎) cos (2𝑏)

2 + cos (2𝑎−2𝑏)
2

sin (2𝑏)
2 − sin (2𝑎−2𝑏)

2 0
𝐶 sin (𝑎) sin (2𝑏)

2 + sin (2𝑎−2𝑏)
2 − cos (2𝑏)

2 + cos (2𝑎−2𝑏)
2 0

0 0 0 0

⎤
⎥
⎥
⎦

And the output Stokes weights are:

[18]: s_I = Mopt[0, 0]
s_I

[18]: 1
[19]: s_Q = Mopt[0, 1]

s_Q

[19]: 𝐶 cos (𝑎 − 2𝑏)

[20]: s_U = Mopt[0, 2]
s_U

[20]: −𝐶 sin (𝑎 − 2𝑏)
So the final measured power is:

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2(𝛼 − 2𝜔)) − 𝑈𝑖𝑛 sin (2(𝛼 − 2𝜔))]] (𝐶𝑂𝑆𝑀𝑂)

OR

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2(𝛼 − 2𝜔)) + 𝑈𝑖𝑛 sin (2(𝛼 − 2𝜔))]] (𝐼𝐴𝑈)

1.3 Detector Response in TOAST
Our starting point is a detector quaternion at each sample that rotates the coordinate frame on
the sky to the detector frame, with the Z axis along the line of sight and the X axis along the
polarization sensitive direction. In the detector frame, the vector along the meridian is offset by an
angle of −𝛼. Recall that our detector coordinate frame is offset from the overall focalplane frame.
The detector frame is also rotated by an angle 𝛾𝐷. The HWP angle (𝛾𝐻(𝑡)) in the detector frame
is time varying and measured from the same reference point:

7



Detector Frame Relative to
Other Coordinate Frames

("South" in sky
coordinates)

(Detector X)

Focalplane X
Direction

("Down" in
Elevation)

HWP Axis

Detector Y

(Detector Z
Out of Page)

(Tangent plane, looking inward)

a w

gHWP
gDET

Detector Frame Relative to
Other Coordinate Frames

("South" in sky
coordinates)

(Detector X)

Focalplane X
Direction

("Down" in
Elevation)

HWP Axis

Detector Y

(Detector Z
Into Page)

(Tangent plane, looking outward)

aw

gHWP

gDET

For the case with no HWP, we just need the angle 𝛼. If we do have a HWP, then we can use the figure
above to express 𝜔 in terms of our known quantities. From this we can see that 𝜔 = 𝛼+𝛾𝐻(𝑡)−𝛾𝐷.
Substituting this we get (using COSMO convention, which is the default):

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2 (𝛼 − 2 [𝛼 + 𝛾𝐻(𝑡) − 𝛾𝐷])) − 𝑈𝑖𝑛 sin (2 (𝛼 − 2 [𝛼 + 𝛾𝐻(𝑡) − 𝛾𝐷]))]]

Expanding:

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2 (𝛼 − 2𝛼 − 2𝛾𝐻(𝑡) + 2𝛾𝐷)) − 𝑈𝑖𝑛 sin (2 (𝛼 − 2𝛼 − 2𝛾𝐻(𝑡) + 2𝛾𝐷))]]

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2 (−𝛼 − 2𝛾𝐻(𝑡) + 2𝛾𝐷)) − 𝑈𝑖𝑛 sin (2 (−𝛼 − 2𝛾𝐻(𝑡) + 2𝛾𝐷))]]

𝑃𝑜𝑢𝑡 = 1
2 [𝐼𝑖𝑛 + 1 − 𝜖

1 + 𝜖 [𝑄𝑖𝑛 cos (2 [2 (𝛾𝐷 − 𝛾𝐻(𝑡)) − 𝛼]) − 𝑈𝑖𝑛 sin (2 [2 (𝛾𝐷 − 𝛾𝐻(𝑡)) − 𝛼])]]

This gives us our total power measurement in terms of a fixed, per-detector offset, the HWP angle
in the focalplane frame, and the orientation of the detector frame (the 𝛼 angle) at each sample.

1.3.1 Example

As a sanity check, consider a scenario where the focalplane X axis is aligned with the coordinate
system “South” direction in the figure above. Also choose 𝛾𝐷 to be 45 degrees. In this case,
𝛼 == 𝛾𝐷 and 2𝛼 = 90∘.

In the case of no HWP and using COSMO convention, we have:
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𝑄𝑤𝑒𝑖𝑔ℎ𝑡(45) = cos (2𝛼)
𝑄𝑤𝑒𝑖𝑔ℎ𝑡(45) = 0

𝑈𝑤𝑒𝑖𝑔ℎ𝑡(45) = sin (2𝛼)
𝑈𝑤𝑒𝑖𝑔ℎ𝑡(45) = 1

The Stokes Q weight is zero and the Stokes U weight is +1, which makes sense since the detector
is aligned with the positive U axis. In the case of a rotating HWP, our Q weight is:

𝑄𝑤𝑒𝑖𝑔ℎ𝑡 = cos (2 [2 (𝛾𝐷 − 𝛾𝐻(𝑡)) − 𝛼])
(substitute 𝛾𝐷 = 𝛼)

𝑄𝑤𝑒𝑖𝑔ℎ𝑡 = cos (2 [2𝛼 − 2𝛾𝐻(𝑡) − 𝛼])
𝑄𝑤𝑒𝑖𝑔ℎ𝑡 = cos (2𝛼 − 4𝛾𝐻(𝑡))

and the U weight is:

𝑈𝑤𝑒𝑖𝑔ℎ𝑡 = sin (2 [2 (𝛾𝐷 − 𝛾𝐻(𝑡)) − 𝛼])
(substitute 𝛾𝐷 = 𝛼)

𝑈𝑤𝑒𝑖𝑔ℎ𝑡 = sin (2 [2𝛼 − 2𝛾𝐻(𝑡) − 𝛼])
𝑈𝑤𝑒𝑖𝑔ℎ𝑡 = sin (2𝛼 − 4𝛾𝐻(𝑡))

Consider what happens when the fast axis of the HWP is aligned with the detector orientation
(𝛾𝐻 = 𝛼 = 𝛾𝐷 = 45∘). In that scenario we have:

𝑄𝑤𝑒𝑖𝑔ℎ𝑡(45, 𝐻𝑊𝑃) = cos (−2𝛼)
𝑄𝑤𝑒𝑖𝑔ℎ𝑡(45, 𝐻𝑊𝑃) = 0

𝑈𝑤𝑒𝑖𝑔ℎ𝑡(45, 𝐻𝑊𝑃) = sin (−2𝛼)
𝑈𝑤𝑒𝑖𝑔ℎ𝑡(45, 𝐻𝑊𝑃) = − 1

1.3.2 Implementation

Given the previous equations, for both the HWP and non-HWP cases we need to use our detector
pointing to determine the 𝛼 angle at each sample. We can use our detector quaternions to rotate the
sky coordinate axes to the detector frame. The resulting direction (detector Z axis) and orientation
(detector X axis / polarization sensitive direction) vectors are:

⃗𝑉𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = ⃗𝑉𝑑 = 𝑄𝑑𝑒𝑡( ̂𝑍) = 𝑉𝑑𝑥 ̂𝑖 + 𝑉𝑑𝑦 ̂𝑗 + 𝑉𝑑𝑧 �̂�
⃗𝑉𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = ⃗𝑉𝑜 = 𝑄𝑑𝑒𝑡(�̂�) = 𝑉𝑜𝑥 ̂𝑖 + 𝑉𝑜𝑦 ̂𝑗 + 𝑉𝑜𝑧 �̂�

[21]: N = CoordSys3D("N")
Vdx = sym.Symbol("Vdx")
Vdy = sym.Symbol("Vdy")
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Vdz = sym.Symbol("Vdz")
Vox = sym.Symbol("Vox")
Voy = sym.Symbol("Voy")
Voz = sym.Symbol("Voz")

[22]: Vd = Vdx * N.i + Vdy * N.j + Vdz * N.k
Vd

[22]: (𝑉 𝑑𝑥) îN + (𝑉 𝑑𝑦) ĵN + (𝑉 𝑑𝑧) k̂N

[23]: Vo = Vox * N.i + Voy * N.j + Voz * N.k
Vo

[23]: (𝑉 𝑜𝑥) îN + (𝑉 𝑜𝑦) ĵN + (𝑉 𝑜𝑧) k̂N

Given these, we can construct the vector orthogonal to the detector line of sight ( ⃗𝑉𝑑) which is
aligned with the local meridian:

⃗𝑉𝑚𝑒𝑟𝑖𝑑𝑖𝑎𝑛 = ⃗𝑉𝑚 = 𝑉𝑑𝑧 cos (tan−1 (𝑉𝑑𝑦
𝑉𝑑𝑥

)) ̂𝑖 + 𝑉𝑑𝑧 sin (tan−1 (𝑉𝑑𝑦
𝑉𝑑𝑥

)) ̂𝑗 − √1 − 𝑉 2
𝑑𝑧 �̂�

[24]: Vmx = sym.Symbol("Vmx")
Vmy = sym.Symbol("Vmy")
Vmz = sym.Symbol("Vmz")
Vm = Vmx * N.i + Vmy * N.j + Vmz * N.k
Vm

[24]: (𝑉 𝑚𝑥) îN + (𝑉 𝑚𝑦) ĵN + (𝑉 𝑚𝑧) k̂N

This vector is co-planar with the detector X / Y coordinate axes. The rotation angle from the
meridian vector to the detector X axis ( ⃗𝑉𝑜) is the 𝛼 angle above, and is given by (using the fact
that ⃗𝑉𝑑 is the normal to the plane):

𝛼 = tan−1 (
( ⃗𝑉𝑚 × ⃗𝑉𝑜) ⋅ ⃗𝑉𝑑

⃗𝑉𝑚 ⋅ ⃗𝑉0
)

Which in terms of components is:

[25]: sym.atan2((Vm.cross(Vo)).dot(Vd), Vm.dot(Vo))

[25]: atan2 (𝑉 𝑑𝑥 (𝑉 𝑚𝑦𝑉 𝑜𝑧 − 𝑉 𝑚𝑧𝑉 𝑜𝑦) + 𝑉 𝑑𝑦 (−𝑉 𝑚𝑥𝑉 𝑜𝑧 + 𝑉 𝑚𝑧𝑉 𝑜𝑥) + 𝑉 𝑑𝑧 (𝑉 𝑚𝑥𝑉 𝑜𝑦 − 𝑉 𝑚𝑦𝑉 𝑜𝑥) , 𝑉 𝑚𝑥𝑉 𝑜𝑥 + 𝑉 𝑚𝑦𝑉 𝑜𝑦 + 𝑉 𝑚𝑧𝑉 𝑜𝑧)
Pulling out the minus sign and formatting nicely we get:

𝛼 = tan−1 (𝑉𝑑𝑥(𝑉𝑚𝑦𝑉𝑜𝑧 − 𝑉𝑚𝑧𝑉𝑜𝑦) − 𝑉𝑑𝑦(𝑉𝑚𝑥𝑉𝑜𝑧 − 𝑉𝑚𝑧𝑉𝑜𝑥) + 𝑉𝑑𝑧(𝑉𝑚𝑥𝑉𝑜𝑦 − 𝑉𝑚𝑦𝑉𝑜𝑥)
𝑉𝑚𝑥𝑉𝑜𝑥 + 𝑉𝑚𝑦𝑉𝑜𝑦 + 𝑉𝑚𝑧𝑉𝑜𝑧

)

So computing the Stokes weights at each sample involves appling the detector quaternion to two
vectors, a few trig functions to get the components of ⃗𝑉𝑚, and then the calculation of the 𝛼 angle.

10



1.3.3 Stokes Weights Unit Tests

The following plots are generated by the unit tests for different cases of input Stokes parameters
and HWP state. For each case in the following plots:

1. The input fake sky has constant I/Q/U values at each pixel, and those are given in the plot
subtitle.

2. The plot is “looking out” from the telescope and the COSMO convention Q/U axes are drawn
from this perspective.

3. The focalplane frame X axis is parallel to the local coordinate system meridian and pointed
“South”. In other words, the detector gamma angle is exactly equal to the “alpha” angle from
the local meridian.

4. There are 4 detectors at the boresight, and their actual and expected values are given (which
should be the same). I am using a calibration factor of 𝐶 = 0.5, so the total response is
0.5[𝐼 + 𝑞𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑄 + 𝑢𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑈]. The q/u weights are defined in this document above and in
the code for the cases with / without a HWP. The cross polar response is set to zero in this
test.

Each row represents a different HWP state (including no HWP at all). Each column represents
different input map values of 𝐼 = 1, 𝑄 = 1, 𝑈 = 1, and 𝐼 = 𝑄 = 𝑈 = 1
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