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1 Pointing Matrix Weights

Jmatplotlib inline

%config InlineBackend.figure_format = "retina"
import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

sns.set ()

plt.rcParams['figure.figsize'] = (10.0, 6.0)

import sympy as sym
from sympy.vector import CoordSys3D

sym.init_printing()

1.1 Background

The “Pointing Matrix” in TOAST is represented by two types of operations. The first is the
mapping from geometric detector quaternion pointing to a pixelized representation of the sky.
The second is the model of the detector response to incoming polarized light. This model can be
expressed as the application of Mueller matrices representing optical elements in the system. The
incoming light can be expressed as a vector of Stokes parameters I, Q, U, and V.

The Stokes parameters are defined with respect to the local meridian at the detector line of sight.
In the TOAST formalism, the detector frame has the Z axis pointing along the detector line of sight
and the X axis aligned with the direction of maximum polarization response. For this exercise, we
will use the COSMO convention for the Stokes parameters, since it conveniently also has the 7 axis
along the line of sight. The final result is easy to swap between COSMO / TAU simply by changing
the sign of the U Stokes parameter. In some scenarios, it can be convenient to look at the various
angles from the perspective of the instrument “looking out” at the sky (with the detector Z axis
going “into the page”). In other cases it makes more sense to visualize the situation “looking in”
from the sky. The figures below clearly label which case is being displayed.
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COSMO (HEALPix) Conventions

Southlx

Coordinate Sphere

1.1.1 Definitions

Tangent plane, looking inward

Southlx

Tangent plane, looking outward

We will use alpha to represent the angle of right-handed rotation from the meridian to the detector
polarization orientation (the detector frame X axis) about the line of sight (detector Z axis). We use
omega to represent the right-handed angle of rotation, about the line of sight, from the meridian to
a direction parallel to the HWP fast axis. The cross-polar leakage of the linearly polarized detector
is epsilon. To visually simplify things, we define the polarization coefficient:

_1—6
C14e

And note that there is a factor of 1/2 that can be included in an overall calibration factor in the

resulting measured output power.

alpha = sym.Symbol(r"\alpha")
omega = sym.Symbol(r"\omega")
epsilon = sym.Symbol(r"\epsilon")
C = sym.Symbol("C")

alpha, omega, epsilon, C

(o, w, €, CO)

1.2 Mueller Matrix Representation

Assume we have an input Stokes vector:

In the case of no HWP and just a partial linear polarizer followed by a total power measurement,

the resulting measured power is:
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Where the total power measurement T is simply the sum of the top row of the final Mueller
matrix. If we introduce a rotating HWP followed by the fixed linear polarizer and then a total
power measurement we get:

Pout = Tpower : Mdet : MHWP(t) Sin

The detector and HWP Mueller matrices include a rotational coordinate transform:

—R-1
1\/IHWP - RHWP MFiaced HWP RHWP

Where the rotation matrix transforms from the measurement frame to the local coordinates of the
HWP. Similarly the detector Mueller matrix is an (imperfect) linear polarizer with some rotation
from the measurement frame:

_ —1
Mdet - Rdet MLinear Pol Rdet

1.2.1 HWP Matrix
The ideal, local HWP has Mueller matrix of:

# Ideal HWP in local frame:
Lhwp = sym.Matrix([

(1, o, o0, 01,

(o, 1, o, 0],

(o, o, -1, o],

o, o, o, -11,

D

Lhwp

1 0 O 0
01 0 0
00 -1 0
00 0 -1

and the rotation matrix from the coordinate frame to the local frame is:

Rhwp = sym.Matrix([
(1, o, 0, 0],
[0, sym.cos(2 * omega), sym.sin(2 * omega), 0],
[0, -sym.sin(2 * omega), sym.cos(2 * omega), O],

o, 0, 0, 11,
D
Rhwp
1 0 0
0 cos(2w) sin(2w)

0 —sin(2w) cos(2w)
0 0 0

— o O O



For simplifying the algebra below, we use b = 2w. The inverse coordinate transform is a result of
swapping w for —w.

[6]: b = sym.Symbol(r"b")

Rhwp = sym.Matrix([
[1, 0, 0, O],
[0, sym.cos(b), sym.sin(b), 0],
[0, -sym.sin(b), sym.cos(b), 0],

o, o, o, 11,
D
Rhwp
(61: rq 0 0 0
0 cos(b) sin(b) 0
0 —sin(b) cos(b) 0
0 0 0 1

[7]: Rhwpinv = sym.Matrix([
[1, 0, O, O],
[0, sym.cos(b), -sym.sin(b), 0],
[0, sym.sin(b), sym.cos(b), 0],

(o, o, o, 11,
D
Rhwpinv
(71: 0 0 0
0 cos(b) —sin(b) 0
0 sin(b) cos(b) O
0 0 0 1

And then the final HWP Mueller matrix becomes:
[8]: Mhwp = sym.simplify(Rhwpinv * Lhwp * Rhwp)

Mhwp
0 cos(2b) sin(20) O
0 sin(2b) —cos(2b) O
0 0 0 —1

1.2.2 Linearly Polarized Detector

A (partial) linear polarizer has the local Mueller matrix:

[9]: Ldet = sym.Matrix([
(1, ¢, 0, O],
[c, 1, o, 0,
o, o, o, ol,
(o, o, o, 0l,



D

Ldet
C 1 00
0O 0 0 O
0O 0 0 O

The Mueller matrix which rotates a Stokes vector in a right-handed counter-clockwise sense is again
given by:

[10]: Rdet = sym.Matrix([
(1, 0, 0, 01,
[0, sym.cos(2 * alpha), sym.sin(2 * alpha), 0],
[0, -sym.sin(2 * alpha), sym.cos(2 * alpha), 0],

[0, O’ O, 1]’
D
Rdet
0 cos(2a) sin(2a) 0
0 —sin(2a) cos(2a) 0
0 0 0 1

For simplifying the algebra below, we use a = 2a.

[11]: a = sym.Symbol(r"a")
Rdet = sym.Matrix([
(1, 0, 0, 0],
[0, sym.cos(a), sym.sin(a), O],
[0, -sym.sin(a), sym.cos(a), 0],

[O, O’ O, 1]’
D
Rdet
0 cos(a) sin(a) O
0 —sin(a) cos(a) 0
0 0 0 1

The inverse transform can be obtained by evaluating this at —«

[12]: Rdetinv = sym.Matrix([
(1, 0, 0, 0],
[0, sym.cos(a), -sym.sin(a), 0],
[0, sym.sin(a), sym.cos(a), 0],
[o, o, 0, 11,
D
Rdetinv

[12]:



1 0 0 0
0 cos(a) —sin(a) 0
0 sin(a) cos(a) O
0 0 0 1

The final detector Mueller matrix in the measurement frame is then:

[13]: Mdet = sym.simplify(Rdetinv * Ldet * Rdet)

Mdet
[13]: 1 Ccos(a) Csin(a) 0
Ccos(a) cos?(a) % 0
C'sin (a) %22@ sin® (a) 0
0 0 0 0

1.2.3 Final Expression - Without HWP

The optical response without a HWP is just the linear polarized detector result above. The output
Stokes weights are:

[14]: = Mdet [0, 0]

s_I
s I
14] :

[14] 1

[15]: s_Q = Mdet[0, 1]
s_Q

[15]: C cos (a)

[16]: s_U = Mdet[0, 2]
s_U

[16]: C'sin (a)

So the final measured power is:

1

P, = B [Im + Loe [Q;,, cos (2a) + U,,, sin (204)]} (COSMO)

1+e€
OR

1 1—e¢ .
Pouw =5 [T+ 11 [Qucos (20) = Uysin(20)]| (140)

1.2.4 Final Expression - Including HWP
The combined optical response of the HWP and detector matrices are then:

[17]: Mopt = sym.simplify(Mdet * Mhwp)
Mopt
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[20]:

[20]:

1 C cos (a — 2b) —C'sin (a — 2b) 0
comy ZE T B
C Sin (a) 51n2 + Sin (21 _ COb2 + COSs g 0

And the output Stokes weights are:

s_I = Mopt[0, 0]
s_I

1

s_Q = Mopt[0, 1]
s_Q

C' cos (a — 2b)

s_U = Mopt[0, 2]
s U

—C'sin (a — 2b)

So the final measured power is:

P,..= % [Im + i (@, cos (2(a — 2w)) — U, sin (2(av — 2w))]} (COSMO)

OR

P = 3 [Ton + Ts (Qun 005 2= 2)) + Uy sin (2a—20))]]  (140)

1.3 Detector Response in TOAST

Our starting point is a detector quaternion at each sample that rotates the coordinate frame on
the sky to the detector frame, with the Z axis along the line of sight and the X axis along the
polarization sensitive direction. In the detector frame, the vector along the meridian is offset by an
angle of —a. Recall that our detector coordinate frame is offset from the overall focalplane frame.
The detector frame is also rotated by an angle v,. The HWP angle (y5(t)) in the detector frame
is time varying and measured from the same reference point:



Detector Frame Relative to Detector Frame Relative to

Other Coordinate Frames Other Coordinate Frames
(Tangent plane, looking inward) (Tangent plane, looking outward)

Detector Y Detector Y
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For the case with no HWP, we just need the angle . If we do have a HWP, then we can use the figure
above to express w in terms of our known quantities. From this we can see that w = a+~y4(t) —vp.
Substituting this we get (using COSMO convention, which is the default):

Pa = 3 [ Ton + T 1Qun 008 2 (@ = 2[a + 7 (8) = 7p1)) — Uy 5in (2 0 = 2 [+ 735 (8) = 7])]

2 1+e€
Expanding:
1 1—e .
P = 3 [ Ton + e [Qun 08 (2 (= 20 = 295(8) + 275) = Uy sin 2 (= 20 = 295(8) + 275))]

P = 5 [Fiu T (@i €05 (2 (= 295(6) + 7)) — Uy 5in (2 (= — 235(1) + 27))]
P = 3 [ o+ Te (Qun 008 2[2 (v — 73 (1) — @) = Uy (22 (1 — 1(1) — )]
out 9 |Tin 1+e in CO D YH o in S "D YH o

This gives us our total power measurement in terms of a fixed, per-detector offset, the HWP angle
in the focalplane frame, and the orientation of the detector frame (the o angle) at each sample.

1.3.1 Example

As a sanity check, consider a scenario where the focalplane X axis is aligned with the coordinate
system “South” direction in the figure above. Also choose v, to be 45 degrees. In this case,
a == yp and 2a = 90°.

In the case of no HWP and using COSMO convention, we have:



Queign: (45) = cos (2a)
Qweight (45> =0

Uweight(45> = sin (20[)
Uweight(45> =1

The Stokes Q weight is zero and the Stokes U weight is +1, which makes sense since the detector
is aligned with the positive U axis. In the case of a rotating HWP, our Q weight is:

Queight = €08 (2[2(vp —vu (1)) — )

(substitute v = «)
Qweight = COS (2 [2& - 27H <t> - Oé])
Qweight = COS (2a - 4-7H (t))

and the U weight is:

Uweight = sin (2[ ( (t>) ])
(substitute v, = «)
Uweight = sin (2 [20[ - 27H (t> ])

Uweight = sin (20[ - 47H< ))

Consider what happens when the fast axis of the HWP is aligned with the detector orientation
(yy = o =~vp = 45°). In that scenario we have:

Queight (45, HW P) = cos (—2a)
Qweight<45a HWP) =

Uweight (45, HW P) = sin (—2a)
Uweight<457HWP) - =

1.3.2 Implementation

Given the previous equations, for both the HWP and non-HWP cases we need to use our detector
pointing to determine the a angle at each sample. We can use our detector quaternions to rotate the
sky coordinate axes to the detector frame. The resulting direction (detector Z axis) and orientation
(detector X axis / polarization sensitive direction) vectors are:

Vdi'rectian = Qdet (

Vs )
‘Z)rientution = Vo = Qdet(X) = Voa: ;—’_ Voy j—i_ Vozk

Vig i+ Vy j+ V. k

[21]: N = CoordSys3D("N")
Vdx = sym.Symbol("Vdx")
Vdy = sym.Symbol("Vdy")



Vdz = sym.Symbol("Vdz")

Vox = sym.Symbol("Vox")
Voy = sym.Symbol("Voy")
Voz = sym.Symbol("Voz")

[22]: Vd = Vdx * N.i + Vdy * N.j + Vdz * N.k
vd

221 VdaTin + (Vdy in + (Vd2) kn

[23]: Vo = Vox * N.i + Voy * N.j + Voz * N.k

Vo
[23]: ~, -, A
(Voz)in + (Voy)jn + (Voz) ky
Given these, we can construct the vector orthogonal to the detector line of sight (Vd) which is
aligned with the local meridian:
s s V. - V. - -
V. oridian = Vin = V., €OS (tan1 (@)) i+ V,, sin (tan1 (@)) J—\/1-VZk
Vdm Vdm
[24] : Vmx = sym.Symbol ("Vmx")
Vmy = sym.Symbol("Vmy")
Vmz = sym.Symbol("Vmz")
Vm = Vmx * N.i + Vmy * N.j + Vmz * N.k
Vm
[24]:

(Vm:n)AiN + (me)AjN + (sz)AkN

This vector is co-planar with the detector X / Y coordinate axes. The rotation angle from the
meridian vector to the detector X axis (V) is the a angle above, and is given by (using the fact
that V} is the normal to the plane):

Which in terms of components is:
[25]: sym.atan2((Vm.cross(Vo)) .dot(Vd), Vm.dot (Vo))

257 atan, (Vdz (VmyVoz — VmzVoy) + Vdy (—VmaVoz + VmzVox) + Vdz (VmaVoy — VmyVox),VmzVox + Vi

Pulling out the minus sign and formatting nicely we get:

my "’ oz mz " oy

VinaeVor + Vo Vou + ViV,

mz ¥ ox my ¥ oy mz Y oz

o =tan

1 (Vda:(v Voo = ViV ) - de(‘/ma:‘/oz - szvoar) + de(vmmvoy - me%w))

So computing the Stokes weights at each sample involves appling the detector quaternion to two
vectors, a few trig functions to get the components of V,,, and then the calculation of the o angle.
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1.3.3 Stokes Weights Unit Tests

The following plots are generated by the unit tests for different cases of input Stokes parameters

and HWP state. For each case in the following plots:

Each row represents a different HWP state (including no HWP at all). Each column represents

1. The input fake sky has constant 1/Q/U values at each pixel, and those are given in the plot

subtitle.

from this perspective.

the local meridian.

test.

The plot is “looking out” from the telescope and the COSMO convention Q/U axes are drawn

The focalplane frame X axis is parallel to the local coordinate system meridian and pointed
“South”. In other words, the detector gamma angle is exactly equal to the “alpha” angle from

There are 4 detectors at the boresight, and their actual and expected values are given (which
should be the same). I am using a calibration factor of C' = 0.5, so the total response is
0.5[1 + Gueight * @ + Uyeigns * U]. The q/u weights are defined in this document above and in
the code for the cases with / without a HWP. The cross polar response is set to zero in this

different input map valuesof I =1, Q=1,U=1,and I =Q=U =1
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