
Spatter: A Framework for
Measuring Hardware Gather-

Scatter Support

Patrick Lavin, Jeffrey Young, Jason Riedy, Rich Vuduc,
Aaron Vose, Dan Ernst

Purpose
• Modern processors implement

Indexed Vector Load and Store
instructions, better known as
Gather/Scatter (G/S) instructions.

• AVX512, SVE

• Spatter aims to help application
developers, compiler writers,
and architects assess how well
compilers and hardware support
G/S.

Gather (indexed read):
for i in 0!..vector_len:

reg[i] = mem[idx[i]]

Scatter (indexed write):
for i in 0!..vector_len:

mem[idx[i]] = reg[i]

2

G/S Examples
• We can group SVE G/S instructions in traces based on the

index buffer and the delta from the previous access

• By examining the index buffers, we can classify the types of
patterns we see

Pattern Example Apps

Uniform Stride [0,4,8,12,16,20,24,28] Nekbone, Lulesh,
Pennant

Mostly Stride-1 [0,1,2,36,37,38,72,73,74] AMG

Broadcast [0,0,0,0,4,4,4,4] Pennant

3

Spatter Kernels
• The basis of Spatter are gather

and scatter kernels

Gather kernel:
for i in 0!..N:

reg = gather(src + delta*i, idx)

Scatter kernel:
for i in 0!..N:

scatter(dst + delta*i, idx, reg)

• The delta and the pattern in idx
specify the memory access pattern.

4

Features
• Backends - Serial, OpenMP, CUDA (and SVE soon)

• Built-in common patterns (Uniform Stride, Mostly Stride-1,
Laplacian stencil)

• Performance tuning

• OpenMP Work per thread

• CUDA block size

• Pattern length

• Advanced scripting with JSON

5

Using Spatter

6

1. Basic Usage - Specify a pattern
on the command line

2. Advanced Usage - specify a
JSON file containing a collection
of patterns

Matrix Transpose
• “Will some operation be slow

if I don’t transpose the matrix
first?”

• E.g. Performing a portion of
an FFT across rows, when the
matrix is stored in column
order

L=$((2"**24))

Transpose First:
./spatter -pUNIFORM:4:1 -d4 -l$L
"=> 29258.5 MB/s

No Transpose:
./spatter -pUNIFORM:4:$L -d1 -l$L
"=> 26898.5 MB/s
*Xeon E5-2650 v4, Skylake, 12 threads

7

Stencil Patterns (New for SC!)

• Spatter supports several
built-in, parametrized
stencils

• E.g. LAPLACIAN:2:1:100
represents this stencil on a
problem of size 100x100

• Spatter will turn this into
the following pattern, with
a delta of one
[0, 99, 100, 101, 200]
 !!===
[-100, -1, 0, 1, 100]

./spatter -pLAPLACIAN:2:1:100 -l$((2"**25))
"=> 67862.4 MB/s

8

Advanced Usage: JSON Files

• Spatter is able to optimize memory
allocation and provide summarized
output if all of your tests are
specified in a single JSON file

[{‘pattern’:’UNIFORM:8:1’,
 ‘delta’:8, ‘count’:10000},
 {‘pattern’:’UNIFORM:8:2’,
 ‘delta’:16, ‘count’:10000},
 {‘pattern’:’UNIFORM:8:4’,
 ‘delta’:32, ‘count’:10000},
…
]

ustride_simple.json

Running Spatter version 0.4
Compiler: Intel ver. 19.0.0.20190206
Compiler Location: /opt_local/intel/bin/icc
Backend: OPENMP
Aggregate Results? YES

Run Configurations
[{'name':'UNIFORM:8:1', ‘delta’:8,…},
 {'name':'UNIFORM:8:2', ‘delta’:16,…},
 {'name':'UNIFORM:8:4', ‘delta’:32, …},
…
]

config time(s) bw(MB/s)
0 0.205 78033.8
1 0.1622 49325
2 0.1705 23465.7

9

Vector vs Scalar Loads

• In previous Intel hardware
generations, there was no benefit to
using G/S instructions.

• More modern hardware, however,
shows speedup when using these
instructions for uniform stride loads.

• We provide a serial backend for this
purpose

./spatter -pFILE=ustride_simple.json -bOPENMP

./spatter -pFILE=ustride_simple.json -bSERIAL

10

Cache Implementation Exploration:
Prefetching

• Why does Broadwell bandwidth improve
at large strides and why does it out-
perform Skylake?

BDW

SKX

11

GPU: G/S Available Bandwidth
Improvement

K40c Titan Xp P100 GV100

Reported BW
288 547.7 732 870

Spatter Gather
145 427 578 877

Spatter
Scatter 196 480 600 896

• GPU gather/scatter performance has improved in recent generations.

• Full main memory bandwidth now available when doing gather/scatter
operations (assuming a stream-like access pattern)

./spatter -pUINFORM:256:1 -d256 -l$((2"**18))

12

GPU: Uniform Stride Access
Improvements

• The ability of GPU’s to maintain a high percentage of peak as access stride
has increase, has improved over recent generations
• The P100 and Titan are noticeably “flatter” at intermediate strides than

the K40 for gather
• The GV100 does not flatten out until stride 8, a divergence from previous

generations

13

Application Specific Patterns

Performance in GB/s

AMG NEKBONE LULESH Pennant STREAM

BDW 123 121 20 6 43
SKL 328 308 12 35 96
CSL 234 215 9 28 94
Naples 140 323 3 11 97
TX2 270 247 232 28 241
KNL 201 190 19 4 249
R value 0.26 0.03 0.5 -0.04

K40c 108 99 88 14 193
TitanXp 496 320 175 21 443
P100 703 673 165 19 541
GV100 1368 1395 368 20 870
R value 0.75 0.73 0.72 0.52

• We have collected patterns from
4 DoE mini-apps and placed
them into JSON files

• Spatter bandwidths do not
correlate well with STREAM for
these patterns (R value close to 1)

• GPU patterns correlate
reasonably well

./spatter -pFILE=amg.json

14

What’s Next?
• Integrate our ARM SVE backend, add an AVX512 backend

• Accurate L1/L2 Measurements

• A64FX’s Combined Gather

• Open source G/S trace generation from applications

• More kernels to express more memory access patterns, such
as GUPS and Pointer Chase

• Create a standard set of configurations

15

More Info
• Spatter.io

• Documentation, links to code and data repos, and a link to our ArXiv pre-
print

• ArXiv Pre-print

• Spatter: A Benchmark Suite for Evaluating Sparse Access Patterns

• https://arxiv.org/abs/1811.03743

• ACM Student Research Competition Poster 27

• 5:15-7:00 today

• Code

• https://github.com/hpcgarage/spatter

16

http://spatter.io
https://arxiv.org/abs/1811.03743
https://github.com/hpcgarage/spatter

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award #1710371.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract

No. DE-AC05-00OR22725

This research was supported in part by the Laboratory Directed Research and Development program at
Sandia National Laboratories under contract DE-NA-0003525. Disclaimer: The views, opinions, and/or

findings contained in this document are those solely of the author(s) and should not be interpreted as
representing the official views or policies of any of its funding sources.

17

Spatter: A Framework for Measuring
Hardware Gather-Scatter Support

Example

[0,4,8,12,16,20,24,28]

[0,1,2,36,37,38,72,73,74]

[0,0,0,0,4,4,4,4]

18

Backup Slides

19

Examples - Vectorization
• Some forms of vectorization will naturally lead to Gather/

Scatter operations

Algo: SUM COLUMNS
for (j in range(N)):
 for (i in range(4)):
 out[j] += data[i,j]

Column-Major

Algo: Vectorized SUM COLUMNS
for (j = 0; j < N; j+=8):

temp = 0; "// vector of length 8
 for (i in range(4)):
 temp += gather(j+i, [0,4,8,12,16,20,24,28])
 out[j:j+8] = temp

20

Examples - CSR SpMV

• Gathers can also represent
indirection

• Gather elements of x, then do a
dot product with data in A.

A xy

=

=

for (i in range(nrows)):  
 indices ←⃪ row[i] : row[i+1]  
 gather(tmp, x, col[indices])  
 y[i] = dot_prod(val[indices], tmp)

21

Examples - CSC SpMV

• Scale some a column of A by  
the value in x, then  
scatter-accumulate into y.

for (i in range(ncols)):  
 indices ←⃪ col[i] : col[i+1]  
 tmp ←⃪ vector_scale(val[indices], x[i])  
 scatter_accum(y, row[indices], tmp)

A xy

=

=

22

Examples - SpGEMM
• Scatter-accumulate

columns of A
corresponding to non-
zero entries in a
column of B into a
dense SPA buffer.
Gather SPA into C.

A BC

=

=

Algorithm from Buluç and Gilbert: Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments
https://doi.org/10.1137/110848244

for (j in range(ncols) :
 SPA = 0 //dense accumulation buffer
 for non-zero B(k,j) :
 scatter_accum(SPA, A(:,k)*B(k,j))
 gather(C.val, SPA)
 gather(C.row, which(SPA))
 C.col[j+1] = C.col[j] + nnz(SPA)

SPA:

23

Example - SuperLU

• SuperLU spends a large portion  
its runtime on just scattering data

0

20

40

60

80

100

ND24
K

BBMAT
H2O

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

SCATTER DGEMM REST

������� �	�
����
������� ��������

Chart credits: Piyush Sao 24

Platforms

25

Application Patterns

26

