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Purpose
• Modern processors implement 

Indexed Vector Load and Store 
instructions,  better known as 
Gather/Scatter (G/S) instructions. 

• AVX512, SVE 

• Spatter aims to help application 
developers, compiler writers, 
and architects assess how well 
compilers and hardware support 
G/S.

Gather (indexed read): 
for i in 0!..vector_len: 

reg[i] = mem[idx[i]] 

Scatter (indexed write): 
for i in 0!..vector_len: 

mem[idx[i]] = reg[i] 
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G/S Examples
• We can group SVE G/S instructions in traces based on the 

index buffer and the delta from the previous access 

• By examining the index buffers, we can classify the types of 
patterns we see

Pattern Example Apps

Uniform Stride [0,4,8,12,16,20,24,28] Nekbone, Lulesh, 
Pennant

Mostly Stride-1 [0,1,2,36,37,38,72,73,74] AMG

Broadcast [0,0,0,0,4,4,4,4] Pennant
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Spatter Kernels
• The basis of Spatter are gather 

and scatter kernels

Gather kernel: 
for i in 0!..N: 

reg = gather(src + delta*i, idx) 

Scatter kernel: 
for i in 0!..N: 

scatter(dst + delta*i, idx, reg)

• The delta and the pattern in idx  
specify the memory access pattern.
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Features
• Backends - Serial, OpenMP, CUDA (and SVE soon) 

• Built-in common patterns (Uniform Stride, Mostly Stride-1, 
Laplacian stencil) 

• Performance tuning  

• OpenMP Work per thread 

• CUDA block size 

• Pattern length  

• Advanced scripting with JSON
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Using Spatter
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1. Basic Usage - Specify a pattern 
on the command line 

2. Advanced Usage - specify a 
JSON file containing a collection 
of patterns



Matrix Transpose
• “Will some operation be slow 

if I don’t transpose the matrix 
first?” 

• E.g. Performing a portion of 
an FFT across rows, when the 
matrix is stored in column 
order

L=$((2"**24)) 

Transpose First: 
./spatter -pUNIFORM:4:1 -d4 -l$L 
"=> 29258.5 MB/s 

No Transpose: 
./spatter -pUNIFORM:4:$L -d1 -l$L 
"=> 26898.5 MB/s
*Xeon E5-2650 v4, Skylake, 12 threads
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Stencil Patterns (New for SC!)

• Spatter supports several 
built-in, parametrized 
stencils 

• E.g. LAPLACIAN:2:1:100 
represents this stencil on a 
problem of size 100x100 

• Spatter will turn this into 
the following pattern, with 
a delta of one
[   0, 99, 100, 101, 200]  
           !!===  
[-100, -1,   0,   1, 100]

./spatter  -pLAPLACIAN:2:1:100 -l$((2"**25)) 
"=> 67862.4 MB/s
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Advanced Usage: JSON Files

• Spatter is able to optimize memory 
allocation and provide summarized 
output if all of your tests are 
specified in a single JSON file

[ {‘pattern’:’UNIFORM:8:1’,  
   ‘delta’:8, ‘count’:10000}, 
  {‘pattern’:’UNIFORM:8:2’,  
   ‘delta’:16, ‘count’:10000}, 
  {‘pattern’:’UNIFORM:8:4’,  
   ‘delta’:32, ‘count’:10000}, 
… 
]

ustride_simple.json

Running Spatter version 0.4 
Compiler: Intel ver. 19.0.0.20190206 
Compiler Location: /opt_local/intel/bin/icc 
Backend: OPENMP 
Aggregate Results? YES 

Run Configurations 
[  {'name':'UNIFORM:8:1', ‘delta’:8,…}, 
   {'name':'UNIFORM:8:2', ‘delta’:16,…}, 
   {'name':'UNIFORM:8:4', ‘delta’:32, …}, 
… 
] 

config  time(s)      bw(MB/s)     
0       0.205        78033.8      
1       0.1622       49325        
2       0.1705       23465.7      
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Vector vs Scalar Loads

• In previous Intel hardware 
generations, there was no benefit to 
using G/S instructions.  

• More modern hardware, however, 
shows speedup when using these 
instructions for uniform stride loads.  

• We provide a serial backend for this 
purpose

./spatter -pFILE=ustride_simple.json -bOPENMP 

./spatter -pFILE=ustride_simple.json -bSERIAL
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Cache Implementation Exploration: 
Prefetching

• Why does Broadwell bandwidth improve 
at large strides and why does it out-
perform Skylake?

BDW

SKX
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GPU: G/S Available Bandwidth 
Improvement

K40c Titan Xp P100 GV100

Reported BW
288 547.7 732 870

Spatter Gather
145 427 578 877

Spatter 
Scatter 196 480 600 896

• GPU gather/scatter performance has improved in recent generations.  

• Full main memory bandwidth now available when doing gather/scatter 
operations (assuming a stream-like access pattern)

./spatter -pUINFORM:256:1 -d256 -l$((2"**18))
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GPU: Uniform Stride Access 
Improvements

• The ability of GPU’s to maintain a high percentage of peak as access stride 
has increase, has improved over recent generations 
• The P100 and Titan are noticeably “flatter” at intermediate strides than 

the K40 for gather 
• The GV100 does not flatten out until stride 8, a divergence from previous 

generations
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Application Specific Patterns

Performance in GB/s

AMG NEKBONE LULESH Pennant STREAM

BDW 123 121 20 6 43
SKL 328 308 12 35 96
CSL 234 215 9 28 94
Naples 140 323 3 11 97
TX2 270 247 232 28 241
KNL 201 190 19 4 249
R value 0.26 0.03 0.5 -0.04

K40c 108 99 88 14 193
TitanXp 496 320 175 21 443
P100 703 673 165 19 541
GV100 1368 1395 368 20 870
R value 0.75 0.73 0.72 0.52

• We have collected patterns from 
4 DoE mini-apps and placed 
them into JSON files 

• Spatter bandwidths do not 
correlate well with STREAM for 
these patterns (R value close to 1) 

• GPU patterns correlate 
reasonably well

./spatter -pFILE=amg.json
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What’s Next?
• Integrate our ARM SVE backend, add an AVX512 backend 

• Accurate L1/L2 Measurements 

• A64FX’s Combined Gather 

• Open source G/S trace generation from applications 

• More kernels to express more memory access patterns, such 
as GUPS and Pointer Chase 

• Create a standard set of configurations
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More Info
• Spatter.io 

• Documentation, links to code and data repos, and a link to our ArXiv pre-
print 

• ArXiv Pre-print  

• Spatter: A Benchmark Suite for Evaluating Sparse Access Patterns 

• https://arxiv.org/abs/1811.03743 

• ACM Student Research Competition Poster 27  

• 5:15-7:00 today 

• Code  

• https://github.com/hpcgarage/spatter
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Spatter: A Framework for Measuring 
Hardware Gather-Scatter Support 

Example

[0,4,8,12,16,20,24,28]

[0,1,2,36,37,38,72,73,74]

[0,0,0,0,4,4,4,4]
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Backup Slides
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Examples - Vectorization
• Some forms of vectorization will naturally lead to Gather/

Scatter operations

Algo: SUM COLUMNS 
for (j in range(N)): 
   for (i in range(4)): 
        out[j] += data[i,j]

Column-Major

Algo: Vectorized SUM COLUMNS 
for (j = 0; j < N; j+=8): 

temp = 0;                                "// vector of length 8 
    for (i in range(4)): 
        temp += gather(j+i, [0,4,8,12,16,20,24,28])     
    out[j:j+8] = temp 

20



Examples - CSR SpMV

• Gathers can also represent 
indirection 

• Gather elements of x, then do a 
dot product with data in A.  

A xy

=

=

for (i in range(nrows)):  
    indices ←⃪ row[i] : row[i+1]  
    gather(tmp, x, col[indices])  
    y[i] = dot_prod(val[indices], tmp)
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Examples - CSC SpMV

• Scale some a column of A by  
the value in x, then  
scatter-accumulate into y.  

for (i in range(ncols)):  
    indices ←⃪ col[i] : col[i+1]  
    tmp ←⃪ vector_scale(val[indices], x[i])  
    scatter_accum(y, row[indices], tmp)

A xy

=

=
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Examples - SpGEMM
• Scatter-accumulate 

columns of A 
corresponding to non-
zero entries in a 
column of B into a 
dense SPA buffer. 
Gather SPA into C. 

A BC

=

=

Algorithm from Buluç and Gilbert: Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments 
https://doi.org/10.1137/110848244

for (j in range(ncols) :
    SPA = 0 //dense accumulation buffer
    for non-zero B(k,j) :
        scatter_accum(SPA, A(:,k)*B(k,j)) 
    gather(C.val, SPA)
    gather(C.row, which(SPA))
    C.col[j+1] = C.col[j] + nnz(SPA)

SPA:

23



Example - SuperLU

• SuperLU spends a large portion  
its runtime on just scattering data
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Chart credits: Piyush Sao 24



Platforms
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Application Patterns
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