
YYYYYYYYYYYYYYYYYYYYYYY

x

A Framework for Measuring Hardware Gather-Scatter Support
Patrick Lavin, Jeffrey Young (advisor) , Richard Vuduc (advisor)

Spatter
Spatter.io

Acknowledgement: This work is partially supported by NSF Award #1710371, and was partially completed at Cray, Inc. Thanks to Dan Ernst and Aaron Vose for their support.

Georgia Tech

Background on Gather-Scatter

What are gather-scatter patterns?

Real-World G/S Patterns
Preliminary analysis of SVE gather scatter instructions from DOE mini-app
traces has revealed several common patterns.

Hardware Support for Gather/Scatter
Explicit gather-scatter instructions are currently available on Intel KNL,
Skylake, and Ice lake processors, and will be enabled by SVE in upcoming ARM
processors. Additionally, the Fujitsu A64FX will support pattern-dependent G/S
optimizations. While GPUs do not sport instructions to perform G/S to/from
memory, their support for coalescing means they perform well in these tests.

Design of the Spatter Benchmark

Input
Spatter takes many input parameters, but the most important ones are
pattern and delta specifications. The pattern is applied to a buffer
repeatedly to gather data into the CPU, or to scatter data into memory.
The intervals at which the pattern is applied is referred to as a delta.
Spatter supports the built-in patterns Uniform Stride and Mostly-Stride 1,
or you can write out your own.

Spatter accepts a JSON file describing many configurations to allow for
various optimizations and to ease scripting. We can create JSON files with
a collection of patterns from an application. Spatter reports a bandwidth
for each pattern.

The Kernels
Spatter uses separate kernels for gather and scatter. The kernels are
implemented in C, so care has to be take to ensure that gather and
scatter instructions actually appear in the assembly. With a few pragmas,
CCE allows us to do this. We also have an AVX512 intrinsic version that will
be available soon,

CPU Results

Uniform Stride Gather Tests

$./spatter –pUNIFORM:8:6

$./spatter –p”0,1,2,3,8,9,10,11”

$cat nekbone.json

[{"pattern":

 [0,6,12,18,24,30,36,42,48,54,60,66,72,78, 84,90],

 "delta": 3},

…]

for (i):

 C[i] = A[B[i]]

Abstract

In the top plot, we have a platform
DRAM bandwidth comparison between
four CPUs. On the x-axis, we increase
the stride from 1 to 128. Interestingly,
Broadwell bandwidth actually increases
at higher strides, even beating out
Skylake.

BDW

SKX

In recent years, we have seen the re-addition of vector units to CPUs. While
these units easily give speedups for easily vectorized applications with
dense memory access, it can be hard to characterize how different access
patterns will effect the performance of vectorized code.

We have developed Spatter, a benchmark which allows us to test and
investigate the gather-scatter units available on current and upcoming
hardware. The information that Spatter reveals to users is of use to
everyone from hardware vendors who wish to compare gather-scatter units
across platforms, to compiler writers and application developers who wish
to test memory access pattern performance in their vectorized code.

Impact (and Next Steps)

Spatter has received development contributions from Cray and is currently
being evaluated by colleagues at Intel and Arm. To help them evaluate the
efficiency of gather-scatter hardware, we have three big areas to hit next.
We will write:
- SVE and AVX512 kernels, to better measure L1 and L2 bandwidths
- Tracing software, to extract G-S patterns from real applications

gather instruction. These instructions are also used to encode things like
strided access, which would show up in code accessing every nth array
element, for instance.

In practice, the elements gathered (or scattered) are described by a
base memory address, and n indices describing the offset of each array
element from the base. This array of indices is what we refer to as a
pattern. In Spatter, we describe a pattern with a delta and an index
buffer:

Gather and scatter are the names given to the
vector versions of indexed load and store
operations on new processors. Essentially, if you
want to vectorize a loop such as the one to the
right, you end up with something that looks like a

AMG NEKBONE LULESH STREAM

BDW 123 121 20 43

SKL 328 308 12 96

CSL 234 215 9 94

Naples 140 323 3 97

TX2 270 247 232 241

KNL 201 190 19 249

R value 0.26 0.03 0.5

K40c 108 99 88 193

TitanXp 496 320 175 443

P100 703 673 165 541

R value 0.66 0.62 0.62

Mostly Stride-1
Observed in: AMG

Uniform Stride
Observed in: LULESH, Nekbone

Broadcast
Observed in: Pennant

[0, 1, 2, 36, 37, 38, 72, 73]

[0, 6, 12, 18, 24, 30, 36, 42]

[0, 0, 0, 0, 8, 8, 8, 8]

GPU Results

Gather Scatter

GPU Uniform Stride Tests
In these tests, we test the simplest pattern, uniform stride. We see
bandwidth drop by half for stride-2 and stride-4. However, for the P100
and the Titan Xp, from stride-4 to stride-8, we see that bandwidth stays
the same. This is due to the fact that GPUs are able to coalesce some
loads. The older K40 hardware shows less ability to do so. The KNL,
despite having having MCDRAM similar to the P100’s HBM, performs
closer to the K40 on our tests. However, the large number of threads on
KNL may require further tuning of the OpenMP backend.

Gather

In the BDW and SKX plots, the y-axis
now reports actual bandwidth, with and
without prefetching enabled. When
increasing the stride, we expect
bandwidth to hit 1/8 of peak, as we are
using 1/8 of every cache line brought
in. So why do we drop to 1/16 in some
cases? For low strides, the Broadwell
prefetchers actually grab two lines at
a time, but stop doing this at stride
64. But in Skylake, the story is
different. Even with prefetching
turned off, we are at 1/16 bandwidth,
as the hardware always delivers 2
cache lines, no matter what. These
sorts of implementation details can be
important for optimizing for sparse
access.

Pattern Tests
We ran Spatter with the patterns
found in 3 DOE mini-apps:
1. Lulesh shows poor performance on

most CPUs because it includes a
delta-0 scatter that we believe
triggers cache invalidations.

2. For GPU systems, the R coefficient
shows that STREAM i s we l l
correlated (close to 1) with the
Spatter results. However, CPU
results for the uniform stride
patterns in Nekbone demonstrate
how STREAM can be poor ly
correlated with an application that
has cache-dependent gather /
scatter patterns.

