Permalink
Find file
a516f1b Nov 24, 2016
105 lines (80 sloc) 2.93 KB
"""
FEniCS tutorial demo program: Convection-diffusion-reaction for a system
describing the concentration of three species A, B, C undergoing a simple
first-order reaction A + B --> C with first-order decay of C. The velocity
is given by the flow field w from the demo navier_stokes_cylinder.py.
u_1' + w . nabla(u_1) - div(eps*grad(u_1)) = f_1 - K*u_1*u_2
u_2' + w . nabla(u_2) - div(eps*grad(u_2)) = f_2 - K*u_1*u_2
u_3' + w . nabla(u_3) - div(eps*grad(u_3)) = f_3 + K*u_1*u_2 - K*u_3
"""
from __future__ import print_function
from fenics import *
T = 5.0 # final time
num_steps = 500 # number of time steps
dt = T / num_steps # time step size
eps = 0.01 # diffusion coefficient
K = 10.0 # reaction rate
# Read mesh from file
mesh = Mesh('navier_stokes_cylinder/cylinder.xml.gz')
# Define function space for velocity
W = VectorFunctionSpace(mesh, 'P', 2)
# Define function space for system of concentrations
P1 = FiniteElement('P', triangle, 1)
element = MixedElement([P1, P1, P1])
V = FunctionSpace(mesh, element)
# Define test functions
v_1, v_2, v_3 = TestFunctions(V)
# Define functions for velocity and concentrations
w = Function(W)
u = Function(V)
u_n = Function(V)
# Split system functions to access components
u_1, u_2, u_3 = split(u)
u_n1, u_n2, u_n3 = split(u_n)
# Define source terms
f_1 = Expression('pow(x[0]-0.1,2)+pow(x[1]-0.1,2)<0.05*0.05 ? 0.1 : 0',
degree=1)
f_2 = Expression('pow(x[0]-0.1,2)+pow(x[1]-0.3,2)<0.05*0.05 ? 0.1 : 0',
degree=1)
f_3 = Constant(0)
# Define expressions used in variational forms
k = Constant(dt)
K = Constant(K)
eps = Constant(eps)
# Define variational problem
F = ((u_1 - u_n1) / k)*v_1*dx + dot(w, grad(u_1))*v_1*dx \
+ eps*dot(grad(u_1), grad(v_1))*dx + K*u_1*u_2*v_1*dx \
+ ((u_2 - u_n2) / k)*v_2*dx + dot(w, grad(u_2))*v_2*dx \
+ eps*dot(grad(u_2), grad(v_2))*dx + K*u_1*u_2*v_2*dx \
+ ((u_3 - u_n3) / k)*v_3*dx + dot(w, grad(u_3))*v_3*dx \
+ eps*dot(grad(u_3), grad(v_3))*dx - K*u_1*u_2*v_3*dx + K*u_3*v_3*dx \
- f_1*v_1*dx - f_2*v_2*dx - f_3*v_3*dx
# Create time series for reading velocity data
timeseries_w = TimeSeries('navier_stokes_cylinder/velocity_series')
# Create VTK files for visualization output
vtkfile_u_1 = File('reaction_system/u_1.pvd')
vtkfile_u_2 = File('reaction_system/u_2.pvd')
vtkfile_u_3 = File('reaction_system/u_3.pvd')
# Create progress bar
progress = Progress('Time-stepping')
set_log_level(PROGRESS)
# Time-stepping
t = 0
for n in range(num_steps):
# Update current time
t += dt
# Read velocity from file
timeseries_w.retrieve(w.vector(), t)
# Solve variational problem for time step
solve(F == 0, u)
# Save solution to file (VTK)
_u_1, _u_2, _u_3 = u.split()
vtkfile_u_1 << (_u_1, t)
vtkfile_u_2 << (_u_2, t)
vtkfile_u_3 << (_u_3, t)
# Update previous solution
u_n.assign(u)
# Update progress bar
progress.update(t / T)
# Hold plot
interactive()