📋 Tools to work with the pastebin API in R
Switch branches/tags
Nothing to show
Clone or download

README.md

pastebin : Tools to work with the pastebin API

Pastebin is a website where you can store any text online for easy sharing. The website is mainly used by programmers to store pieces of sources code or configuration information, but anyone is more than welcome to paste any type of text. The idea behind the site is to make it more convenient for people to share large amounts of text online.

WIP!! The package API will very likely be in rapid change mode for a bit

The following functions are implemented:

  • get_paste: Get raw paste data
  • get_paste_metadata: Get paste metadata
  • get_trending_pastes: Get trending pastes
  • get_recent_pastes: Get recent pastes
  • new_paste: Create a new paste
  • pastebin_api_key: Get or set PASTEBIN_API_KEY value
  • toString.paste: Extract just the paste text from a paste object
  • as.character.paste: Extract just the paste text from a paste object

If you want the impersonate parameter of new_paste() to work you must set PASTEBIN_USER and PASTEBIN_PASSWORD (preferably in ~/.Renviron).

TODO

  • Paste as user
  • Finish API coverage including "Pro"" paste features
  • Testing

Installation

devtools::install_github("hrbrmstr/pastebin")
options(width=120)

Usage

library(pastebin)
library(tidyverse)

# current verison
packageVersion("pastebin")
## [1] '0.1.0'
get_trending_pastes() %>% 
  arrange(desc(hits))
## # A tibble: 18 x 10
##         key                date                                                       title   size expire_date private
##       <chr>              <dttm>                                                       <chr>  <dbl>      <dttm>   <lgl>
##  1 9tMkbSb3 2017-07-27 08:38:31                                  Katie Cassidy TheFappening    177          NA   FALSE
##  2 5K5wiYuX 2017-07-25 17:11:30                                              I2 Patch Notes   3275          NA   FALSE
##  3 C1Sq9q9r 2017-07-25 03:57:21                       489 User pass Israel leaked #OpAlAqsa  35749          NA   FALSE
##  4 LsqPqNk6 2017-07-26 10:56:06                                                              30227          NA   FALSE
##  5 5dSjgP3x 2017-07-25 22:45:40                                    PL4TZ1N0M3D4P4UNT4K0.nfo   3566          NA   FALSE
##  6 cbb6Ap8h 2017-07-26 18:26:05                                          Stranger tells all   7871          NA   FALSE
##  7 cD7PYS0u 2017-07-26 16:51:10                                   XMAC IS DOWN (KV PROBLEM)  13430          NA   FALSE
##  8 RFSpucEu 2017-07-26 13:24:51                                                 lista nueva  15808          NA   FALSE
##  9 KXdK7kMQ 2017-07-25 15:33:49                                                               4181          NA   FALSE
## 10 qA3mYCtc 2017-07-25 05:34:04                                                   Junk Code    729          NA   FALSE
## 11 SWQxX6DB 2017-07-27 20:57:20                                                    CINEMA 1   1769          NA   FALSE
## 12 YVZq9iDA 2017-07-25 11:51:32                                            Updated UO 07/25   1978          NA   FALSE
## 13 Vzw3gRax 2017-07-24 22:07:32                                                               1046          NA   FALSE
## 14 xePeziuV 2017-07-27 11:39:36                                      Dual Core @ DEF CON 25    514          NA   FALSE
## 15 53ZMSRuM 2017-07-27 11:47:00 Anonymous Proxy List Thursday 27th of July 2017 11:47:30 AM   7823          NA   FALSE
## 16 KJ2thMMc 2017-07-27 18:06:35                                                                344          NA   FALSE
## 17 AtPExRB8 2017-07-28 01:17:35                                                 reily santo 100912          NA   FALSE
## 18 V5P6EDMq 2017-07-27 22:17:07                                                              34562          NA   FALSE
## # ... with 4 more variables: format_short <chr>, format_long <chr>, url <chr>, hits <dbl>
r_pastes <- get_recent_pastes(lang="rsplus")

glimpse(r_pastes)
## Observations: 50
## Variables: 9
## $ scrape_url <chr> "https://pastebin.com/api_scrape_item.php?i=vQiA3Uv3", "https://pastebin.com/api_scrape_item.php...
## $ full_url   <chr> "https://pastebin.com/vQiA3Uv3", "https://pastebin.com/eZX4LNgw", "https://pastebin.com/BLWeERvn...
## $ date       <dttm> 2017-07-28 12:53:03, 2017-07-28 09:40:33, 2017-07-28 09:36:40, 2017-07-28 00:17:50, 2017-07-27 ...
## $ key        <chr> "vQiA3Uv3", "eZX4LNgw", "BLWeERvn", "RKmxRFMQ", "587GBe45", "WVdWwGsD", "GWBxWxMA", "6iMFvXS7", ...
## $ size       <dbl> 1008, 1437, 1425, 2272, 1647, 1986, 196, 5598, 1888, 5124, 941, 4501, 105, 253, 244, 248, 1489, ...
## $ expire     <dttm> NA, 2017-07-29 09:40:33, 2017-07-29 09:36:40, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ title      <chr> "", "", "", "", "", "", "", "", "", "", "Zona altimetrica dei Comuni dell'Emilia Romagna", "buy ...
## $ syntax     <chr> "rsplus", "rsplus", "rsplus", "rsplus", "rsplus", "rsplus", "rsplus", "rsplus", "rsplus", "rsplu...
## $ user       <chr> "", "", "", "", "", "", "", "", "", "", "cldscchttn", "carder0077", "", "", "", "", "", "", "mga...

Can't always trust the lang setting. Some non-R stuff in there:

walk(r_pastes$key[1:10], ~print(toString(get_paste(.))))
## [1] "n: Anzahl Leutchen in deiner Studie\r\nx: Anzahl Leute, die deiner Theorie entsprechen (bzw. *nicht* entsprechen, der statistische Test ist ja symmetrisch)\r\np: Wahrscheinlichkeit, dass das Zahlenverhältnis als Zufall interpretiert werden kann. Unter 0.05 kann man sagen, dass da wirklich etwas handfestes vorliegt, unter etwa 0.15 kann man sagen, dass es sich lohnt, weiterzuforschen\r\n\r\n    n  x     p\r\n2   4  0 0.125\r\n3   4  4 0.125\r\n4   5  0 0.062\r\n5   5  5 0.062\r\n6   6  0 0.031\r\n7   6  6 0.031\r\n8   7  0 0.016\r\n9   7  1 0.125\r\n10  7  6 0.125\r\n11  7  7 0.016\r\n12  8  0 0.008\r\n13  8  1 0.070\r\n14  8  7 0.070\r\n15  8  8 0.008\r\n16  9  0 0.004\r\n17  9  1 0.039\r\n18  9  8 0.039\r\n19  9  9 0.004\r\n20 10  0 0.002\r\n21 10  1 0.021\r\n22 10  2 0.109\r\n23 10  8 0.109\r\n24 10  9 0.021\r\n25 10 10 0.002\r\n26 11  0 0.001\r\n27 11  1 0.012\r\n28 11  2 0.065\r\n29 11  9 0.065\r\n30 11 10 0.012\r\n31 11 11 0.001\r\n32 12  0 0.000\r\n33 12  1 0.006\r\n34 12  2 0.039\r\n35 12  3 0.146\r\n36 12  9 0.146\r\n37 12 10 0.039\r\n38 12 11 0.006\r\n39 12 12 0.000"
## [1] "library(dplyr)\r\nlibrary(xgboost)\r\n\r\ntrain <- data.frame(\r\n  X1 = runif(10000, -10, 10),\r\n  X2 = runif(10000, -10, 10),\r\n  X3 = runif(10000, -10, 10),\r\n  X4 = runif(10000, -10, 10)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4) %>%\r\n  {xgb.DMatrix(as.matrix(.[1:4]), label = .$Y)}\r\n\r\nmaxrounds = 10000\r\nearly_stop = 50\r\nnfold = 5\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 2,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.shallow <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 5,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.deep <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\ntest <- data.frame(\r\n  X1 = runif(1000, -10, 10),\r\n  X2 = runif(1000, -10, 10),\r\n  X3 = runif(1000, -10, 10),\r\n  X4 = runif(1000, -10, 10)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4)\r\n\r\npreds.shallow <- predict(model.shallow, xgb.DMatrix(as.matrix(test[1:4])))\r\npreds.deep    <- predict(model.deep, xgb.DMatrix(as.matrix(test[1:4])))\r\n\r\nresults <- data.frame(preds.shallow, preds.deep, label = test$Y) %>%\r\n  summarise(rmse.shallow = mean((preds.shallow - label)^2) %>% sqrt,\r\n            rmse.deep    = mean((preds.deep - label)^2) %>% sqrt)\r\n\r\n> results\r\n  rmse.shallow rmse.deep\r\n1     1047.639  1047.561"
## [1] "library(dplyr)\r\nlibrary(xgboost)\r\n\r\ntrain <- data.frame(\r\n  X1 = runif(10000, -1, 1),\r\n  X2 = runif(10000, -1, 1),\r\n  X3 = runif(10000, -1, 1),\r\n  X4 = runif(10000, -1, 1)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4) %>%\r\n  {xgb.DMatrix(as.matrix(.[1:4]), label = .$Y)}\r\n\r\nmaxrounds = 10000\r\nearly_stop = 50\r\nnfold = 5\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 2,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.shallow <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 5,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.deep <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\ntest <- data.frame(\r\n  X1 = runif(1000, -1, 1),\r\n  X2 = runif(1000, -1, 1),\r\n  X3 = runif(1000, -1, 1),\r\n  X4 = runif(1000, -1, 1)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4)\r\n\r\npreds.shallow <- predict(model.shallow, xgb.DMatrix(as.matrix(test[1:4])))\r\npreds.deep    <- predict(model.deep, xgb.DMatrix(as.matrix(test[1:4])))\r\n\r\nresults <- data.frame(preds.shallow, preds.deep, label = test$Y) %>%\r\n  summarise(rmse.shallow = mean((preds.shallow - label)^2) %>% sqrt,\r\n            rmse.deep    = mean((preds.deep - label)^2) %>% sqrt)\r\n\r\n\r\n> results\r\n  rmse.shallow  rmse.deep\r\n1     0.111355 0.07852135"
## [1] "library(mvtnorm)\r\nlibrary(psych)\r\nsimData <- function(n,dv){\r\n  x <- rmvnorm(n,rep(0,dv),sigma=diag(1,dv))\r\n  colnames(x) <- paste0('X',1:dv)\r\n  x\r\n}\r\n\r\ncor.p <- function(d){\r\n  cors <- corr.test(d,ci=FALSE)\r\n  cors.p <- cors$p[lower.tri(cors$p)]\r\n  cors.p\r\n}\r\n\r\nranSelect <- function(d){\r\n  n <- round(runif(1,min=10,max=nrow(d)),digits=0)\r\n  s <- sample(1:nrow(d),size=n,replace = FALSE)\r\n  list(n=n,s=s,d=d[s,])\r\n}\r\n\r\nfindSig <- function(d,tryMax = 1000,alpha){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    corOut <- cor.p(d.rand$d)\r\n    if(any(corOut <= alpha)){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=sum(corOut<alpha))\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindBF <- function(d,tryMax=1000,BF){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    bflmOut <- lmBF(X1 ~ X2, data=as.data.frame(d.rand$d))\r\n    bf <- extractBF(bflmOut)[1]\r\n    \r\n    if(bf > BF){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=bf)\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindGreatestNSig <- function(findSigOut){\r\n  n.sigs <- lapply(findSigOut$out,function(x){x$n.sig})\r\n  findSigOut$out[which.max(n.sigs)]\r\n}\r\n\r\nfindGreatestN <- function(findSigOut){\r\n  n <- lapply(findSigOut$out,function(x){x$n})\r\n  findSigOut$out[which.max(n)]\r\n}\r\n\r\nfindGreatestBF <- function(findSigOut){\r\n  bfs <- sapply(findSigOut$out,function(x){x$n.sig$bf})\r\n  findSigOut$out[which.max(bfs)]\r\n}\r\n\r\n# Get fsigOuts\r\nx <- simData(100,2)\r\nfsigOut05 <- findSig(x,10000,alpha=.05)\r\nfsigOut005 <- findSig(x,10000,alpha=.005)\r\n\r\n# Proportion of tries that found something significant\r\nfsigOut05$sig/fsigOut05$try\r\nfsigOut005$sig/fsigOut005$try\r\n\r\n# Proportion of tries finding significance, relative to alpha value\r\nfsigOut05$sig/fsigOut05$try/.05\r\nfsigOut005$sig/fsigOut005$try/.005\r\n\r\n# Find combo with the greatest number of significant results\r\nfindGreatestNSig(fsigOut05)\r\nfindGreatestNSig(fsigOut005)\r\n\r\n# Find combo with greatest N\r\nfindGreatestN(fsigOut05)\r\nfindGreatestN(fsigOut005)\r\n\r\n# BF; currently only for DV = 2\r\nfsigOutBF3 <- findBF(d=x,tryMax = 10000,BF=3)"
## [1] "library(mvtnorm)\r\nlibrary(psych)\r\nsimData <- function(n,dv){\r\n  x <- rmvnorm(n,rep(0,dv),sigma=diag(1,dv))\r\n  colnames(x) <- paste0('X',1:dv)\r\n  x\r\n}\r\n\r\ncor.p <- function(d){\r\n  cors <- corr.test(d,ci=FALSE)\r\n  cors.p <- cors$p[lower.tri(cors$p)]\r\n  cors.p\r\n}\r\n\r\nranSelect <- function(d){\r\n  n <- round(runif(1,min=10,max=nrow(d)),digits=0)\r\n  s <- sample(1:nrow(d),size=n,replace = FALSE)\r\n  list(n=n,s=s,d=d[s,])\r\n}\r\n\r\nfindSig <- function(d,tryMax = 1000,alpha){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    corOut <- cor.p(d.rand$d)\r\n    if(any(corOut <= alpha)){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=sum(corOut<alpha))\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindGreatestNSig <- function(findSigOut){\r\n  n.sigs <- lapply(findSigOut$out,function(x){x$n.sig})\r\n  findSigOut$out[which.max(n.sigs)]\r\n}\r\n\r\nfindGreatestN <- function(findSigOut){\r\n  n <- lapply(findSigOut$out,function(x){x$n})\r\n  findSigOut$out[which.max(n)]\r\n}\r\n\r\n# Get fsigOuts\r\nx <- simData(100,5)\r\nfsigOut05 <- findSig(x,10000,alpha=.05)\r\nfsigOut005 <- findSig(x,10000,alpha=.005)\r\n\r\n# Proportion of tries that found something significant\r\nfsigOut05$sig/fsigOut05$try\r\nfsigOut005$sig/fsigOut005$try\r\n\r\n# Proportion of tries finding significance, relative to alpha value\r\nfsigOut05$sig/fsigOut05$try/.05\r\nfsigOut005$sig/fsigOut005$try/.005\r\n\r\n# Find combo with the greatest number of significant results\r\nfindGreatestNSig(fsigOut05)\r\nfindGreatestNSig(fsigOut005)\r\n\r\n# Find combo with greatest N\r\nfindGreatestN(fsigOut05)\r\nfindGreatestN(fsigOut005)"
## [1] "efficacy <- read_excel(\r\n  \"C:/Users/r4ara/Desktop/Analysis/Database_CKD_Artem_v6.xlsx\",\r\n  sheet = 3,\r\n  col_names = TRUE\r\n)\r\n\r\ntrg <- c(\"UPCR\", \"eGFR\", \"DBP\", \"SBP\")\r\n\r\nsubsample_all <- \r\n  efficacy %>% \r\n  filter(str_detect(OUTCOME, paste(trg, collapse=\"|\"))) %>%\r\n  filter(!is.na(BL)) %>%\r\n  mutate(BL, CFBP = (as.numeric(CFB)/as.numeric(BL)*100)) #%>%\r\n\r\n\r\n\r\n\r\nplotstheme <- theme(axis.title  = element_text(face=\"bold\", colour=\"black\", size=18),\r\n                    plot.title = element_text(face=\"bold\", colour=\"black\", size=20),\r\n                    axis.text.x = element_text(colour=\"black\", size=16),\r\n                    axis.text.y = element_text(colour=\"black\", size=16),\r\n                    panel.background = element_rect(fill=NA),\r\n                    panel.grid.minor = element_line(colour = \"grey75\"),\r\n                    panel.grid.major = element_line(colour = \"grey75\"),\r\n                    panel.border = element_rect(colour=\"black\", fill=NA, size=1),\r\n                    legend.text=element_text(colour=\"black\", size=12),\r\n                    legend.title = element_text( face=\"bold\", colour=\"black\", size=14))\r\n\r\n\r\n#-------------------------Show treatment efficacy\r\n\r\nplot_labels <- list(\r\n  'DBP, CFB' = \"Diastolic blood pressure\",\r\n  'SBP, CFB' = \"Systolic blood pressure\",\r\n  'eGFR, CFB' = \"Decrease in Glomerular filtration rate\",\r\n  'UPCR, CFB' = \"Urinary protein to creatinine ratio\"\r\n)\r\n\r\nplot_labeller <- function(variable, value){\r\n  return(plot_labels[value])\r\n}\r\n\r\n\r\ntrt <- ggplot(data = subsample_all) + \r\n  xlim(0, 52) + \r\n  xlab(\"Treatment duration, Weeks\") + \r\n  ylab(\"Change from baseline, Percents\") + \r\n  geom_line(aes(x = as.numeric(TF),\r\n                y = CFBP,\r\n                group = UID,\r\n                colour = ARM),\r\n            size = 1.5) + \r\n  geom_hline(yintercept = 0, linetype=\"dashed\", color = \"red\", size = 1) +\r\n  scale_color_discrete(name = \"Arm type\") + \r\n  plotstheme + \r\n  facet_grid(OUTCOME ~ ., scales = \"free\")"
## [1] "y <- function() {\r\nx <- 4/5\r\ncat(x)\r\n}\r\n\r\n# Another example thats more dynamic\r\n\r\ny <- function(numOne, numTwo) {\r\n\r\nx <- numOne / numTwo\r\n\r\ncat(x)\r\n\r\n}\r\n\r\n# soo.. calling:\r\n> y(10, 2)\r\n5 # output"
## [1] "#<<BEGIN>>\r\ndtriang <- function(x,min=-1,mode=0,max=1,log=FALSE)\r\n#TITLE The Triangular Distribution\r\n#NAME triangular\r\n#KEYWORDS distribution\r\n#DESCRIPTION\r\n#Density, distribution function, quantile function and random generation\r\n#for the triangular distribution with minimum equal to \\samp{min}, mode equal \\samp{mode}\r\n#and maximum equal to \\samp{max}.\r\n#INPUTS\r\n#{x,q}<<vector of quantiles.>>\r\n#{p}<<vector of probabilities.>>\r\n#{n}<<number of observations. If length(n) > 1, the length is taken to be the number required.>>\r\n#[INPUTS]\r\n#{min}<<vector of minima.>>\r\n#{mode}<<vector of modes.>>\r\n#{max}<<vector of maxima.>>\r\n#{log, log.p}<<logical; if \\samp{TRUE}, probabilities \\samp{p} are given as \\samp{log(p)}.>>\r\n#{lower.tail}<<logical; if \\samp{TRUE} (default), probabilities are \\samp{P[X <= x]}, otherwise, \\samp{P[X > x]}.>>\r\n#VALUE\r\n#\\samp{dtriang} gives the density, \\samp{ptriang} gives the distribution function,\r\n#\\samp{qtriang} gives the quantile function, and \\samp{rtriang} generates random deviates.\r\n\r\n#EXAMPLE\r\n#curve(dtriang(x,min=3,mode=5,max=10), from = 2, to = 11)\r\n#CREATED 08-02-20\r\n#--------------------------------------------\r\n{\r\n\tif(length(x) == 0) return(x)\r\n\tquel <- x <= mode\r\n\td <- ifelse(quel,\r\n              2*(x-min)/((mode-min)*(max-min)),\r\n\t            2 *(max-x)/((max-mode)*(max-min)))\r\n\td[x < min | x > max] <- 0\r\n\td[mode < min | max < mode] <- NaN\r\n\tif(log) d <- log(d)\r\n\tif(any(is.na(d))) warning(\"NaN in dtriang\")\r\n  return(d)}\r\n\r\n#<<BEGIN>>\r\nptriang <- function(q,min=-1,mode=0,max=1,lower.tail = TRUE, log.p = FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(q) == 0) return(q)\r\n\tquel <- q <= mode\r\n\tp <- ifelse(quel,\r\n              (q-min)^2 / ((mode-min)*(max-min)),\r\n\t             1 - ((max-q)^2/((max-mode)*(max-min))))\r\n\tp[q < min] <- 0\r\n\tp[q > max] <- 1\r\n\tp[mode < min | max < mode] <- NaN\r\n  if(!lower.tail) p <- 1-p\r\n  if(log.p) p <- log(p)\r\n\tif(any(is.na(p))) warning(\"NaN in ptriang\")\r\n  return(p)}\r\n\r\n#<<BEGIN>>\r\nqtriang <- function(p,min=-1,mode=0,max=1,lower.tail=TRUE,log.p=FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(p) == 0) return(p)\r\n    if(log.p) p <- exp(p)\r\n\tif(!lower.tail) p <- 1-p\r\n\tquel <- p <= (mode-min)/(max-min)\r\n\tq <- ifelse(quel,\r\n              min + sqrt(p*(mode-min)*(max-min)),\r\n              max - sqrt((1-p)*(max-min)*(max-mode)))\r\n\tq[p < 0 | p > 1] <- NaN\r\n\tq[mode < min | max < mode] <- NaN\r\n\tif(any(is.na(q))) warning(\"NaN in qtriang\")\r\n  return(q)}\r\n#<<BEGIN>>\r\ndtriang <- function(x,min=-1,mode=0,max=1,log=FALSE)\r\n#TITLE The Triangular Distribution\r\n#NAME triangular\r\n#KEYWORDS distribution\r\n#DESCRIPTION\r\n#Density, distribution function, quantile function and random generation\r\n#for the triangular distribution with minimum equal to \\samp{min}, mode equal \\samp{mode}\r\n#and maximum equal to \\samp{max}.\r\n#INPUTS\r\n#{x,q}<<vector of quantiles.>>\r\n#{p}<<vector of probabilities.>>\r\n#{n}<<number of observations. If length(n) > 1, the length is taken to be the number required.>>\r\n#[INPUTS]\r\n#{min}<<vector of minima.>>\r\n#{mode}<<vector of modes.>>\r\n#{max}<<vector of maxima.>>\r\n#{log, log.p}<<logical; if \\samp{TRUE}, probabilities \\samp{p} are given as \\samp{log(p)}.>>\r\n#{lower.tail}<<logical; if \\samp{TRUE} (default), probabilities are \\samp{P[X <= x]}, otherwise, \\samp{P[X > x]}.>>\r\n#VALUE\r\n#\\samp{dtriang} gives the density, \\samp{ptriang} gives the distribution function,\r\n#\\samp{qtriang} gives the quantile function, and \\samp{rtriang} generates random deviates.\r\n\r\n#EXAMPLE\r\n#curve(dtriang(x,min=3,mode=5,max=10), from = 2, to = 11)\r\n#CREATED 08-02-20\r\n#--------------------------------------------\r\n{\r\n\tif(length(x) == 0) return(x)\r\n\tquel <- x <= mode\r\n\td <- ifelse(quel,\r\n              2*(x-min)/((mode-min)*(max-min)),\r\n\t            2 *(max-x)/((max-mode)*(max-min)))\r\n\td[x < min | x > max] <- 0\r\n\td[mode < min | max < mode] <- NaN\r\n\tif(log) d <- log(d)\r\n\tif(any(is.na(d))) warning(\"NaN in dtriang\")\r\n  return(d)}\r\n\r\n#<<BEGIN>>\r\nptriang <- function(q,min=-1,mode=0,max=1,lower.tail = TRUE, log.p = FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(q) == 0) return(q)\r\n\tquel <- q <= mode\r\n\tp <- ifelse(quel,\r\n              (q-min)^2 / ((mode-min)*(max-min)),\r\n\t             1 - ((max-q)^2/((max-mode)*(max-min))))\r\n\tp[q < min] <- 0\r\n\tp[q > max] <- 1\r\n\tp[mode < min | max < mode] <- NaN\r\n  if(!lower.tail) p <- 1-p\r\n  if(log.p) p <- log(p)\r\n\tif(any(is.na(p))) warning(\"NaN in ptriang\")\r\n  return(p)}\r\n\r\n#<<BEGIN>>\r\nqtriang <- function(p,min=-1,mode=0,max=1,lower.tail=TRUE,log.p=FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(p) == 0) return(p)\r\n    if(log.p) p <- exp(p)\r\n\tif(!lower.tail) p <- 1-p\r\n\tquel <- p <= (mode-min)/(max-min)\r\n\tq <- ifelse(quel,\r\n              min + sqrt(p*(mode-min)*(max-min)),\r\n              max - sqrt((1-p)*(max-min)*(max-mode)))\r\n\tq[p < 0 | p > 1] <- NaN\r\n\tq[mode < min | max < mode] <- NaN\r\n\tif(any(is.na(q))) warning(\"NaN in qtriang\")\r\n  return(q)}\r\n\r\n\r\n#<<BEGIN>>\r\nrtriang <- function(n,min=-1,mode=0,max=1)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{  \tif(length(n) == 0) return(n)\r\n\tif(length(n) > 1) n <- length(n)\r\n\treturn(qtriang(runif(n),min=min,mode=mode,max=max,lower.tail=TRUE,log.p=FALSE))}\r\n\r\n\r\n#<<BEGIN>>\r\nrtriang <- function(n,min=-1,mode=0,max=1)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{  \tif(length(n) == 0) return(n)\r\n\tif(length(n) > 1) n <- length(n)\r\n\treturn(qtriang(runif(n),min=min,mode=mode,max=max,lower.tail=TRUE,log.p=FALSE))}"
## [1] ":/home/scratch/ed/mbc> ssh -v git@github.com\r\nOpenSSH_5.2p1, OpenSSL 0.9.8k 25 Mar 2009\r\ndebug1: Reading configuration data /etc/ssh/ssh_config\r\ndebug1: Applying options for *\r\ndebug1: Connecting to github.com [207.97.227.239] port 22.\r\ndebug1: Connection established.\r\ndebug1: identity file /home/f85/ejnovak/.ssh/identity type -1\r\ndebug1: identity file /home/f85/ejnovak/.ssh/id_rsa type 1\r\ndebug1: identity file /home/f85/ejnovak/.ssh/id_dsa type 2\r\ndebug1: Remote protocol version 2.0, remote software version OpenSSH_5.1p1 Debian-5github2\r\ndebug1: match: OpenSSH_5.1p1 Debian-5github2 pat OpenSSH*\r\ndebug1: Enabling compatibility mode for protocol 2.0\r\ndebug1: Local version string SSH-2.0-OpenSSH_5.2\r\ndebug1: SSH2_MSG_KEXINIT sent\r\ndebug1: SSH2_MSG_KEXINIT received\r\ndebug1: kex: server->client aes128-ctr hmac-md5 none\r\ndebug1: kex: client->server aes128-ctr hmac-md5 none\r\ndebug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent\r\ndebug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP\r\ndebug1: SSH2_MSG_KEX_DH_GEX_INIT sent\r\ndebug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY\r\ndebug1: Host 'github.com' is known and matches the RSA host key.\r\ndebug1: Found key in /home/f85/ejnovak/.ssh/known_hosts:8\r\ndebug1: ssh_rsa_verify: signature correct\r\ndebug1: SSH2_MSG_NEWKEYS sent\r\ndebug1: expecting SSH2_MSG_NEWKEYS\r\ndebug1: SSH2_MSG_NEWKEYS received\r\ndebug1: SSH2_MSG_SERVICE_REQUEST sent\r\ndebug1: SSH2_MSG_SERVICE_ACCEPT received\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Next authentication method: publickey\r\ndebug1: Offering public key: /home/f85/ejnovak/.ssh/id_rsa\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Offering public key: /home/f85/ejnovak/.ssh/id_dsa\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Trying private key: /home/f85/ejnovak/.ssh/identity\r\ndebug1: No more authentication methods to try.\r\nPermission denied (publickey)."
## [1] " Kubik (16:13:09 18/02/2011)\r\nAko s výhercom druhej 2v2 csl spravím stebou malý rozhovor\r\n\r\n Kubik (16:13:24 18/02/2011)\r\nNazačiatok sa nám predstav. Z kade si, ako sa voláš a koľko máš rokov.\r\n\r\n 242838341@qip.ru (16:18:58 18/02/2011)\r\nZdravim, rodiče mi dali jméno Jiří, protože si nejspíš mysleli že je to cool jméno. Jsem z jedné malé vesnice na valašsku a bude mi osmnáct. Mám černou patku a jsem značně asociální.\r\n\r\n Kubik (16:19:46 18/02/2011)\r\nČiže chodíš von často ako môj kocúr? (tzn nikdy?)\r\n\r\n 242838341@qip.ru (16:20:54 18/02/2011)\r\nVen chodím celkem často. V zimě štípu dříví, krmím králíky a slepice. V létě suším seno a sbírám maliny.\r\n\r\n Kubik (16:26:18 18/02/2011)\r\nPovedz nám niečo o tvojích koníčkoch, čo robíš vo voľnom čase, ako si krátiš \"dlhé chvílky\" atď.\r\n\r\n 242838341@qip.ru (16:28:30 18/02/2011)\r\nChov dobytka, hacking, programování, webdesign a kouření konopí.\r\n\r\n 242838341@qip.ru (16:29:28 18/02/2011)\r\nNedávno to byl i Soldat, ale to už je minulost. Přecházím na hry odehrávající se ve třetí dimenzi.\r\n\r\n 242838341@qip.ru (16:46:13 18/02/2011)\r\nSi u toho nudného rozhovoru usnul ne? :D\r\n\r\n Kubik (17:05:33 18/02/2011)\r\nnie mama ma volala :-D\r\n\r\n Kubik (17:07:07 18/02/2011)\r\nČiže soldat už nieje tvoja karta. Zamerajme sa teraz na tvoju minulosť. Predsalen táto liga bola v hre soldat - koľko hrávaš soldat, aké boli naznámejšie klany v ktorých si bol. A Prezraď nám tvoju oblúbenú zbra\r\n\r\n Kubik (17:07:10 18/02/2011)\r\nň a mapu.\r\n\r\n 242838341@qip.ru (17:24:38 18/02/2011)\r\nKdyž hodně zapátrám v paměti, bylo to někdy koncem roku 05 ještě na GZ kdy jsem začal. Po pár dnech strávených na publicu jsem do té mánie zasvětil Kraschmana (mír bratře). Nějakých způsobem jsme se dostali do našeho prvního klanu vedeným Anakinem, název byl myslím STW (Anakina asi Star Wars hodně zasáhlo). První rok hraní jsem valil jenom publicy a kempil v podzemí Equinoxu, narozdíl od Kraschmana, který objevil krásu klanwarů, které já jsem neuznával. Časem jsem změnil názor a začal hrát s ním. Můj první pořádný klan byli Conzistenz kde jsem potkal mAdu (v té době s nickem Haniiz) a začal jsem to žrát naplno. Nabrali Nucíka, Scaryho, bimbase a Vita. Conzistenz se nějak rozpadlo a šli jsme pod iNsting, kde to byly fakt nejlepší časy mojí Soldat kariéry ^^. Nekonečné konverzace na Teamspeaku, 15 zápasů za den, první místo v klanbázi, porážka tenkrát neporazitelných cYs atd.\r\n\r\n 242838341@qip.ru (17:25:25 18/02/2011)\r\nto jeste neni konec moment :D\r\n\r\n 242838341@qip.ru (17:27:50 18/02/2011)\r\nPo rozpadu multiklanu Insting, jsme šli pod Team-FPS což byl poslední klan kde jsme to brali trochu vážně.\r\n\r\n 242838341@qip.ru (17:28:46 18/02/2011)\r\nZačali jsme být neaktivní, hráčů ubývalo atd.\r\n\r\n 242838341@qip.ru (17:29:43 18/02/2011)\r\nPoslední dva roky hraju prakticky jenom s mAdou, ostatní šli buď do zahraničních klanů nebo se nato vysrali úplně.\r\n\r\n 242838341@qip.ru (17:31:17 18/02/2011)\r\nTaky jsem zkoušel hrát s cizincema, ale není to ono.\r\n\r\n 242838341@qip.ru (17:35:39 18/02/2011)\r\nMoje oblíbené zbraně. Byl to vývoj, kdysi mi šly i vzduchovky jako Ruger nebo Snipy, ale nějak jsem za tu dobu ztratil aim a zlenivěl jsem. Poslední dva roky hraju prakticky jenom automaty a když mám lucky day tak emku.\r\n\r\n 242838341@qip.ru (17:36:13 18/02/2011)\r\nOblíbená mapa trochu souvisí s těma zbraněma. Když neumíš hrát nic jiného něž jsou automaty tak tě baví jen spray mapy :D\r\n\r\n 242838341@qip.ru (17:36:25 18/02/2011)\r\nSnakebite, Ash, Guardian.\r\n\r\n 242838341@qip.ru (17:38:49 18/02/2011)\r\nOk, next question.\r\n\r\n Kubik (17:44:39 18/02/2011)\r\nTvoj rozsah pamete na klany v soldate je ohromný. Zaujíma ma prečo chceš prestať hrať soldat.\r\n\r\n Kubik (17:47:57 18/02/2011)\r\nJa si nepametám ani čo som sa ťa pýtal predchvílov nie to ešte všetky moje klany.\r\n\r\n 242838341@qip.ru (17:48:26 18/02/2011)\r\nCo?\r\n\r\n 242838341@qip.ru (17:48:32 18/02/2011)\r\nNeco jsem preskocil? :D\r\n\r\n 242838341@qip.ru (17:49:18 18/02/2011)\r\nAha.\r\n\r\n 242838341@qip.ru (17:50:25 18/02/2011)\r\nNo proc chci prestat hrat. Samozřejmě s tím nekončím nadobro, jakože uninstall a konec, to ne. Spíš jde o to že mě to přestalo bavit, a není to jenom Soldat.\r\n\r\n 242838341@qip.ru (17:51:45 18/02/2011)\r\nSoldat můj život hodně ovlivnil, určitě to nebylo jen o té hře. Celkově ta komunita byla hodně unikátní, dost individuální a underground na rozdíl od ostatních her.\r\n\r\n Kubik (17:54:20 18/02/2011)\r\nDobre ďakujem. Z dôvodu že toto je rozhovor s výhercom ligy a nie výsluch na súde prejdeme k poslednej otázke.\r\nBudete sa snažiť aj nabudúci ročník obhajovať svoje víťazstvo?\r\n\r\n 242838341@qip.ru (17:55:14 18/02/2011)\r\nUrčitě. Pokud budou protihráči. Tyhle ligy jsou celkem motivace a důvod proč hrát, díky za ně.\r\n\r\n Kubik (17:56:16 18/02/2011)\r\nTento rozhovor snaď trval týžden... ale dik. Maj sa\r\n\r\n 242838341@qip.ru (17:56:37 18/02/2011)\r\nDíky a čau."

Since the user is obvious:

mebbe_r <- filter(r_pastes, user != "AllRls_net")
walk(mebbe_r$key, ~print(toString(get_paste(.))))
## [1] "n: Anzahl Leutchen in deiner Studie\r\nx: Anzahl Leute, die deiner Theorie entsprechen (bzw. *nicht* entsprechen, der statistische Test ist ja symmetrisch)\r\np: Wahrscheinlichkeit, dass das Zahlenverhältnis als Zufall interpretiert werden kann. Unter 0.05 kann man sagen, dass da wirklich etwas handfestes vorliegt, unter etwa 0.15 kann man sagen, dass es sich lohnt, weiterzuforschen\r\n\r\n    n  x     p\r\n2   4  0 0.125\r\n3   4  4 0.125\r\n4   5  0 0.062\r\n5   5  5 0.062\r\n6   6  0 0.031\r\n7   6  6 0.031\r\n8   7  0 0.016\r\n9   7  1 0.125\r\n10  7  6 0.125\r\n11  7  7 0.016\r\n12  8  0 0.008\r\n13  8  1 0.070\r\n14  8  7 0.070\r\n15  8  8 0.008\r\n16  9  0 0.004\r\n17  9  1 0.039\r\n18  9  8 0.039\r\n19  9  9 0.004\r\n20 10  0 0.002\r\n21 10  1 0.021\r\n22 10  2 0.109\r\n23 10  8 0.109\r\n24 10  9 0.021\r\n25 10 10 0.002\r\n26 11  0 0.001\r\n27 11  1 0.012\r\n28 11  2 0.065\r\n29 11  9 0.065\r\n30 11 10 0.012\r\n31 11 11 0.001\r\n32 12  0 0.000\r\n33 12  1 0.006\r\n34 12  2 0.039\r\n35 12  3 0.146\r\n36 12  9 0.146\r\n37 12 10 0.039\r\n38 12 11 0.006\r\n39 12 12 0.000"
## [1] "library(dplyr)\r\nlibrary(xgboost)\r\n\r\ntrain <- data.frame(\r\n  X1 = runif(10000, -10, 10),\r\n  X2 = runif(10000, -10, 10),\r\n  X3 = runif(10000, -10, 10),\r\n  X4 = runif(10000, -10, 10)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4) %>%\r\n  {xgb.DMatrix(as.matrix(.[1:4]), label = .$Y)}\r\n\r\nmaxrounds = 10000\r\nearly_stop = 50\r\nnfold = 5\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 2,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.shallow <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 5,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.deep <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\ntest <- data.frame(\r\n  X1 = runif(1000, -10, 10),\r\n  X2 = runif(1000, -10, 10),\r\n  X3 = runif(1000, -10, 10),\r\n  X4 = runif(1000, -10, 10)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4)\r\n\r\npreds.shallow <- predict(model.shallow, xgb.DMatrix(as.matrix(test[1:4])))\r\npreds.deep    <- predict(model.deep, xgb.DMatrix(as.matrix(test[1:4])))\r\n\r\nresults <- data.frame(preds.shallow, preds.deep, label = test$Y) %>%\r\n  summarise(rmse.shallow = mean((preds.shallow - label)^2) %>% sqrt,\r\n            rmse.deep    = mean((preds.deep - label)^2) %>% sqrt)\r\n\r\n> results\r\n  rmse.shallow rmse.deep\r\n1     1047.639  1047.561"
## [1] "library(dplyr)\r\nlibrary(xgboost)\r\n\r\ntrain <- data.frame(\r\n  X1 = runif(10000, -1, 1),\r\n  X2 = runif(10000, -1, 1),\r\n  X3 = runif(10000, -1, 1),\r\n  X4 = runif(10000, -1, 1)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4) %>%\r\n  {xgb.DMatrix(as.matrix(.[1:4]), label = .$Y)}\r\n\r\nmaxrounds = 10000\r\nearly_stop = 50\r\nnfold = 5\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 2,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.shallow <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\nparams <- list(\r\n  objective = \"reg:linear\",\r\n  max_depth = 5,\r\n  eta = 0.1\r\n)\r\nrounds <- xgb.cv(params, train, nrounds = maxrounds, early_stopping_rounds = early_stop, nfold = nfold)\r\nmodel.deep <- xgb.train(params, train, nrounds = rounds$best_iteration)\r\n\r\ntest <- data.frame(\r\n  X1 = runif(1000, -1, 1),\r\n  X2 = runif(1000, -1, 1),\r\n  X3 = runif(1000, -1, 1),\r\n  X4 = runif(1000, -1, 1)\r\n) %>%\r\n  mutate(Y = X1*X2*X3*X4)\r\n\r\npreds.shallow <- predict(model.shallow, xgb.DMatrix(as.matrix(test[1:4])))\r\npreds.deep    <- predict(model.deep, xgb.DMatrix(as.matrix(test[1:4])))\r\n\r\nresults <- data.frame(preds.shallow, preds.deep, label = test$Y) %>%\r\n  summarise(rmse.shallow = mean((preds.shallow - label)^2) %>% sqrt,\r\n            rmse.deep    = mean((preds.deep - label)^2) %>% sqrt)\r\n\r\n\r\n> results\r\n  rmse.shallow  rmse.deep\r\n1     0.111355 0.07852135"
## [1] "library(mvtnorm)\r\nlibrary(psych)\r\nsimData <- function(n,dv){\r\n  x <- rmvnorm(n,rep(0,dv),sigma=diag(1,dv))\r\n  colnames(x) <- paste0('X',1:dv)\r\n  x\r\n}\r\n\r\ncor.p <- function(d){\r\n  cors <- corr.test(d,ci=FALSE)\r\n  cors.p <- cors$p[lower.tri(cors$p)]\r\n  cors.p\r\n}\r\n\r\nranSelect <- function(d){\r\n  n <- round(runif(1,min=10,max=nrow(d)),digits=0)\r\n  s <- sample(1:nrow(d),size=n,replace = FALSE)\r\n  list(n=n,s=s,d=d[s,])\r\n}\r\n\r\nfindSig <- function(d,tryMax = 1000,alpha){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    corOut <- cor.p(d.rand$d)\r\n    if(any(corOut <= alpha)){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=sum(corOut<alpha))\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindBF <- function(d,tryMax=1000,BF){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    bflmOut <- lmBF(X1 ~ X2, data=as.data.frame(d.rand$d))\r\n    bf <- extractBF(bflmOut)[1]\r\n    \r\n    if(bf > BF){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=bf)\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindGreatestNSig <- function(findSigOut){\r\n  n.sigs <- lapply(findSigOut$out,function(x){x$n.sig})\r\n  findSigOut$out[which.max(n.sigs)]\r\n}\r\n\r\nfindGreatestN <- function(findSigOut){\r\n  n <- lapply(findSigOut$out,function(x){x$n})\r\n  findSigOut$out[which.max(n)]\r\n}\r\n\r\nfindGreatestBF <- function(findSigOut){\r\n  bfs <- sapply(findSigOut$out,function(x){x$n.sig$bf})\r\n  findSigOut$out[which.max(bfs)]\r\n}\r\n\r\n# Get fsigOuts\r\nx <- simData(100,2)\r\nfsigOut05 <- findSig(x,10000,alpha=.05)\r\nfsigOut005 <- findSig(x,10000,alpha=.005)\r\n\r\n# Proportion of tries that found something significant\r\nfsigOut05$sig/fsigOut05$try\r\nfsigOut005$sig/fsigOut005$try\r\n\r\n# Proportion of tries finding significance, relative to alpha value\r\nfsigOut05$sig/fsigOut05$try/.05\r\nfsigOut005$sig/fsigOut005$try/.005\r\n\r\n# Find combo with the greatest number of significant results\r\nfindGreatestNSig(fsigOut05)\r\nfindGreatestNSig(fsigOut005)\r\n\r\n# Find combo with greatest N\r\nfindGreatestN(fsigOut05)\r\nfindGreatestN(fsigOut005)\r\n\r\n# BF; currently only for DV = 2\r\nfsigOutBF3 <- findBF(d=x,tryMax = 10000,BF=3)"
## [1] "library(mvtnorm)\r\nlibrary(psych)\r\nsimData <- function(n,dv){\r\n  x <- rmvnorm(n,rep(0,dv),sigma=diag(1,dv))\r\n  colnames(x) <- paste0('X',1:dv)\r\n  x\r\n}\r\n\r\ncor.p <- function(d){\r\n  cors <- corr.test(d,ci=FALSE)\r\n  cors.p <- cors$p[lower.tri(cors$p)]\r\n  cors.p\r\n}\r\n\r\nranSelect <- function(d){\r\n  n <- round(runif(1,min=10,max=nrow(d)),digits=0)\r\n  s <- sample(1:nrow(d),size=n,replace = FALSE)\r\n  list(n=n,s=s,d=d[s,])\r\n}\r\n\r\nfindSig <- function(d,tryMax = 1000,alpha){\r\n  out <- list()\r\n  sig <- 0\r\n  try <- 0\r\n  while(try <= tryMax){\r\n    d.rand <- ranSelect(d)\r\n    corOut <- cor.p(d.rand$d)\r\n    if(any(corOut <= alpha)){\r\n      sig <- sig + 1\r\n      out[[sig]] <- list(s=sort(d.rand$s),n=d.rand$n,n.sig=sum(corOut<alpha))\r\n    }\r\n    try <- try + 1\r\n  }\r\n  list(out=out,sig=sig,try=try)\r\n}\r\n\r\nfindGreatestNSig <- function(findSigOut){\r\n  n.sigs <- lapply(findSigOut$out,function(x){x$n.sig})\r\n  findSigOut$out[which.max(n.sigs)]\r\n}\r\n\r\nfindGreatestN <- function(findSigOut){\r\n  n <- lapply(findSigOut$out,function(x){x$n})\r\n  findSigOut$out[which.max(n)]\r\n}\r\n\r\n# Get fsigOuts\r\nx <- simData(100,5)\r\nfsigOut05 <- findSig(x,10000,alpha=.05)\r\nfsigOut005 <- findSig(x,10000,alpha=.005)\r\n\r\n# Proportion of tries that found something significant\r\nfsigOut05$sig/fsigOut05$try\r\nfsigOut005$sig/fsigOut005$try\r\n\r\n# Proportion of tries finding significance, relative to alpha value\r\nfsigOut05$sig/fsigOut05$try/.05\r\nfsigOut005$sig/fsigOut005$try/.005\r\n\r\n# Find combo with the greatest number of significant results\r\nfindGreatestNSig(fsigOut05)\r\nfindGreatestNSig(fsigOut005)\r\n\r\n# Find combo with greatest N\r\nfindGreatestN(fsigOut05)\r\nfindGreatestN(fsigOut005)"
## [1] "efficacy <- read_excel(\r\n  \"C:/Users/r4ara/Desktop/Analysis/Database_CKD_Artem_v6.xlsx\",\r\n  sheet = 3,\r\n  col_names = TRUE\r\n)\r\n\r\ntrg <- c(\"UPCR\", \"eGFR\", \"DBP\", \"SBP\")\r\n\r\nsubsample_all <- \r\n  efficacy %>% \r\n  filter(str_detect(OUTCOME, paste(trg, collapse=\"|\"))) %>%\r\n  filter(!is.na(BL)) %>%\r\n  mutate(BL, CFBP = (as.numeric(CFB)/as.numeric(BL)*100)) #%>%\r\n\r\n\r\n\r\n\r\nplotstheme <- theme(axis.title  = element_text(face=\"bold\", colour=\"black\", size=18),\r\n                    plot.title = element_text(face=\"bold\", colour=\"black\", size=20),\r\n                    axis.text.x = element_text(colour=\"black\", size=16),\r\n                    axis.text.y = element_text(colour=\"black\", size=16),\r\n                    panel.background = element_rect(fill=NA),\r\n                    panel.grid.minor = element_line(colour = \"grey75\"),\r\n                    panel.grid.major = element_line(colour = \"grey75\"),\r\n                    panel.border = element_rect(colour=\"black\", fill=NA, size=1),\r\n                    legend.text=element_text(colour=\"black\", size=12),\r\n                    legend.title = element_text( face=\"bold\", colour=\"black\", size=14))\r\n\r\n\r\n#-------------------------Show treatment efficacy\r\n\r\nplot_labels <- list(\r\n  'DBP, CFB' = \"Diastolic blood pressure\",\r\n  'SBP, CFB' = \"Systolic blood pressure\",\r\n  'eGFR, CFB' = \"Decrease in Glomerular filtration rate\",\r\n  'UPCR, CFB' = \"Urinary protein to creatinine ratio\"\r\n)\r\n\r\nplot_labeller <- function(variable, value){\r\n  return(plot_labels[value])\r\n}\r\n\r\n\r\ntrt <- ggplot(data = subsample_all) + \r\n  xlim(0, 52) + \r\n  xlab(\"Treatment duration, Weeks\") + \r\n  ylab(\"Change from baseline, Percents\") + \r\n  geom_line(aes(x = as.numeric(TF),\r\n                y = CFBP,\r\n                group = UID,\r\n                colour = ARM),\r\n            size = 1.5) + \r\n  geom_hline(yintercept = 0, linetype=\"dashed\", color = \"red\", size = 1) +\r\n  scale_color_discrete(name = \"Arm type\") + \r\n  plotstheme + \r\n  facet_grid(OUTCOME ~ ., scales = \"free\")"
## [1] "y <- function() {\r\nx <- 4/5\r\ncat(x)\r\n}\r\n\r\n# Another example thats more dynamic\r\n\r\ny <- function(numOne, numTwo) {\r\n\r\nx <- numOne / numTwo\r\n\r\ncat(x)\r\n\r\n}\r\n\r\n# soo.. calling:\r\n> y(10, 2)\r\n5 # output"
## [1] "#<<BEGIN>>\r\ndtriang <- function(x,min=-1,mode=0,max=1,log=FALSE)\r\n#TITLE The Triangular Distribution\r\n#NAME triangular\r\n#KEYWORDS distribution\r\n#DESCRIPTION\r\n#Density, distribution function, quantile function and random generation\r\n#for the triangular distribution with minimum equal to \\samp{min}, mode equal \\samp{mode}\r\n#and maximum equal to \\samp{max}.\r\n#INPUTS\r\n#{x,q}<<vector of quantiles.>>\r\n#{p}<<vector of probabilities.>>\r\n#{n}<<number of observations. If length(n) > 1, the length is taken to be the number required.>>\r\n#[INPUTS]\r\n#{min}<<vector of minima.>>\r\n#{mode}<<vector of modes.>>\r\n#{max}<<vector of maxima.>>\r\n#{log, log.p}<<logical; if \\samp{TRUE}, probabilities \\samp{p} are given as \\samp{log(p)}.>>\r\n#{lower.tail}<<logical; if \\samp{TRUE} (default), probabilities are \\samp{P[X <= x]}, otherwise, \\samp{P[X > x]}.>>\r\n#VALUE\r\n#\\samp{dtriang} gives the density, \\samp{ptriang} gives the distribution function,\r\n#\\samp{qtriang} gives the quantile function, and \\samp{rtriang} generates random deviates.\r\n\r\n#EXAMPLE\r\n#curve(dtriang(x,min=3,mode=5,max=10), from = 2, to = 11)\r\n#CREATED 08-02-20\r\n#--------------------------------------------\r\n{\r\n\tif(length(x) == 0) return(x)\r\n\tquel <- x <= mode\r\n\td <- ifelse(quel,\r\n              2*(x-min)/((mode-min)*(max-min)),\r\n\t            2 *(max-x)/((max-mode)*(max-min)))\r\n\td[x < min | x > max] <- 0\r\n\td[mode < min | max < mode] <- NaN\r\n\tif(log) d <- log(d)\r\n\tif(any(is.na(d))) warning(\"NaN in dtriang\")\r\n  return(d)}\r\n\r\n#<<BEGIN>>\r\nptriang <- function(q,min=-1,mode=0,max=1,lower.tail = TRUE, log.p = FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(q) == 0) return(q)\r\n\tquel <- q <= mode\r\n\tp <- ifelse(quel,\r\n              (q-min)^2 / ((mode-min)*(max-min)),\r\n\t             1 - ((max-q)^2/((max-mode)*(max-min))))\r\n\tp[q < min] <- 0\r\n\tp[q > max] <- 1\r\n\tp[mode < min | max < mode] <- NaN\r\n  if(!lower.tail) p <- 1-p\r\n  if(log.p) p <- log(p)\r\n\tif(any(is.na(p))) warning(\"NaN in ptriang\")\r\n  return(p)}\r\n\r\n#<<BEGIN>>\r\nqtriang <- function(p,min=-1,mode=0,max=1,lower.tail=TRUE,log.p=FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(p) == 0) return(p)\r\n    if(log.p) p <- exp(p)\r\n\tif(!lower.tail) p <- 1-p\r\n\tquel <- p <= (mode-min)/(max-min)\r\n\tq <- ifelse(quel,\r\n              min + sqrt(p*(mode-min)*(max-min)),\r\n              max - sqrt((1-p)*(max-min)*(max-mode)))\r\n\tq[p < 0 | p > 1] <- NaN\r\n\tq[mode < min | max < mode] <- NaN\r\n\tif(any(is.na(q))) warning(\"NaN in qtriang\")\r\n  return(q)}\r\n#<<BEGIN>>\r\ndtriang <- function(x,min=-1,mode=0,max=1,log=FALSE)\r\n#TITLE The Triangular Distribution\r\n#NAME triangular\r\n#KEYWORDS distribution\r\n#DESCRIPTION\r\n#Density, distribution function, quantile function and random generation\r\n#for the triangular distribution with minimum equal to \\samp{min}, mode equal \\samp{mode}\r\n#and maximum equal to \\samp{max}.\r\n#INPUTS\r\n#{x,q}<<vector of quantiles.>>\r\n#{p}<<vector of probabilities.>>\r\n#{n}<<number of observations. If length(n) > 1, the length is taken to be the number required.>>\r\n#[INPUTS]\r\n#{min}<<vector of minima.>>\r\n#{mode}<<vector of modes.>>\r\n#{max}<<vector of maxima.>>\r\n#{log, log.p}<<logical; if \\samp{TRUE}, probabilities \\samp{p} are given as \\samp{log(p)}.>>\r\n#{lower.tail}<<logical; if \\samp{TRUE} (default), probabilities are \\samp{P[X <= x]}, otherwise, \\samp{P[X > x]}.>>\r\n#VALUE\r\n#\\samp{dtriang} gives the density, \\samp{ptriang} gives the distribution function,\r\n#\\samp{qtriang} gives the quantile function, and \\samp{rtriang} generates random deviates.\r\n\r\n#EXAMPLE\r\n#curve(dtriang(x,min=3,mode=5,max=10), from = 2, to = 11)\r\n#CREATED 08-02-20\r\n#--------------------------------------------\r\n{\r\n\tif(length(x) == 0) return(x)\r\n\tquel <- x <= mode\r\n\td <- ifelse(quel,\r\n              2*(x-min)/((mode-min)*(max-min)),\r\n\t            2 *(max-x)/((max-mode)*(max-min)))\r\n\td[x < min | x > max] <- 0\r\n\td[mode < min | max < mode] <- NaN\r\n\tif(log) d <- log(d)\r\n\tif(any(is.na(d))) warning(\"NaN in dtriang\")\r\n  return(d)}\r\n\r\n#<<BEGIN>>\r\nptriang <- function(q,min=-1,mode=0,max=1,lower.tail = TRUE, log.p = FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(q) == 0) return(q)\r\n\tquel <- q <= mode\r\n\tp <- ifelse(quel,\r\n              (q-min)^2 / ((mode-min)*(max-min)),\r\n\t             1 - ((max-q)^2/((max-mode)*(max-min))))\r\n\tp[q < min] <- 0\r\n\tp[q > max] <- 1\r\n\tp[mode < min | max < mode] <- NaN\r\n  if(!lower.tail) p <- 1-p\r\n  if(log.p) p <- log(p)\r\n\tif(any(is.na(p))) warning(\"NaN in ptriang\")\r\n  return(p)}\r\n\r\n#<<BEGIN>>\r\nqtriang <- function(p,min=-1,mode=0,max=1,lower.tail=TRUE,log.p=FALSE)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{\r\n\tif(length(p) == 0) return(p)\r\n    if(log.p) p <- exp(p)\r\n\tif(!lower.tail) p <- 1-p\r\n\tquel <- p <= (mode-min)/(max-min)\r\n\tq <- ifelse(quel,\r\n              min + sqrt(p*(mode-min)*(max-min)),\r\n              max - sqrt((1-p)*(max-min)*(max-mode)))\r\n\tq[p < 0 | p > 1] <- NaN\r\n\tq[mode < min | max < mode] <- NaN\r\n\tif(any(is.na(q))) warning(\"NaN in qtriang\")\r\n  return(q)}\r\n\r\n\r\n#<<BEGIN>>\r\nrtriang <- function(n,min=-1,mode=0,max=1)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{  \tif(length(n) == 0) return(n)\r\n\tif(length(n) > 1) n <- length(n)\r\n\treturn(qtriang(runif(n),min=min,mode=mode,max=max,lower.tail=TRUE,log.p=FALSE))}\r\n\r\n\r\n#<<BEGIN>>\r\nrtriang <- function(n,min=-1,mode=0,max=1)\r\n#ISALIAS dtriang\r\n#--------------------------------------------\r\n{  \tif(length(n) == 0) return(n)\r\n\tif(length(n) > 1) n <- length(n)\r\n\treturn(qtriang(runif(n),min=min,mode=mode,max=max,lower.tail=TRUE,log.p=FALSE))}"
## [1] ":/home/scratch/ed/mbc> ssh -v git@github.com\r\nOpenSSH_5.2p1, OpenSSL 0.9.8k 25 Mar 2009\r\ndebug1: Reading configuration data /etc/ssh/ssh_config\r\ndebug1: Applying options for *\r\ndebug1: Connecting to github.com [207.97.227.239] port 22.\r\ndebug1: Connection established.\r\ndebug1: identity file /home/f85/ejnovak/.ssh/identity type -1\r\ndebug1: identity file /home/f85/ejnovak/.ssh/id_rsa type 1\r\ndebug1: identity file /home/f85/ejnovak/.ssh/id_dsa type 2\r\ndebug1: Remote protocol version 2.0, remote software version OpenSSH_5.1p1 Debian-5github2\r\ndebug1: match: OpenSSH_5.1p1 Debian-5github2 pat OpenSSH*\r\ndebug1: Enabling compatibility mode for protocol 2.0\r\ndebug1: Local version string SSH-2.0-OpenSSH_5.2\r\ndebug1: SSH2_MSG_KEXINIT sent\r\ndebug1: SSH2_MSG_KEXINIT received\r\ndebug1: kex: server->client aes128-ctr hmac-md5 none\r\ndebug1: kex: client->server aes128-ctr hmac-md5 none\r\ndebug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent\r\ndebug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP\r\ndebug1: SSH2_MSG_KEX_DH_GEX_INIT sent\r\ndebug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY\r\ndebug1: Host 'github.com' is known and matches the RSA host key.\r\ndebug1: Found key in /home/f85/ejnovak/.ssh/known_hosts:8\r\ndebug1: ssh_rsa_verify: signature correct\r\ndebug1: SSH2_MSG_NEWKEYS sent\r\ndebug1: expecting SSH2_MSG_NEWKEYS\r\ndebug1: SSH2_MSG_NEWKEYS received\r\ndebug1: SSH2_MSG_SERVICE_REQUEST sent\r\ndebug1: SSH2_MSG_SERVICE_ACCEPT received\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Next authentication method: publickey\r\ndebug1: Offering public key: /home/f85/ejnovak/.ssh/id_rsa\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Offering public key: /home/f85/ejnovak/.ssh/id_dsa\r\ndebug1: Authentications that can continue: publickey\r\ndebug1: Trying private key: /home/f85/ejnovak/.ssh/identity\r\ndebug1: No more authentication methods to try.\r\nPermission denied (publickey)."
## [1] " Kubik (16:13:09 18/02/2011)\r\nAko s výhercom druhej 2v2 csl spravím stebou malý rozhovor\r\n\r\n Kubik (16:13:24 18/02/2011)\r\nNazačiatok sa nám predstav. Z kade si, ako sa voláš a koľko máš rokov.\r\n\r\n 242838341@qip.ru (16:18:58 18/02/2011)\r\nZdravim, rodiče mi dali jméno Jiří, protože si nejspíš mysleli že je to cool jméno. Jsem z jedné malé vesnice na valašsku a bude mi osmnáct. Mám černou patku a jsem značně asociální.\r\n\r\n Kubik (16:19:46 18/02/2011)\r\nČiže chodíš von často ako môj kocúr? (tzn nikdy?)\r\n\r\n 242838341@qip.ru (16:20:54 18/02/2011)\r\nVen chodím celkem často. V zimě štípu dříví, krmím králíky a slepice. V létě suším seno a sbírám maliny.\r\n\r\n Kubik (16:26:18 18/02/2011)\r\nPovedz nám niečo o tvojích koníčkoch, čo robíš vo voľnom čase, ako si krátiš \"dlhé chvílky\" atď.\r\n\r\n 242838341@qip.ru (16:28:30 18/02/2011)\r\nChov dobytka, hacking, programování, webdesign a kouření konopí.\r\n\r\n 242838341@qip.ru (16:29:28 18/02/2011)\r\nNedávno to byl i Soldat, ale to už je minulost. Přecházím na hry odehrávající se ve třetí dimenzi.\r\n\r\n 242838341@qip.ru (16:46:13 18/02/2011)\r\nSi u toho nudného rozhovoru usnul ne? :D\r\n\r\n Kubik (17:05:33 18/02/2011)\r\nnie mama ma volala :-D\r\n\r\n Kubik (17:07:07 18/02/2011)\r\nČiže soldat už nieje tvoja karta. Zamerajme sa teraz na tvoju minulosť. Predsalen táto liga bola v hre soldat - koľko hrávaš soldat, aké boli naznámejšie klany v ktorých si bol. A Prezraď nám tvoju oblúbenú zbra\r\n\r\n Kubik (17:07:10 18/02/2011)\r\nň a mapu.\r\n\r\n 242838341@qip.ru (17:24:38 18/02/2011)\r\nKdyž hodně zapátrám v paměti, bylo to někdy koncem roku 05 ještě na GZ kdy jsem začal. Po pár dnech strávených na publicu jsem do té mánie zasvětil Kraschmana (mír bratře). Nějakých způsobem jsme se dostali do našeho prvního klanu vedeným Anakinem, název byl myslím STW (Anakina asi Star Wars hodně zasáhlo). První rok hraní jsem valil jenom publicy a kempil v podzemí Equinoxu, narozdíl od Kraschmana, který objevil krásu klanwarů, které já jsem neuznával. Časem jsem změnil názor a začal hrát s ním. Můj první pořádný klan byli Conzistenz kde jsem potkal mAdu (v té době s nickem Haniiz) a začal jsem to žrát naplno. Nabrali Nucíka, Scaryho, bimbase a Vita. Conzistenz se nějak rozpadlo a šli jsme pod iNsting, kde to byly fakt nejlepší časy mojí Soldat kariéry ^^. Nekonečné konverzace na Teamspeaku, 15 zápasů za den, první místo v klanbázi, porážka tenkrát neporazitelných cYs atd.\r\n\r\n 242838341@qip.ru (17:25:25 18/02/2011)\r\nto jeste neni konec moment :D\r\n\r\n 242838341@qip.ru (17:27:50 18/02/2011)\r\nPo rozpadu multiklanu Insting, jsme šli pod Team-FPS což byl poslední klan kde jsme to brali trochu vážně.\r\n\r\n 242838341@qip.ru (17:28:46 18/02/2011)\r\nZačali jsme být neaktivní, hráčů ubývalo atd.\r\n\r\n 242838341@qip.ru (17:29:43 18/02/2011)\r\nPoslední dva roky hraju prakticky jenom s mAdou, ostatní šli buď do zahraničních klanů nebo se nato vysrali úplně.\r\n\r\n 242838341@qip.ru (17:31:17 18/02/2011)\r\nTaky jsem zkoušel hrát s cizincema, ale není to ono.\r\n\r\n 242838341@qip.ru (17:35:39 18/02/2011)\r\nMoje oblíbené zbraně. Byl to vývoj, kdysi mi šly i vzduchovky jako Ruger nebo Snipy, ale nějak jsem za tu dobu ztratil aim a zlenivěl jsem. Poslední dva roky hraju prakticky jenom automaty a když mám lucky day tak emku.\r\n\r\n 242838341@qip.ru (17:36:13 18/02/2011)\r\nOblíbená mapa trochu souvisí s těma zbraněma. Když neumíš hrát nic jiného něž jsou automaty tak tě baví jen spray mapy :D\r\n\r\n 242838341@qip.ru (17:36:25 18/02/2011)\r\nSnakebite, Ash, Guardian.\r\n\r\n 242838341@qip.ru (17:38:49 18/02/2011)\r\nOk, next question.\r\n\r\n Kubik (17:44:39 18/02/2011)\r\nTvoj rozsah pamete na klany v soldate je ohromný. Zaujíma ma prečo chceš prestať hrať soldat.\r\n\r\n Kubik (17:47:57 18/02/2011)\r\nJa si nepametám ani čo som sa ťa pýtal predchvílov nie to ešte všetky moje klany.\r\n\r\n 242838341@qip.ru (17:48:26 18/02/2011)\r\nCo?\r\n\r\n 242838341@qip.ru (17:48:32 18/02/2011)\r\nNeco jsem preskocil? :D\r\n\r\n 242838341@qip.ru (17:49:18 18/02/2011)\r\nAha.\r\n\r\n 242838341@qip.ru (17:50:25 18/02/2011)\r\nNo proc chci prestat hrat. Samozřejmě s tím nekončím nadobro, jakože uninstall a konec, to ne. Spíš jde o to že mě to přestalo bavit, a není to jenom Soldat.\r\n\r\n 242838341@qip.ru (17:51:45 18/02/2011)\r\nSoldat můj život hodně ovlivnil, určitě to nebylo jen o té hře. Celkově ta komunita byla hodně unikátní, dost individuální a underground na rozdíl od ostatních her.\r\n\r\n Kubik (17:54:20 18/02/2011)\r\nDobre ďakujem. Z dôvodu že toto je rozhovor s výhercom ligy a nie výsluch na súde prejdeme k poslednej otázke.\r\nBudete sa snažiť aj nabudúci ročník obhajovať svoje víťazstvo?\r\n\r\n 242838341@qip.ru (17:55:14 18/02/2011)\r\nUrčitě. Pokud budou protihráči. Tyhle ligy jsou celkem motivace a důvod proč hrát, díky za ně.\r\n\r\n Kubik (17:56:16 18/02/2011)\r\nTento rozhovor snaď trval týžden... ale dik. Maj sa\r\n\r\n 242838341@qip.ru (17:56:37 18/02/2011)\r\nDíky a čau."
## [1] "# Zona altimetrica dei Comuni dell'Emilia Romagna\r\n# http://statistica.regione.emilia-romagna.it/allegati/codifiche/zona_altim.csv/view\r\n#\r\n#\r\n# Legenda\r\n# 1  montagna interna \r\n# 2  montagna litoranea \r\n# 3  collina interna \r\n# 4  collina litoranea \r\n# 5  pianura\r\n# http://statistica.regione.emilia-romagna.it/allegati/codifiche/za.rtf/view\r\n#\r\n# Attenzione\r\n# non sono presenti i seguenti comuni che sono stati creati dalla fusione di comuni preesistenti\r\n# 034049 Sissa Trecasali (pianura)\r\n# 035046 Ventasso (montagna interna)\r\n# 034050 Polesine Zibello (pianura)\r\n# 099028 Poggio Torriana (collina interna)\r\n\r\ndati <- read.csv2(\"http://statistica.regione.emilia-romagna.it/allegati/codifiche/zona_altim.csv/at_download/file/zona_altim_per_wcm.csv\", as.is=TRUE)\r\n\r\ndati <- rbind(dati,\r\nc(8,34,49,34049,\"Sissa Trecasali\",5),\r\nc(8,35,46,35046,\"Ventasso\",1),\r\nc(8,34,50,34050,\"Polesine Zibello\",5),\r\nc(8,99,28,99028,\"Poggio Torriana\",3))"
## [1] "*********** Welcome to Carder007 ************\r\n\r\nHI ALL NEW CLIENT\r\nIM BIG HACKER GOOD\r\n- I'm is Professional seller,more than 6 years experience,i have sold cvv credit card to many customers all over the world.\r\n- Selling cvv, fullz many country as: Canada,USA,Australia,UK...all And many country in Europe: Fr,Ger,Spain,Ita...\r\n- I hope we will work together for a long time.\r\n- Always sell cvv quality with high balance.\r\n- I have a website but if you want buy cvv good price please contact me.\r\n- carder007 register, carder007 login, carder007 cc, buy cvv, buy cc, buy bank login, buy bank logs, buy dumps, buy dumps with pin, carder007 registration, carder007 all you need, carder007 cvv\r\n\r\n\r\nContact me:\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n          \r\n          \r\n \r\n___________________ CCV !! CCN ______________________\r\n\r\nList cc and my price..\r\n\r\n- Us (Visa,Master) = 10$ per 1\r\n- Us (Amex,Dis) = 12$ per 1\r\n- Us Bin 15$ , US Dob 25$\r\n- Us fullz info = 30$ per 1\r\n--------------------------------\r\n- Uk (Visa,Master) = 15$ per 1\r\n- Uk (Amex,Dis) = 20$ per 1\r\n- Uk Bin 20$ , UK Dob 25$\r\n- Uk fullz info = 35$ per 1\r\n--------------------------------\r\n- Ca (Visa,Master) = 20$ per 1\r\n- Ca (Amex,Dis) = 25$ per 1\r\n- Ca Bin 20$ , CA Dob 25$\r\n- Ca fullz info = 35$ per 1\r\n--------------------------------\r\n- Au (Visa,Master) = 20$ per 1\r\n- Au (Amex,Dis) = 25$ per 1\r\n- Au Bin 23$ , AU Dob 30$\r\n- Au fullz info = 30$ per 1\r\n--------------------------------\r\n- Eu (Visa,Master) = 25$ per 1\r\n- Eu (Amex,Dis) = 28$ per 1\r\n- Eu Bin 30$ , AU Dob 35$\r\n- Eu fullz info = 45$ per 1\r\n--------------------------------\r\n- RDP = 25$\r\n- SMTP = 30$ ( All Country )\r\n- Italy = 25$ per 1 (fullz info = 40$)\r\n- Spain = 25$ per 1 (fullz info = 40$)\r\n- Denmark = 30$ per1 (fullz info = 40$)\r\n- Sweden = 25$ per 1 (fullz info = 40$)\r\n- France = 25$ per 1 (fullz info = 40$)\r\n- Germany = 25$ per 1 (fullz info = 40$)\r\n- Ireland = 25$ per 1 (fullz info = 40$)\r\n- Mexico = 20$ per 1 (fullz info = 35$)\r\n- Asia = 20$ per 1 (fullz info = 35$)\r\n\r\n_________i Only Exchange WU to PM , WU to WMZ_________\r\n\r\n- 100$ WU = 100$ PM\r\n- 200$ WU = 200$ PM\r\n- 100$ WU = 110$ WMZ\r\n- 200$ WU = 210$ WMZ\r\n\r\n________________ Do WU transfer ______________________\r\n\r\n- 700$ for MTCN 8000$\r\n- 550$ for MTCN 6000$\r\n- 400$ for MTCN 4000$\r\n- 200$ for MTCN 1500$\r\n\r\n__________ Bank Logins Prices US UK CA AU EU _____________\r\n\r\n. Bank Us : ( Bank of america,HALIFAX,BOA,CHASE,Wells Fargo...)\r\n. Balance 3000$ = 150$\r\n. Balance 5000$ = 250$\r\n. Balance 8000$ = 400$\r\n. Balance 12000$ = 600$\r\n. Balance 15000$ = 800$\r\n. Balance 20000$ = 1000$\r\n\r\n- Bank UK : ( LLOYDS TSB,BARCLAYS,Standard Chartered,HSBC...)\r\n. Balance 5000 GBP = 300$\r\n. Balance 12000 GBP = 600$\r\n. Balance 16000 GBP = 700$\r\n. Balance 20000 GBP = 1000$\r\n. Balance 30000 GBP = 1200$\r\n\r\n__________________ PayPal account _______________________\r\n\r\n= Account Paypal 1500$ = 200$\r\n= Account Paypal 2500$ = 250$\r\n= Account Paypal 4000$ = 350$\r\n= Account Paypal 7000$ = 550$\r\n\r\n_____________ Dumps track 1 track 2 with pin _____________\r\n\r\n- Dumps,Tracks 1&2 Us = 110$ per 1\r\n- Dumps,Tracks 1&2 Uk = 120$ per 1\r\n- Dumps,Tracks 1&2 Ca = 120$ per 1\r\n- Dumps,Tracks 1&2 Au = 120$ per 1\r\n- Dumps,Tracks 1&2 Eu = 150$ per 1\r\n\r\n-Sample Dump + Pin:\r\nTrack1 : B4096663104697113^FORANTO/CHRI STOPHER M^09061012735200521000000 ,\r\nTrack2 : 4096663104697113=0906101273525 21\r\nPin : 1783\r\n___________________________________________________________\r\n\r\n-WARRANTY time is 10 HOURS. Any cvv purchase over 10 hours can not warranty.\r\n-If you buy over 30 cvvs, i will sell for you best price.\r\n-I will discount for you if you are reseller or you order everyday many on the next day.\r\n-I will prove to you that I am the best sellers. And make sure you will enjoy doing business with me.\r\n-I accept Bitcoin ,WU (western union) , WMZ (webmoney) or MoneyGram...\r\n\r\nContact me\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n\r\ncarder007 register\r\ncarder007 login\r\ncarder007 cc\r\nbuy cvv\r\nbuy cc\r\nbuy bank logins\r\nbuy bank logs\r\nbuy dumps \r\nbuy dumps with pin"
## [1] "N<-2000\r\n\r\nstart<-Sys.time()\r\ninvisible(solve(matrix(rnorm(N^2)*(1:{N^2}),N,N)))\r\nprint(Sys.time()-start)"
## [1] "library(parallel)\r\nN<-2000\r\n\r\nlst<-list()\r\nfor (i in 1:{detectCores()}) {\r\n  lst[[i]]=matrix(rnorm(N^2)*(1:{N^2}),N,N)\r\n}\r\ncl<-makeCluster(detectCores())\r\nstart<-Sys.time()\r\ninvisible(clusterMap(cl, solve, lst))\r\nprint(Sys.time()-start)\r\nstopCluster(cl)"
## [1] "library(parallel)\r\nN<-2000\r\n\r\nlst<-list()\r\nfor (i in 1:{detectCores()}) {\r\n  lst[[i]]=matrix(rnorm(N^2)*(1:{N^2}),N,N)\r\n}\r\ncl<-makeCluster(detectCores())\r\nstart<-Sys.time()\r\nclusterApply(cl, solve, lst)\r\nprint(Sys.time()-start)\r\nstopCluster(cl)"
## [1] "library(parallel)\r\nN<-2000\r\n\r\nlst<-list()\r\nfor (i in 1:{detectCores()/2}) {\r\n  lst[[i]]=matrix(rnorm(N^2)*(1:{N^2}),N,N)\r\n}\r\ncl<-makeCluster(detectCores()/2)\r\nstart<-Sys.time()\r\nclusterApply(cl, solve, lst)\r\nprint(Sys.time()-start)\r\nstopCluster(cl)"
## [1] "# LIBRARIES\r\nlibrary(dplyr)\r\nlibrary(neuralnet)\r\n\r\n# OPTIONS\r\noptions(scipen = 999)\r\nstart.time <- Sys.time()\r\n\r\n# DATA\r\ntrain <- read.csv(\"data/train_v2.csv\")\r\ntest <- read.csv(\"data/test_v2.csv\")\r\n\r\n# DATA MANIPULATION\r\n# replace NA values with column average\r\nrep_train <- function() {\r\n  means = NULL\r\n  for(i in (1 : 771)) {\r\n    means[i] <- mean(train[, i], na.rm = TRUE)\r\n    train[, i][is.na(train[, i])] <- means[i]\r\n  }\r\n  return(train)\r\n}\r\n\r\nrep_test <- function() {\r\n  means = NULL\r\n  for(i in (1 : 770)) {\r\n    means[i] <- mean(test[, i], na.rm = TRUE)\r\n    test[, i][is.na(test[, i])] <- means[i]\r\n  }\r\n  return(test)\r\n}\r\n\r\ntrain <- rep_train()\r\ntest <- rep_test()\r\n\r\n# STANDARDIZATION\r\n# some columns have high variances, scaling necessary\r\nfind_variances <- function() {\r\n  for(i in (1 : 771)) {\r\n    if(var(train[, i]) > 1) {\r\n      print(i)\r\n    }\r\n  }\r\n}\r\n\r\n# MODEL\r\nn <- names(train)\r\nf <- as.formula(paste('loss ~', paste(n[!n %in% \"loss\"], collapse = \" + \")))\r\nnn <- neuralnet(f, data = train, hidden = c(3, 2), linear.output = TRUE)\r\npredicted <- compute(nn, test)\r\n\r\nfor(i in 1 : length(predicted$net.result)) {\r\n  if(predicted$net.result[i] < 0.5) {\r\n    predicted$net.result[i] <- 0\r\n  }\r\n  else {\r\n    predicted$net.result[i] <- 1\r\n  }\r\n}\r\n\r\nids <- test$id\r\nresults <- cbind(ids, predicted$net.result)\r\ncolnames(results) <- c('id', 'loss')\r\n\r\nwrite.csv(results, 'data/results.csv', row.names = FALSE)\r\n\r\n\r\nend.time <- Sys.time()\r\nelapsed <- end.time - start.time"
## [1] "library(ggplot2)\r\nlibrary(ggmap)\r\nlibrary(maps)\r\nlibrary(mapdata)\r\n\r\n#######################\r\n###### POINTS   #######\r\n#######################\r\n#Load and filter\r\ndata<-read.csv(\"~/Feeld/results-20170723-180046.csv\")\r\nmaps <- data %>%  \r\n  mutate(lng=round(lng,3)) %>% \r\n  mutate(lat=round(lat,3)) %>% \r\n  group_by(lat,lng,dim_market) %>% \r\n  summarize(total_rates=sum(total_rates))\r\nhead(maps)\r\n\r\n#Create plot_map function\r\nplot_map <- function(map) {\r\n  bc_bbox <- make_bbox(lat = lat, lon = lng, data = map)\r\n  bc_bbox\r\n  bc_big <- get_map(location = bc_bbox, source = \"google\", maptype = \"terrain\")\r\n  ggmap(bc_big,legend=\"none\") + \r\n    geom_point(data=map,alpha=0.2,mapping = aes(x = lng, y = lat), size=3)\r\n}\r\n\r\n#Apply it to each factor\r\nby(data=maps,INDICES=maps$dim_market,FUN=plot_map)\r\n\r\n#######################\r\n###### HEATMAP  #######\r\n#######################\r\n#Load and filter\r\ndata<-read.csv(\"~/Feeld/results-20170723-180046.csv\")\r\nmaps <- data %>%  \r\n  mutate(lng=round(lng,3)) %>% \r\n  mutate(lat=round(lat,3))\r\nhead(maps)\r\n\r\n#Heat map function\r\nplot_heat_map <- function(map) {\r\n  bc_bbox <- make_bbox(lat = lat, lon = lng, data = map)\r\n  bc_bbox\r\n  bc_big <- get_map(location = bc_bbox, source = \"google\", maptype = \"terrain\")\r\n  ggmap(bc_big) + \r\n    geom_density2d(data = maps, aes(x = lng, y = lat, fill = ..level.., alpha = ..level..), size = 0.3) + \r\n    stat_density2d(data = maps, \r\n                   aes(x = lng, y = lat, fill = ..level.., alpha = ..level..), size = 0.01, \r\n                   bins = 15, geom = \"polygon\") + \r\n    scale_fill_gradient(low = \"green\", high = \"red\") + \r\n    scale_alpha(range = c(0, 0.3), guide = FALSE)\r\n}\r\n\r\n#Plot\r\nby(data=maps,INDICES=maps$dim_market,FUN=plot_heat_map)"
## [1] "# Plot a standard normal curve in R\r\nx = seq(-3.5,3.5,0.1)\r\n\r\npnorm(x)\r\n\r\nplot(x,dnorm(x),type=\"l\")"
## [1] "Iteration  1  Lambda:  0.02787363 \r\nIteration  2  Lambda:  -0.0003133725\r\nSuck it Trebek\r\nIteration  4  Lambda:  0.02845428 \r\nIteration  5  Lambda:  0.0008845864 \r\nIteration  6  Lambda:  0.02760765 \r\nIteration  7  Lambda:  0.02681197 \r\nIteration  8  Lambda:  0.002981385 \r\nIteration  9  Lambda:  0.02428759 \r\nIteration  10  Lambda:  0.02227737 \r\nIteration  11  Lambda:  0.009059805 \r\nIteration  12  Lambda:  0.01739554 \r\nIteration  13  Lambda:  0.01556047 \r\nIteration  14  Lambda:  0.01423330 \r\nIteration  15  Lambda:  0.01447612 \r\nIteration  16  Lambda:  0.0144591 \r\nIteration  17  Lambda:  0.01445883 \r\nIteration  18  Lambda:  0.01445883"
## [1] "Iteration  1  Lambda:  0.02787363 \r\nIteration  2  Lambda:  -0.0003133725 \r\nIteration  3  Lambda:  0.02816089 \r\nIteration  4  Lambda:  0.02845428 \r\nIteration  5  Lambda:  0.0008845864 \r\nIteration  6  Lambda:  0.02760765 \r\nIteration  7  Lambda:  0.02681197 \r\nIteration  8  Lambda:  0.002981385 \r\nIteration  9  Lambda:  0.02428759 \r\nIteration  10  Lambda:  0.02227737 \r\nIteration  11  Lambda:  0.009059805 \r\nIteration  12  Lambda:  0.01739554 \r\nIteration  13  Lambda:  0.01556047 \r\nIteration  14  Lambda:  0.01423330 \r\nIteration  15  Lambda:  0.01447612 \r\nIteration  16  Lambda:  0.0144591 \r\nIteration  17  Lambda:  0.01445883 \r\nIteration  18  Lambda:  0.01445883"
## [1] "f<-function(x) {\r\n  x[x < pi] <- 1/sqrt(2)\r\n  x[x >= pi & x < 2*pi] <- -1/sqrt(2)\r\n  x[x >= 2*pi & x < 3*pi] <- 1/sqrt(2)\r\n  x[x >= 3*pi] <- -1/sqrt(2)\r\n  return(x)\r\n}\r\n\r\na<-function(x,i) {\r\n  return(sin(i*pi*x) + cos(i*pi*x))\r\n}\r\n\r\nx<-seq(0,4*pi,length=200)\r\ny<-f(x)\r\n\r\ncols<-100\r\nX<-matrix(0,nrow=length(x),ncol=cols)\r\nfor(i in (1:cols)) {\r\n  X[,i]<-a(x,i)\r\n}\r\nb.hat<-solve(t(X)%*%X,t(X))%*%y\r\n\r\nplot(x,y,type=\"l\")\r\nlines(x,X%*%b.hat,col=\"blue\")\r\nlines(smooth.spline(x,y),col=\"red\")"
## [1] "f<-function(x) {\r\n  x[x < pi] <- 1/sqrt(2)\r\n  x[x >= pi & x < 2*pi] <- -1/sqrt(2)\r\n  x[x >= 2*pi & x < 3*pi] <- 1/sqrt(2)\r\n  x[x >= 3*pi] <- -1/sqrt(2)\r\n  return(x)\r\n}\r\n\r\na<-function(x,i) {\r\n  return(sin(i*x) + cos(i*x))\r\n}\r\n\r\nx<-seq(0,4*pi,length=100)\r\ny<-f(x)\r\n\r\ncols<-80\r\nX<-matrix(0,nrow=length(x),ncol=cols)\r\nfor(i in (1:cols)) {\r\n  X[,i]<-a(x,i)\r\n}\r\nb.hat<-solve(t(X)%*%X,t(X))%*%y\r\n\r\nplot(x,y,type=\"l\")\r\nlines(x,X%*%b.hat,col=\"blue\")"
## [1] "makeCacheMatrix <- function(x=matrix()){\r\n        i <- NULL\r\n        setMatrix <- function(b) {\r\n                x <<- b\r\n                i <<- NULL\r\n        }\r\n        \r\n        getMatrix <- function() x\r\n        \r\n        setInverse <- function(i) i <<- solve(x)\r\n        \r\n        getInverse <- function() i\r\n        \r\n        list(setMatrix = setMatrix, getMatrix = getMatrix,\r\n             setInverse = setInverse, getInverse = getInverse)\r\n}\r\n\r\ncacheSolve <- function(x, ...) {\r\n        i <- x$getInverse()\r\n        \r\n        if((!is.null(i))) {\r\n                message(\"getting cached inverse\")\r\n                return(i)\r\n        }\r\n        \r\n        message(\"computing new inverse\")\r\n        unknown <- x$getMatrix()\r\n        i <- x$setInverse(unknown)\r\n        i\r\n        \r\n}"
## [1] "plot(c, x[,3], xlab=\"\", ylab=\"\", col=\"blue\", t=\"l\", xlim=c(0,520), ylim=c(5,28))\r\npar(new=T)\r\nplot(c, y[,3], xlab=\"Coord.\", ylab=\"Temp.\", col=\"red\", t=\"l\", xlim=c(0,520), ylim=c(5,28))"
## [1] "plot(1, 1)"
## [1] "library(dlm)\r\nlibrary(doParallel)\r\ncl = makeCluster(detectCores()-1)\r\nregisterDoParallel(cl)\r\n\r\nt100 <- proc.time()\r\nx <- foreach(j = seq(1,1000),.combine = 'rbind',.packages = c(\"dlm\",\"doParallel\")) %dopar% {\r\n\r\n  phi = runif(1,.5,.9)\t\r\n  sig_epsilon_2 = runif(1,1.1,2)\r\n  print(j)\r\n\r\nforeach(i = seq(1,100),.combine='+',.packages = c(\"dlm\",\"doParallel\")) %do% {\r\n        count1_3 = 0\r\n        count2_3 = 0\r\n\tprint(\"i\")\r\n\tprint(i)\r\n\tprint(\"j\")\r\n\tprint(j)\r\n\tt<- proc.time()\r\n\tnobs <- 250\t\r\n\t#This is the AR(1) model\r\n\ty_t <- arima.sim(n=nobs,list(ar=phi,ma=0),sd=sqrt(sig_epsilon_2))\r\n\t#We constrain the 1st parameter to be less than one and  \r\n\t#the second parameter to be positive.\r\n\tparm_rest <- function(parm){\r\n\t \treturn( c(exp(parm[1])/(1+exp(parm[1])),exp(parm[2])) ) \r\n\t}\r\n\t \t\r\n \toriginal_parameters <- c(phi,sig_epsilon_2)\r\n\tssm_ar1<- function(parm) {\r\n\t\tparm<- parm_rest(parm)\r\n\t\treturn(dlm(FF=1,V=0,GG=parm[1],W=parm[2],\r\n\t\tm0=0,C0=solve(1-parm[1]^2)*parm[2]))\r\n\t}\r\n\r\n\tresult_3 <- dlmMLE(y_t,parm=c(0,0),build=ssm_ar1,hessian=T)\r\n\r\n\tcoef_3 <- parm_rest(result_3$par)\r\n\r\n\tdg1_3 <- exp(result_3$par[1])/(1+exp(result_3$par[1]))^2\r\n\tdg2_3<- exp(result_3$par[2])\r\n\tdg_3<- diag(c(dg1_3,dg2_3))\r\n\tmyvar_3 <- dg_3%*%solve(result_3$hessian)%*%dg_3\r\n\tmyvar_3 <- sqrt(diag(myvar_3))\r\n\r\n\tlower_3 = coef_3 - 1.96 * myvar_3\r\n\tupper_3 = coef_3 + 1.96 * myvar_3\r\n\r\n \r\n############################################################################################################################################\r\n#       count1_3 is the count of the number of times out of 100 that phi falls OUTSIDE it's 95% CI built using dlmMLE\r\n#       count1_3 is ~Binomial(100,.05)  and should have a mean of size * p = 100 * .05 = 5 and\r\n#       a variance of size * p * q = 100 * .05* .95 = 4.75\r\n#       Similarly for count2_3.\r\n#       \r\n#       Define Y_n = X_1 + ... + X_n where X_i takes the value 1 in the event that\r\n#       the (generated) original parameter does not lie in it's 95% CI on the ith iteration and 0 otherwise.\r\n#       We compute Y_100 (since i goes from 1 to 100)        \r\n#       We can regard this as one realization of Binomial distribution with size=100 and p=.05 (probability of a parameter\r\n#       falling outside it's CI).     \r\n#       We repeat the above process j= 1000 times and accumulate the results in count1_1_vector.This will be ~Binomial(n=1000,size=100,p=.05)\r\n#          \r\n############################################################################################################################################\r\n        \r\n        print(\"Time taken :\")\r\n        print(proc.time()-t)\r\n\r\n     \tifelse(lower_3[1] <= original_parameters[1] && original_parameters[1] <= upper_3[1],print(\"phi within CI\"),\r\n        {print(original_parameters[1]); print(\"phi outside\") ; count1_3= count1_3 +1} )\r\n\r\n    ifelse(lower_3[2] <= original_parameters[2] && original_parameters[2] <= upper_3[2],print(\"sigma_epsilon_2 within CI\"),{ print(\"sigma_epsilon_2 outside\") ; count2_3= count2_3 +1} )\r\n     \r\n    return(c(count1_3,count2_3))\r\n    \r\n    \r\n}\r\n}\r\n\r\nprint(proc.time()-t100)\r\n\r\nexpected_distribution<- rbinom(1000,100,.05)\r\n\r\ncount1_3_vector <- x[,1]\r\ncount2_3_vector <- x[,2]\r\n\r\npdf(\"Graph-phi-dlmMLE.pdf\",width = 5.6,height = 3.8)\r\npar(mai=c(.8, .8, .3, .2))\r\nqqplot(expected_distribution,count1_3_vector,main=expression(paste(\"Graph for \",phi)),xlab=\"Expected distribution\",ylab=\"Observed values\")\r\nqqline(count1_3_vector,distribution = function(probs) { qbinom(probs, size=100, prob=0.05) },col = \"red\",lwd = 2)\r\ndev.off()\r\n\r\n\r\npdf(\"Graph-phi-dlmMLE-jitter.pdf\",width = 5.6,height = 3.8)\r\npar(mai=c(.8, .8, .3, .2))\r\nqqplot(jitter(expected_distribution),jitter(count1_3_vector),main=expression(paste(\"Graph for \",phi,\" : jittered\")),xlab=\"Expected distribution\",ylab=\"Observed values\")\r\nqqline(count1_3_vector,distribution = function(probs) { qbinom(probs, size=100, prob=0.05) },col = \"red\",lwd = 2)\r\ndev.off()\r\n\r\npdf(\"Graph-sigma-dlmMLE.pdf\",width = 5.6,height = 3.8)\r\npar(mai=c(.8, .8, .3, .2))\r\nqqplot(expected_distribution,count2_3_vector,main=expression(paste(\"Graph for \",sigma^2)),xlab=\"Expected distribution\",ylab = \"Observed values\")\r\nqqline(count2_3_vector,distribution = function(probs) { qbinom(probs, size=100, prob=0.05) },col = \"red\",lwd = 2)\r\ndev.off()\r\n\r\n\r\npdf(\"Graph-sigma-dlmMLE-jitter.pdf\",width = 5.6,height = 3.8)\r\npar(mai=c(.8, .8, .3, .2))\r\nqqplot(jitter(expected_distribution),jitter(count2_3_vector),main=expression(paste(\"Graph for \",sigma^2,\" : jittered\")),xlab=\"Expected distribution\",ylab = \"Observed values\")\r\nqqline(count2_3_vector,distribution = function(probs) { qbinom(probs, size=100, prob=0.05) },col = \"red\",lwd = 2)\r\ndev.off()"
## [1] "require(foreach)\r\n\r\nt.rolls <- c(13, 17, 4, 16, 16, 18, 4, 11, 16, 13, 11, 14, 13, 7, 13, 8, 15, 17, 9, 15, 13, 17, 16, 4, 10, 9, 13, 12, 3, 14, 17, 15, 19, 16, 12, 11, 16, 9, 15, 13, 6, 7, 18, 7, 16, 12, 13, 14, 16, 16, 11, 20, 10, 20, 13, 12, 13, 15, 12, 12, 13, 14, 15, 19)\r\n\r\nset.seed(29348029)\r\nnullDistSize <- 1000\r\nnullDist <- foreach(i = 1:nullDistSize, .combine = 'c') %do% {\r\n    mean(ceiling(runif(length(t.rolls), min = 0, max = 20)))\r\n}\r\n\r\nhist(nullDist, breaks = seq(1, 20, by = .1), xlab = \"Mean\", main = \"Mean of 64 d20 rolls\")\r\nabline(v = mean(t.rolls), col = \"red\")\r\ntext(y = 50, x = mean(t.rolls), \"Mean of Travis' rolls\", col = \"red\", pos = 4)"
## [1] "*********** Welcome to Carder007 ************\r\n\r\nHI ALL NEW CLIENT\r\nIM BIG HACKER GOOD\r\n- I'm is Professional seller,more than 6 years experience,i have sold cvv credit card to many customers all over the world.\r\n- Selling cvv, fullz many country as: Canada,USA,Australia,UK...all And many country in Europe: Fr,Ger,Spain,Ita...\r\n- I hope we will work together for a long time.\r\n- Always sell cvv quality with high balance.\r\n- I have a website but if you want buy cvv good price please contact me.\r\n- carder007 register, carder007 login, carder007 cc, buy cvv, buy cc, buy bank login, buy bank logs, buy dumps, buy dumps with pin, carder007 registration, carder007 all you need, carder007 cvv\r\n\r\n\r\nContact me:\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n          \r\n          \r\n \r\n___________________ CCV !! CCN ______________________\r\n\r\nList cc and my price..\r\n\r\n- Us (Visa,Master) = 10$ per 1\r\n- Us (Amex,Dis) = 12$ per 1\r\n- Us Bin 15$ , US Dob 25$\r\n- Us fullz info = 30$ per 1\r\n--------------------------------\r\n- Uk (Visa,Master) = 15$ per 1\r\n- Uk (Amex,Dis) = 20$ per 1\r\n- Uk Bin 20$ , UK Dob 25$\r\n- Uk fullz info = 35$ per 1\r\n--------------------------------\r\n- Ca (Visa,Master) = 20$ per 1\r\n- Ca (Amex,Dis) = 25$ per 1\r\n- Ca Bin 20$ , CA Dob 25$\r\n- Ca fullz info = 35$ per 1\r\n--------------------------------\r\n- Au (Visa,Master) = 20$ per 1\r\n- Au (Amex,Dis) = 25$ per 1\r\n- Au Bin 23$ , AU Dob 30$\r\n- Au fullz info = 30$ per 1\r\n--------------------------------\r\n- Eu (Visa,Master) = 25$ per 1\r\n- Eu (Amex,Dis) = 28$ per 1\r\n- Eu Bin 30$ , AU Dob 35$\r\n- Eu fullz info = 45$ per 1\r\n--------------------------------\r\n- RDP = 25$\r\n- SMTP = 30$ ( All Country )\r\n- Italy = 25$ per 1 (fullz info = 40$)\r\n- Spain = 25$ per 1 (fullz info = 40$)\r\n- Denmark = 30$ per1 (fullz info = 40$)\r\n- Sweden = 25$ per 1 (fullz info = 40$)\r\n- France = 25$ per 1 (fullz info = 40$)\r\n- Germany = 25$ per 1 (fullz info = 40$)\r\n- Ireland = 25$ per 1 (fullz info = 40$)\r\n- Mexico = 20$ per 1 (fullz info = 35$)\r\n- Asia = 20$ per 1 (fullz info = 35$)\r\n\r\n_________i Only Exchange WU to PM , WU to WMZ_________\r\n\r\n- 100$ WU = 100$ PM\r\n- 200$ WU = 200$ PM\r\n- 100$ WU = 110$ WMZ\r\n- 200$ WU = 210$ WMZ\r\n\r\n________________ Do WU transfer ______________________\r\n\r\n- 700$ for MTCN 8000$\r\n- 550$ for MTCN 6000$\r\n- 400$ for MTCN 4000$\r\n- 200$ for MTCN 1500$\r\n\r\n__________ Bank Logins Prices US UK CA AU EU _____________\r\n\r\n. Bank Us : ( Bank of america,HALIFAX,BOA,CHASE,Wells Fargo...)\r\n. Balance 3000$ = 150$\r\n. Balance 5000$ = 250$\r\n. Balance 8000$ = 400$\r\n. Balance 12000$ = 600$\r\n. Balance 15000$ = 800$\r\n. Balance 20000$ = 1000$\r\n\r\n- Bank UK : ( LLOYDS TSB,BARCLAYS,Standard Chartered,HSBC...)\r\n. Balance 5000 GBP = 300$\r\n. Balance 12000 GBP = 600$\r\n. Balance 16000 GBP = 700$\r\n. Balance 20000 GBP = 1000$\r\n. Balance 30000 GBP = 1200$\r\n\r\n__________________ PayPal account _______________________\r\n\r\n= Account Paypal 1500$ = 200$\r\n= Account Paypal 2500$ = 250$\r\n= Account Paypal 4000$ = 350$\r\n= Account Paypal 7000$ = 550$\r\n\r\n_____________ Dumps track 1 track 2 with pin _____________\r\n\r\n- Dumps,Tracks 1&2 Us = 110$ per 1\r\n- Dumps,Tracks 1&2 Uk = 120$ per 1\r\n- Dumps,Tracks 1&2 Ca = 120$ per 1\r\n- Dumps,Tracks 1&2 Au = 120$ per 1\r\n- Dumps,Tracks 1&2 Eu = 150$ per 1\r\n\r\n-Sample Dump + Pin:\r\nTrack1 : B4096663104697113^FORANTO/CHRI STOPHER M^09061012735200521000000 ,\r\nTrack2 : 4096663104697113=0906101273525 21\r\nPin : 1783\r\n___________________________________________________________\r\n\r\n-WARRANTY time is 10 HOURS. Any cvv purchase over 10 hours can not warranty.\r\n-If you buy over 30 cvvs, i will sell for you best price.\r\n-I will discount for you if you are reseller or you order everyday many on the next day.\r\n-I will prove to you that I am the best sellers. And make sure you will enjoy doing business with me.\r\n-I accept Bitcoin ,WU (western union) , WMZ (webmoney) or MoneyGram...\r\n\r\nContact me\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n\r\ncarder007 register\r\ncarder007 login\r\ncarder007 cc\r\nbuy cvv\r\nbuy cc\r\nbuy bank logins\r\nbuy bank logs\r\nbuy dumps \r\nbuy dumps with pin"
## [1] "> colvals = c(\"character\",\"character\",rep(\"integer\",each=50))\r\n> HAM2 <- read.csv (file=\"HAM RNA AmpliSeq counts p2.csv\",header=F,skip=2,colClasses = colvals)\r\nError in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,  :\r\n  scan() expected 'an integer', got 'SEC24B-AS1'\r\n> HAM2 <- read.csv (file=\"HAM RNA AmpliSeq counts p2.csv\",header=F,skip=2)      \r\n> HAM2[1:4,1:4]\r\n          V1           V2 V3 V4\r\n1 SEC24B-AS1 AMPL37741840  5  1\r\n2       A1BG AMPL17425613  0  0\r\n3       A1CF AMPL36593459  0  0\r\n4      GGACT AMPL17367653  2  3\r\n> colvals[1:4]\r\n[1] \"character\" \"character\" \"integer\"   \"integer\"\r\n> print (\"WTF?\")\r\n[1] \"WTF?\"\r\n> dim(HAM2)\r\n[1] 20812    52\r\n> grep(\"SEC24B-AS1\",HAM2[,1])\r\n[1] 1\r\n>"
## [1] "> colvals = c(\"character\",\"character\",rep(\"integer\",each=50))\r\n> HAM2 <- read.csv (file=\"HAM RNA AmpliSeq counts p2.csv\",header=F,skip=2,colClaError in scan(file = file, what = what, sep = sep, quote = quote, dec = dec,  :\r\n  scan() expected 'an integer', got 'SEC24B-AS1'\r\n> HAM2 <- read.csv (file=\"HAM RNA AmpliSeq counts p2.csv\",header=F,skip=2)      > HAM2[1:4,1:4]\r\n          V1           V2 V3 V4\r\n1 SEC24B-AS1 AMPL37741840  5  1\r\n2       A1BG AMPL17425613  0  0\r\n3       A1CF AMPL36593459  0  0\r\n4      GGACT AMPL17367653  2  3\r\n> colvals[1:4]\r\n[1] \"character\" \"character\" \"integer\"   \"integer\"\r\n> print (\"WTF?\")\r\n[1] \"WTF?\"\r\n> dim(HAM2)\r\n[1] 20812    52\r\n> grep(\"SEC24B-AS1\",HAM2[,1])\r\n[1] 1\r\n>"
## [1] "#-A8-#\r\n\r\ndf = data.frame(\"Schule\" = c(rep(\"S1\", 3), rep(\"S2\", 3), rep(\"S3\", 3)),\r\n\t\"Methode\" = rep(c(\"L1\", \"L2\", \"L3\"), 3), \"Score\" = c(56, 41, 23, 62,\r\n\t53, 29, 62, 71, 53))\r\n\r\ny.mean = mean(df$Score)\r\nalpha = NA\r\nfor(i in 1:3){ \r\n\talpha[i] = mean(df$Score[df$Schule == paste0(\"S\",i)]) - y.mean\r\n}\r\nbeta = NA\r\nfor(i in 1:3){ \r\n\tbeta[i] = mean(df$Score[df$Methode == paste0(\"L\",i)]) - y.mean\r\n}\r\n\r\nalpha.beta = NA\r\nfor(i in 1:3){\r\nalpha.beta[i] = df$Score[i] - alpha[i] - beta[1] - y.mean\r\n}\r\n\r\nfor(i in 1:3){\r\nalpha.beta[3+i] = df$Score[3+i] - alpha[i] - beta[2] - y.mean\r\n} \r\n\r\nfor(i in 1:3){\r\nalpha.beta[6+i] = df$Score[6+i] - alpha[i] - beta[3] - y.mean\r\n} \r\n\r\naov = (aov(Score ~ Error(Schule / Methode), df))\r\n\r\ndf$predicted = predict(lm(Score ~ Schule + Methode, df)) #ohne zufällige Effekte\r\ndf$pre.err = predict(lm(aov(Score ~ Error(Schule / Methode), df)))"
## [1] "info<-read.table('data.txt', header=TRUE)\r\n\r\nprint('table read stored as info')\r\nprint(summary(info))\r\n\r\n\r\nrawTimes<-info[1]\r\nprint (rawTimes[520:525, 1])\r\n\r\nts.cur <- rawTimes[1:length(rawTimes)-1, 1]\r\nts.next <- rawTimes[2:length(rawTimes), 1]\r\n\r\nanswer<-ts.cur - ts.next\r\n\r\nprint(answer)"
## [1] "# Spelling corrector in R\r\n# Claudio Sacchettini\r\n#\r\n# translated from\r\n# How to Write a Spelling Corrector (Peter Norvig)\r\n# http://norvig.com/spell-correct.html\r\n\r\n\r\nwords <- function(text) strsplit(tolower(text),'[^a-z]+')[[1]]\r\n\r\ntrain <- function(features) tapply(features, features, length)\r\n\r\ncon <- file(\"big.txt\", \"r\")\r\nNWORDS = train(words(readChar(con,10000000)))\r\nclose(con)\r\n\r\nalphabet = \"abcdefghijklmnopqrstuvwxyz\"\r\n\r\nedits1 <- function(word) {\r\n  a <- vector()\r\n  b <- vector()\r\n  for (i in 0:nchar(word)) {a[i+1] <- substring(word,1,i)\r\n                            b[i+1] <- substring(word,i+1,nchar(word))}\r\n  c <- unlist(strsplit(alphabet, NULL))\r\n  deletes <- paste(a[b!=\"\"],substring(b[b!=\"\"],2), sep=\"\")\r\n  transposes <- paste(a, substring(b[length(b)>1],2,2), substring(b[length(b)>1],1,1), substring(b[length(b)>1],3), sep=\"\")\r\n  replaces <- paste(rep(a[b!=\"\"],each=nchar(alphabet)), rep(c,nchar(word)), rep(substring(b[b!=\"\"],2),each=nchar(alphabet)), sep=\"\")\r\n  inserts <- paste(rep(a,each=nchar(alphabet)), rep(c,nchar(word)), rep(b,each=nchar(alphabet)), sep=\"\")\r\n  return(unique(c(deletes, transposes, replaces, inserts)))\r\n  }\r\n\r\nknown_edits2 <- function(word) {\r\n  e2 <- vector()\r\n  for (e1 in 1:length(edits1(word))) {\r\n  e2 <- c(e2, edits1(edits1(word)[e1]))\r\n  }\r\n  return(unique(e2[e2 %in% names(NWORDS)]))\r\n  }\r\n\r\nknown <- function(words) words[words %in% names(NWORDS)]\r\n\r\ncorrection <- function(word) {\r\n  candidates <- if(length(known(word))>0) known(word) else (if(length(known(edits1(word)))>0) known(edits1(word)) else (if(length(known_edits2(word))>0) known_edits2(word) else word))\r\n  return(if (length(candidates)==1 & candidates[1]==word) candidates else names(which.max(NWORDS[names(NWORDS) %in% candidates])))\r\n  }"
## [1] "rm(list = ls())\r\nlibrary(dplyr)\r\nlibrary(reshape2)\r\n\r\n#--store results\r\nmat_arry <- array(dim = c(5000, 2, 8))\r\n\r\n#-litter icc\r\nlit_icc <- seq(0, 0.7, .1)\r\n\r\nfor(k in 1:length(lit_icc)) {\r\n  for(i in 1:5000){\r\n    icc_loop <- lit_icc[k]\r\n      v_overall <- 10\r\n      n_litters <- 8\r\n      pups_litter <- 4\r\n      v_litter <- icc_loop * v_overall\r\n      v_error <- v_overall - v_litter\r\n      litter <- rep(1:n_litters, each = pups_litter)\r\n      # two treatments\r\n      treat <- rep(0:1, each = pups_litter * n_litters / 2)\r\n      treat <- factor(treat, labels = c('C', 'T'))\r\n      # litter effect\r\n      litter_eff <- rnorm(n_litters, 0, sqrt(v_litter))\r\n      # residual\r\n      residual <- rnorm(n_litters * pups_litter, 0, sqrt(v_error))\r\n      # the outcome measure\r\n      y <- 5 + 0 * (treat == 'T') + litter_eff[litter] + residual\r\n      litter <- factor(paste0('l', litter))\r\n      my_data <- data.frame(litter, treat, y)\r\n      mat_arry[i, 1, k] <- lmerTest::rand(lmerTest::lmer(y ~ treat + (1|litter), \r\n                                         data = my_data))$rand.table$p.value\r\n      m_lm <- stats::lm(y ~ treat, data = my_data)\r\n      mat_arry[i, 2, k] <- anova(m_lm)[1, 5]\r\n      }\r\n}\r\n\r\nmt_df <- melt(mat_arry) \r\n\r\nmt_1 <- mt_df %>% filter(Var2 == 1)\r\nmt_2 <- mt_df %>% filter(Var2 == 2)\r\n\r\ntemp <- data.frame(icc = mt_1$Var3, u_0 = mt_1$value, \r\n                   p_lm = mt_2$value)\r\n\r\ndf_non <- temp %>% filter(u_0 < 0.05)\r\ndf_sig <- temp %>% filter(u_0 > 0.05)\r\n\r\n\r\nt1_non <- df_non %>% group_by(icc) %>%  summarise(mean(p_lm < 0.05))\r\nt1_sig <- df_sig %>% group_by(icc) %>%  summarise(mean(p_lm < 0.05))\r\n\r\nresults <- data.frame(cond = rep(c(\"sig\", \"non_sig\"), each = 8), \r\n                      icc = rep(seq(0, .7, .1), 2), \r\n                      t1 = c(t1_sig$`mean(p_lm < 0.05)`, \r\n                             t1_non$`mean(p_lm < 0.05)`))\r\n\r\nwrite.csv(results, \"conditional_t1_results.csv\")"
## [1] "# This script uses some of the R and JAGS code\r\n# that was provided by Scheibehenne et al. in their rejoinder\r\n# See osf.io/hjt65 to download the necessary files\r\nsource(\"bridge_sampling_functions.R\")\r\nsource(\"jags_functions.R\")\r\n\r\nsim_studies <- function(nstudies, mu, tau, v) {\r\n  true_eff <- rnorm(nstudies, mu, tau)\r\n  # use bootstrapping to sample sampling variances\r\n  v <- sample(v, nstudies, replace = TRUE)\r\n  y <- rnorm(nstudies, true_eff, sqrt(v))\r\n  data.frame(y, v)\r\n}\r\n\r\nsim_models <- function(i, conds, metadata, nsim) {\r\n  require(LaplacesDemon)\r\n  require(truncnorm)\r\n  require(R2jags)\r\n  require(metafor)\r\n  require(mvtnorm)\r\n  require(Brobdingnag)\r\n  message(\"Condition: \", i)\r\n  results <- vector(\"list\", nsim)\r\n  for (n in seq_len(nsim)) {\r\n    # simulate data\r\n    sim_data <- sim_studies(\r\n      conds$nstudies[i], conds$mu[i], conds$tau[i], metadata$vi\r\n    )\r\n    # fixed effects models\r\n    data_fixed <- list(\r\n      y = sim_data$y, V = sim_data$v, Nstud = dim(sim_data)[1]\r\n    )\r\n    # fixed MA model: H0\r\n    logml.fixed.H0 <- log.ml.fixed.H0(data_fixed)\r\n    # fixed MA model: H1 (unrestricted)\r\n    post.samples.fixed <- get.samples.fixed.H1.unrestricted(data_fixed)\r\n    lb <- -Inf\r\n    ub <- Inf\r\n    names(lb) <- names(ub) <- \"d.fixed\"\r\n    bs.fixed.H1.unrestricted <- bridge.sampler(\r\n      post.samples = post.samples.fixed,\r\n      log.posterior = log.posterior.fixed.H1.unrestricted,\r\n      data = data_fixed, lb = lb, ub = ub\r\n    )\r\n    logml.fixed.H1.unrestricted <- bs.fixed.H1.unrestricted$logml\r\n    # random effects models\r\n    data_random <- list(\r\n      y = sim_data$y, V = sim_data$v, \r\n      Nstud = dim(sim_data)[1],\r\n      prior.scaleTau = conds$scaleTau[i]\r\n    )\r\n    # random MA model: H0\r\n    post.samples.random.H0 <- get.samples.random.H0(data_random)\r\n    lb <- rep(-Inf, ncol(post.samples.random.H0))\r\n    names(lb) <- colnames(post.samples.random.H0)\r\n    lb[[ \"tau\" ]] <- 0\r\n    ub <- rep(Inf, ncol(post.samples.random.H0))\r\n    names(ub) <- colnames(post.samples.random.H0)\r\n    bs.random.H0 <- bridge.sampler(\r\n      post.samples = post.samples.random.H0,\r\n      log.posterior = log.posterior.random.H0,\r\n      data = data_random, lb = lb, ub = ub\r\n    )\r\n    logml.random.H0 <- bs.random.H0$logml\r\n    # random MA model: H1 (unrestricted)\r\n    post.samples.random <- get.samples.random.H1.unrestricted(data_random)\r\n    lb <- rep(-Inf, ncol(post.samples.random))\r\n    names(lb) <- colnames(post.samples.random)\r\n    lb[[ \"tau\" ]] <- 0\r\n    ub <- rep(Inf, ncol(post.samples.random))\r\n    names(ub) <- colnames(post.samples.random)\r\n    bs.random.H1.unrestricted <- bridge.sampler(\r\n      post.samples = post.samples.random,\r\n      log.posterior = log.posterior.random.H1.unrestricted,\r\n      data = data_random, lb = lb, ub = ub\r\n    )\r\n    logml.random.H1.unrestricted <- bs.random.H1.unrestricted$logml\r\n    \r\n    # frequentist analysis\r\n    rma_fit <- metafor::rma(y ~ 1, vi = v, data = sim_data)\r\n    rma_fit_summary <- summary(rma_fit)\r\n    \r\n    # save results\r\n    results[[n]] <- list(\r\n      logOR_fixed = mean(post.samples.fixed[, \"d.fixed\"]),\r\n      logOR_fixed_lower = quantile(post.samples.fixed[, \"d.fixed\"], 0.025),\r\n      logOR_fixed_upper = quantile(post.samples.fixed[, \"d.fixed\"], 0.975),\r\n      logOR_random = mean(post.samples.random[, \"d.rand\"]),\r\n      logOR_random_lower = quantile(post.samples.random[, \"d.rand\"], 0.025),\r\n      logOR_random_upper = quantile(post.samples.random[, \"d.rand\"], 0.975),\r\n      tau = mean(post.samples.random[, \"tau\"]),\r\n      tau_lower = quantile(post.samples.random[, \"tau\"], 0.025),\r\n      tau_upper = quantile(post.samples.random[, \"tau\"], 0.975),\r\n      BF_fixed_random = exp(\r\n        logml.fixed.H1.unrestricted - logml.random.H1.unrestricted\r\n      ),\r\n      BF10_fixed = exp(logml.fixed.H1.unrestricted - logml.fixed.H0),\r\n      BF10_random = exp(logml.random.H1.unrestricted - logml.random.H0),\r\n      logOR_rma = rma_fit_summary$b[1, 1],\r\n      logOR_rma_lower = rma_fit_summary$ci.lb[1],\r\n      logOR_rma_upper = rma_fit_summary$ci.ub[1],\r\n      p10_rma = rma_fit_summary$pval[1],\r\n      tau_rma = sqrt(rma_fit_summary$tau2),\r\n      Q_rma = rma_fit_summary$QE,\r\n      Qp_rma = rma_fit_summary$QEp\r\n    )\r\n  }\r\n  results <- do.call(rbind.data.frame, results)\r\n  conds$results[[i]] <- rbind(conds$results[[i]], results)\r\n  conds[i, , drop = FALSE]\r\n  # save after every condition in order not to loose any trials\r\n  # save(conds, file = \"sim_results.Rda\")\r\n}\r\n\r\n# -------- simulations -----------\r\nload(\"meta_data.Rda\")\r\n\r\n# set to FALSE to extend existing simulation results\r\nnew_sim <- FALSE\r\nif (new_sim) {\r\n  conds <- expand.grid(\r\n    mu = 0.25, \r\n    tau = c(0, 0.05, 0.1, 0.20, 0.3, 0.4),\r\n    nstudies = c(7, 14, 28),\r\n    sdTau = c(1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 10, 100)\r\n  )\r\n  conds$scaleTau <- 1 / conds$sdTau^2\r\n  conds$results <- vector(\"list\", nrow(conds))\r\n} else {\r\n  conds <- load(\"sim_results.Rda\")\r\n}\r\n\r\nnsim <- 1\r\n\r\nlibrary(doParallel)\r\ncl <- makeCluster(2)\r\nregisterDoParallel(cl)\r\nconds_new <- foreach(i = 1:2, .combine = rbind) %dopar% {\r\n  sim_models(i, conds = conds, metadata = metadata, nsim = nsim) \r\n}"
## [1] "breaks_cuts<-function(l,breaks){\r\n      brks<-cut(l$value,breaks=breaks,include.lowest=TRUE)\r\n      return(brks)\r\n}\r\n\r\n\r\ngen_plot<-function(arr,brks,lons,lats,season,var){\r\n\r\nlongdata<-melt(arr)\r\nlongdata$brks<-breaks_cuts(longdata,brks)\r\nlongdata_n<-longdata[(longdata[,2]<=nh_bound_lower & longdata[,2]>=nh_bound_upper),]\r\nlongdata_s<-longdata[(longdata[,2]<=sh_bound_lower & longdata[,2]>=sh_bound_upper),]\r\nlev_order<-levels(as.factor(longdata$brks))\r\n\r\ncontour_cols<-colorRampPalette(c(\"yellow\",\"green\",\"blue\",\"purple\",\"red\"))(length(lev_order))\r\nprint(lev_order)\r\nprint(contour_cols)\r\n      m<-map_data(\"world2\")\r\n      gplot<-ggplot()+ \r\n        coord_cartesian(xlim=c(min(lons),max(lons)),\r\n                        ylim=c(min(lats),max(lats))) +\r\n        geom_map(data= m, map = m, aes(map_id=region)) +\r\n                stat_contour(aes(x=lons[longdata_n[,1]],\r\n                         y=lats[longdata_n[,2]],\r\n                         z = longdata_n[,3]),breaks=brks)+\r\n                stat_contour(aes(x=lons[longdata_s[,1]],\r\n                         y=lats[longdata_s[,2]],\r\n                         z = longdata_s[,3]),breaks=brks) +\r\n        \r\n                geom_tile(data=longdata_n,aes(x=lons[longdata_n[,1]],\r\n                         y=lats[longdata_n[,2]],fill=brks),alpha=0.5) +\r\n                geom_tile(data=longdata_s,aes(x=lons[longdata_s[,1]],\r\n                         y=lats[longdata_s[,2]],fill=brks),alpha=0.5) +\r\n        scale_fill_manual(breaks=lev_order,values=contour_cols) +\r\n\r\n        geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[2])],\r\n                      xmax = lons[which(lons==RIGHT_BOUND[2])],\r\n                      ymin = lats[which(lats==MIN_LAT[2])],\r\n                      ymax = lats[which(lats==MAX_LAT[2])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n        geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[3])],\r\n                      xmax = lons[which(lons==RIGHT_BOUND[3])],\r\n                      ymin = lats[which(lats==MIN_LAT[3])],\r\n                      ymax = lats[which(lats==MAX_LAT[3])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n\r\n                geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[5])],\r\n                      xmax = lons[which(lons==RIGHT_BOUND[5])],\r\n                      ymin = lats[which(lats==MIN_LAT[5])],\r\n                      ymax = lats[which(lats==MAX_LAT[5])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n                        geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[6])],\r\n                      xmax = lons[which(lons==RIGHT_BOUND[6])],\r\n                      ymin = lats[which(lats==MIN_LAT[6])],\r\n                      ymax = lats[which(lats==MAX_LAT[6])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n\r\n\r\n              geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[1])],\r\n                      xmax = 360,\r\n                      ymin = lats[which(lats==MIN_LAT[1])],\r\n                      ymax = lats[which(lats==MAX_LAT[1])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n                      geom_rect(aes(xmin = 0,\r\n                      xmax = lons[which(lons==RIGHT_BOUND[1])],\r\n                      ymin = lats[which(lats==MIN_LAT[1])],\r\n                      ymax = lats[which(lats==MAX_LAT[1])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n                      geom_rect(aes(xmin = lons[which(lons==LEFT_BOUND[4])],\r\n                      xmax = 360,\r\n                      ymin = lats[which(lats==MIN_LAT[4])],\r\n                      ymax = lats[which(lats==MAX_LAT[4])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n                      geom_rect(aes(xmin = 0,\r\n                      xmax = lons[which(lons==RIGHT_BOUND[4])],\r\n                      ymin = lats[which(lats==MIN_LAT[4])],\r\n                      ymax = lats[which(lats==MAX_LAT[4])]),\r\n               fill = \"transparent\", color = \"red\", size = 1.5) +\r\n\r\n\r\n       ggtitle(sprintf(\"%s Threshold for %s\",var,season)) +\r\n        labs(x=\"Longitude\",y=\"Latitude\") \r\nreturn(gplot)\r\n}"
## [1] "Error in `rownames<-`(`*tmp*`, value = c(\"SAA3P 11p15.1 \", \"MIR494 14q32.31 \",  : \r\n  attempt to set 'rownames' on an object with no dimensions\r\nCalls: REVEALER.v1 ... .local -> silhouette -> silhouette.NMF -> rownames<-\r\nIn addition: There were 50 or more warnings (use warnings() to see the first 50)\r\nExecution halted"
## [1] " mf <- model.frame(formula)\r\n    }\r\n    else {\r\n        mf <- model.frame(formula, data)\r\n    }\r\n    cl <- match.call()\r\n    xy <- split(model.extract(mf, \"response\"), mf[, 2])\r\n    faclevels <- names(xy)\r\n    x <- xy[[1]]\r\n    y <- xy[[2]]\r\n    if (tr == 0.5) \r\n        warning(\"Comparing medians should not be done with this function!\")\r\n    alpha <- 0.05\r\n    if (is.null(y)) {\r\n        if (is.matrix(x) || is.data.frame(x)) {\r\n            y = x[, 2]\r\n            x = x[, 1]\r\n        }\r\n        if (is.list(x)) {\r\n            y = x[[2]]\r\n            x = x[[1]]\r\n        }\r\n    }\r\n    if (tr > 0.25) \r\n        print(\"Warning: with tr>.25 type I error control might be poor\")\r\n    x <- x[!is.na(x)]\r\n    y <- y[!is.na(y)]\r\n    h1 <- length(x) - 2 * floor(tr * length(x))\r\n    h2 <- length(y) - 2 * floor(tr * length(y))\r\n    q1 <- (length(x) - 1) * winvar(x, tr)/(h1 * (h1 - 1))\r\n    q2 <- (length(y) - 1) * winvar(y, tr)/(h2 * (h2 - 1))\r\n    df <- (q1 + q2)^2/((q1^2/(h1 - 1)) + (q2^2/(h2 - 1)))\r\n    crit <- qt(1 - alpha/2, df)\r\n    dif <- mean(x, tr) - mean(y, tr)\r\n    low <- dif - crit * sqrt(q1 + q2)\r\n    up <- dif + crit * sqrt(q1 + q2)\r\n    test <- abs(dif/sqrt(q1 + q2))\r\n    yuen <- 2 * (1 - pt(test, df))\r\n    result <- list(test = test, conf.int = c(low, up), p.value = yuen, \r\n        df = df, diff = dif, call = cl)\r\n    class(result) <- \"yuen\"\r\n    result\r\n}"
## [1] "rm(list=ls()) \r\n# Remove pre-existing objects\r\n\r\n#' Extended Euclidean Algorithm\r\n#' Computes d=gcd(u,v) and a,b that satisfy \r\n#' a*u+b*v=d \r\n#' \r\n#' @param u,v: Two integers, with u>v\r\n#' @return A list with a,b,d, such that au+bv=d\r\ngcd_E = function(u,v){\r\n    m = matrix(c(1,0,0,1),nrow=2)                       # m = |1 0|\r\n    n = 0                                               #     |0 1|\r\n    \r\n    while(v != 0){\r\n        q = floor(u/v) # Get u/v, less the remainder\r\n        m =  m %*% matrix(c(q,1,1,0),nrow=2,byrow=T)    # m = m * |q 1|\r\n        temp = v                                        #         |1 0|\r\n        v = u - q*v # (u,v)=(v,u-q*v)\r\n        u = temp\r\n        n = n+1\r\n    }\r\n    \r\n    return( list(d=u, a=(-1)^n*m[2,2], b=(-1)^(n+1)*m[1,2]) )\r\n}"
## [1] "require(dplyr)\r\nrequire(readr)\r\nrequire(ggplot2)\r\nrequire(gridExtra)\r\nrequire(scales)\r\n\r\nCorp = read_csv('OECD_data/Seperated/CorpComb.csv')\r\nGaS = read_csv('OECD_data/Seperated/GaSComb.csv')\r\nPayroll = read_csv('OECD_data/Seperated/PayrollComb.csv')\r\nPersInc = read_csv('OECD_data/Seperated/PersIncComb.csv')\r\nProperty = read_csv('OECD_data/Seperated/PropertyComb.csv')\r\nSocSec = read_csv('OECD_data/Seperated/SocSecComb.csv')\r\nTaxRev = read_csv('OECD_data/Seperated/TaxRevCom.csv')\r\nWedge = read_csv('OECD_data/Seperated/Wedge.csv')\r\n\r\nCorp_avgs <- Corp %>% group_by(Country) %>% summarise(CorpGPDmean=mean(`Corp%GDP`),CorpTaxMean = mean(`Corp%Tax`))\r\nGaS_avgs <- GaS %>% group_by(Country) %>% summarise(GaSGPDmean=mean(`GaS%GDP`),GasTaxMean = mean(`GaS%Tax`))\r\nPayroll_avgs <- Payroll %>% group_by(Country) %>% summarise(PayrollGPDmean=mean(`Payroll%GDP`),PayrollTaxMean = mean(`Payroll%Tax`))\r\nPersInc_avgs <- PersInc %>% group_by(Country) %>% summarise(PersIncGPDmean=mean(`PersInc%GDP`),PersIncTaxMean = mean(`PersInc%Tax`))\r\nProperty_avgs <- Property %>% group_by(Country) %>% summarise(PropGPDmean=mean(`Prop%GDP`),PropTaxMean = mean(`Prop%Tax`))\r\nSocSec_avgs <- SocSec %>% group_by(Country) %>% summarise(SocSecGPDmean=mean(`SocSec%GDP`),SocSecTaxMean = mean(`SocSec%Tax`))\r\nTaxRev_avgs <- TaxRev %>% group_by(Country) %>% summarise(TaxRevGPDmean=mean(`TaxRev%GDP`),TaxRevPerCapMean = mean(`TaxRevPerCap`))\r\nWedge_avgs <- Wedge %>% group_by(Country) %>% summarise(PercentLaborCostMean=mean(Wedge))\r\n\r\nall_avgs <- inner_join(Corp_avgs,GaS_avgs)\r\nall_avgs <- inner_join(all_avgs,Payroll_avgs)\r\nall_avgs <- inner_join(all_avgs,PersInc_avgs)\r\nall_avgs <- inner_join(all_avgs,Property_avgs)\r\nall_avgs <- inner_join(all_avgs,SocSec_avgs)\r\nall_avgs <- inner_join(all_avgs,TaxRev_avgs)\r\nall_avgs <- inner_join(all_avgs,Wedge_avgs)\r\n\r\nwrite_excel_csv(all_avgs,\"all_averages_by_loc.csv\")\r\n# Did some Excel Tweaking\r\nnew_all_avgs <- read_csv('all_averages_by_loc.csv')\r\n\r\nCorpGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$CorpGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nCorpTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$CorpTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nCorpPair <-grid.arrange(CorpGDPgg, CorpTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Corporate Taxation (2013 - 2015 Averages)\")\r\nggsave(\"CorpPair.png\", CorpPair, width = 8, height = 4)\r\n\r\nGaSGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$GaSGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nGaSTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$GaSTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nGaSPair <-grid.arrange(GaSGDPgg, GaSTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Goods And Services Taxation (2013 - 2015 Averages)\")\r\nggsave(\"GaSPair.png\", GaSPair, width = 8, height = 4)\r\n\r\nPayrollGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PayrollGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nPayrollTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PayrollTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nPayrollPair <-grid.arrange(PayrollGDPgg, PayrollTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Payroll Taxation (2013 - 2015 Averages)\")\r\nggsave(\"PayrollPair.png\", PayrollPair, width = 8, height = 4)\r\n\r\nPersIncGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PersIncGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nPersIncTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PersIncTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nPersIncPair <-grid.arrange(PersIncGDPgg, PersIncTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Personal Income Taxation (2013 - 2015 Averages)\")\r\nggsave(\"PersIncPair.png\", PersIncPair, width = 8, height = 4)\r\n\r\nPropGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PropGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nPropTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PropTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nPropPair <-grid.arrange(PropGDPgg, PropTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Property Taxation (2013 - 2015 Averages)\")\r\nggsave(\"PropPair.png\", PropPair, width = 8, height = 4)\r\n\r\nSocSecGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$SocSecGPDmean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nSocSecTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$SocSecTaxMean,y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of Total Taxation', y = \"\")\r\n\r\nSocSecPair <-grid.arrange(SocSecGDPgg, SocSecTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Social Security Taxation (2013 - 2015 Averages)\")\r\nggsave(\"SocSecPair.png\", SocSecPair, width = 8, height = 4)\r\n\r\nTaxRevGDPgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$TaxRevGPDmean, y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = 'as % of GDP', y = \"\")\r\nTaxRevTaxgg <- ggplot(new_all_avgs, aes(x = new_all_avgs$TaxRevPerCapMean, y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  scale_x_continuous(labels = comma) +\r\n  labs(x = 'USD Per Capita', y = \"\") \r\n\r\nTaxRevPair <-grid.arrange(TaxRevGDPgg, TaxRevTaxgg, ncol = 2, left=\"Happiness Index\", top = \"Total Tax Revenue (2013 - 2015 Averages)\")\r\nggsave(\"TaxRevPair.png\", TaxRevPair, width = 8, height = 4)\r\n\r\nWedgegg <- ggplot(new_all_avgs, aes(x = new_all_avgs$PercentLaborCostMean, y = new_all_avgs$`Avg Happiness Index`)) + \r\n  geom_text(aes(label=new_all_avgs$Country), size = 2) +\r\n  labs(x = '% of Labor Cost', y = \"\", title = \"Wedge\")\r\n\r\nggsave(\"Wedge.png\", Wedgegg, width = 4, height = 4)"
## [1] "# Problem:  Suppose a production process produces widgets with a weight distributed\r\n# as a normal variable with mean of 100 grams and standard deviation of 10 grams.\r\n# What is the probability of a random sample of size 25 having a mean value that is \r\n# outside 100 +- 2 grams?\r\n\r\ncord.x <- c(-3, seq(-3, -2*(5)/10, 0.01), -2*(5)/10)\r\ncord.y <- c(0, dnorm(seq(-3, -2*(5)/10, 0.01),0,1), 0)\r\ncord.xx <- c(2*(5)/10, seq(2*5/10, +3, 0.01), +3)\r\ncord.yy <- c(0, dnorm(seq(2*5/10, +3, 0.01),0,1), 0)\r\ncurve(dnorm(x,0,1),xlim=c(-3,3),main=\"Standard Normal Density\", ylab = \"density\")\r\npolygon(cord.x,cord.y,col=\"skyblue\")\r\npolygon(cord.xx,cord.yy,col=\"skyblue\")"
## [1] "library(rstan)\r\nlibrary(HDInterval)\r\n\r\ncomp_mod <- 'data {\r\n  int<lower=0> k; //studies\r\n  real y[k]; // effects for k studies\r\n  real<lower=0> sigma[k]; // s.e. of effect estimates \r\n}\r\nparameters {\r\n  real mu; \r\n  real<lower=0> tau;\r\n  real eta[k];\r\n}\r\ntransformed parameters {\r\n  real theta[k];\r\n  for (i in 1:k)\r\n    theta[i] = mu + tau * eta[i];\r\n}\r\nmodel {\r\n  tau ~ cauchy(0, 0.2);\r\n  mu ~ normal(0, 0.5);\r\n  target += normal_lpdf(eta | 0, 1);\r\n  target += normal_lpdf(y | theta, sigma);\r\n} '\r\n\r\nk <- 5\r\nmat <- matrix(nrow = 100)\r\n\r\nfor(i in 1:100){\r\nd_truth <- rnorm(k, mean=0, sd= 0.1)\r\nstudy_se <- runif(k, min = 0.05, max = 0.35)\r\nk_theta <- rnorm(k, mean=d_truth, sd=study_se)\r\n\r\nm_bayes <- sampling(object = comp_mod, \r\n                    data = list(k = length(1:k), \r\n                                y = k_theta,\r\n                                sigma = study_se), \r\n                    control = list(adapt_delta = 0.95), \r\n                    iter = 2000, warmup=1000, thin=1, chains = 2)\r\ntemp  <-  rstan::extract(m_bayes, par = c(\"tau\", \"mu\"))\r\nmat[i,1] <- hdi(temp$tau)[[1]]\r\n}\r\nsum(mat[,1] > 0)"
## [1] "library(ffbase)\r\nlibrary(ffbase2)\r\nlibrary(dplyr)\r\nlibrary(ETLUtils)\r\n\r\nsetwd('/Users/chun/Documents/R')\r\n\r\nx <- read.csv.ffdf(file = \"2010_BSA_Carrier_PUF.csv\", \r\n                   colClasses = c(\"integer\",\"integer\",\"factor\",\"factor\",\"factor\",\"integer\",\"integer\",\"factor\",\"integer\",\"integer\",\"integer\"), \r\n                   transFUN=function(x){\r\n                     names(x) <- recoder(names(x), \r\n                                         from = c(\"BENE_SEX_IDENT_CD\", \"BENE_AGE_CAT_CD\", \"CAR_LINE_ICD9_DGNS_CD\", \"CAR_LINE_HCPCS_CD\",\r\n                                                  \"CAR_LINE_BETOS_CD\", \"CAR_LINE_SRVC_CNT\", \"CAR_LINE_PRVDR_TYPE_CD\", \"CAR_LINE_CMS_TYPE_SRVC_CD\",\r\n                                                  \"CAR_LINE_PLACE_OF_SRVC_CD\", \"CAR_HCPS_PMT_AMT\", \"CAR_LINE_CNT\"), \r\n                                         to = c(\"sex\", \"age\", \"diagnose\", \"healthcare.procedure\",\r\n                                                \"typeofservice\", \"service.count\", \"provider.type\", \"servicesprocessed\",\r\n                                                \"place.served\", \"payment\", \"carrierline.count\"))\r\n                     x$sex <- factor(recoder(x$sex, from = c(1,2), to=c(\"Male\",\"Female\")))  \r\n                     x$age <- factor(recoder(x$age, from = c(1,2,3,4,5,6), to=c(\"Under 65\", \"65-69\", \"70-74\", \"75-79\", \"80-84\", \"85 and older\")))\r\n                     x$place.served <- factor(recoder(x$place.served, \r\n                                                      from = c(0, 1, 11, 12, 21, 22, 23, 24, 31, 32, 33, 34, 41, \r\n                                                               42, 50, 51, 52, 53, 54, 56, 60, 61, 62, 65, 71, 72, \r\n                                                               81, 99), \r\n                                                      to = c(\"Invalid Place of Service Code\", \"Office (pre 1992)\",\r\n                                                             \"Office\",\"Home\",\"Inpatient hospital\",\"Outpatient hospital\",\r\n                                                             \"Emergency room - hospital\",\"Ambulatory surgical center\",\"Skilled nursing facility\",\r\n                                                             \"Nursing facility\",\"Custodial care facility\",\"Hospice\",\"Ambulance - land\",\"Ambulance - air or water\",\r\n                                                             \"Federally qualified health centers\",\r\n                                                             \"Inpatient psychiatrice facility\", \"Psychiatric facility partial hospitalization\", \r\n                                                             \"Community mental health center\", \"Intermediate care facility/mentally retarded\", \r\n                                                             \"Psychiatric residential treatment center\", \"Mass immunizations center\", \r\n                                                             \"Comprehensive inpatient rehabilitation facility\", \r\n                                                             \"End stage renal disease treatment facility\",\r\n                                                             \"State or local public health clinic\",\"Independent laboratory\", \"Other unlisted facility\")))\r\n                     x\r\n                   }, VERBOSE=TRUE)\r\n\r\ndoby <- list()\r\nx %>%\r\n  group_by(sex) %>%\r\n  summarise(count=n(), sum=sum(payment), mean=mean(payment)) -> doby$sex"
## [1] "*********** Welcome to Carder007 ************\r\n\r\nHI ALL NEW CLIENT\r\nIM BIG HACKER GOOD\r\n- I'm is Professional seller,more than 6 years experience,i have sold cvv credit card to many customers all over the world.\r\n- Selling cvv, fullz many country as: Canada,USA,Australia,UK...all And many country in Europe: Fr,Ger,Spain,Ita...\r\n- I hope we will work together for a long time.\r\n- Always sell cvv quality with high balance.\r\n- I have a website but if you want buy cvv good price please contact me.\r\n- carder007 register, carder007 login, carder007 cc, buy cvv, buy cc, buy bank login, buy bank logs, buy dumps, buy dumps with pin, carder007 registration, carder007 all you need, carder007 cvv\r\n\r\n\r\nContact me:\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n          \r\n          \r\n \r\n___________________ CCV !! CCN ______________________\r\n\r\nList cc and my price..\r\n\r\n- Us (Visa,Master) = 10$ per 1\r\n- Us (Amex,Dis) = 12$ per 1\r\n- Us Bin 15$ , US Dob 25$\r\n- Us fullz info = 30$ per 1\r\n--------------------------------\r\n- Uk (Visa,Master) = 15$ per 1\r\n- Uk (Amex,Dis) = 20$ per 1\r\n- Uk Bin 20$ , UK Dob 25$\r\n- Uk fullz info = 35$ per 1\r\n--------------------------------\r\n- Ca (Visa,Master) = 20$ per 1\r\n- Ca (Amex,Dis) = 25$ per 1\r\n- Ca Bin 20$ , CA Dob 25$\r\n- Ca fullz info = 35$ per 1\r\n--------------------------------\r\n- Au (Visa,Master) = 20$ per 1\r\n- Au (Amex,Dis) = 25$ per 1\r\n- Au Bin 23$ , AU Dob 30$\r\n- Au fullz info = 30$ per 1\r\n--------------------------------\r\n- Eu (Visa,Master) = 25$ per 1\r\n- Eu (Amex,Dis) = 28$ per 1\r\n- Eu Bin 30$ , AU Dob 35$\r\n- Eu fullz info = 45$ per 1\r\n--------------------------------\r\n- RDP = 25$\r\n- SMTP = 30$ ( All Country )\r\n- Italy = 25$ per 1 (fullz info = 40$)\r\n- Spain = 25$ per 1 (fullz info = 40$)\r\n- Denmark = 30$ per1 (fullz info = 40$)\r\n- Sweden = 25$ per 1 (fullz info = 40$)\r\n- France = 25$ per 1 (fullz info = 40$)\r\n- Germany = 25$ per 1 (fullz info = 40$)\r\n- Ireland = 25$ per 1 (fullz info = 40$)\r\n- Mexico = 20$ per 1 (fullz info = 35$)\r\n- Asia = 20$ per 1 (fullz info = 35$)\r\n\r\n_________i Only Exchange WU to PM , WU to WMZ_________\r\n\r\n- 100$ WU = 100$ PM\r\n- 200$ WU = 200$ PM\r\n- 100$ WU = 110$ WMZ\r\n- 200$ WU = 210$ WMZ\r\n\r\n________________ Do WU transfer ______________________\r\n\r\n- 700$ for MTCN 8000$\r\n- 550$ for MTCN 6000$\r\n- 400$ for MTCN 4000$\r\n- 200$ for MTCN 1500$\r\n\r\n__________ Bank Logins Prices US UK CA AU EU _____________\r\n\r\n. Bank Us : ( Bank of america,HALIFAX,BOA,CHASE,Wells Fargo...)\r\n. Balance 3000$ = 150$\r\n. Balance 5000$ = 250$\r\n. Balance 8000$ = 400$\r\n. Balance 12000$ = 600$\r\n. Balance 15000$ = 800$\r\n. Balance 20000$ = 1000$\r\n\r\n- Bank UK : ( LLOYDS TSB,BARCLAYS,Standard Chartered,HSBC...)\r\n. Balance 5000 GBP = 300$\r\n. Balance 12000 GBP = 600$\r\n. Balance 16000 GBP = 700$\r\n. Balance 20000 GBP = 1000$\r\n. Balance 30000 GBP = 1200$\r\n\r\n__________________ PayPal account _______________________\r\n\r\n= Account Paypal 1500$ = 200$\r\n= Account Paypal 2500$ = 250$\r\n= Account Paypal 4000$ = 350$\r\n= Account Paypal 7000$ = 550$\r\n\r\n_____________ Dumps track 1 track 2 with pin _____________\r\n\r\n- Dumps,Tracks 1&2 Us = 110$ per 1\r\n- Dumps,Tracks 1&2 Uk = 120$ per 1\r\n- Dumps,Tracks 1&2 Ca = 120$ per 1\r\n- Dumps,Tracks 1&2 Au = 120$ per 1\r\n- Dumps,Tracks 1&2 Eu = 150$ per 1\r\n\r\n-Sample Dump + Pin:\r\nTrack1 : B4096663104697113^FORANTO/CHRI STOPHER M^09061012735200521000000 ,\r\nTrack2 : 4096663104697113=0906101273525 21\r\nPin : 1783\r\n___________________________________________________________\r\n\r\n-WARRANTY time is 10 HOURS. Any cvv purchase over 10 hours can not warranty.\r\n-If you buy over 30 cvvs, i will sell for you best price.\r\n-I will discount for you if you are reseller or you order everyday many on the next day.\r\n-I will prove to you that I am the best sellers. And make sure you will enjoy doing business with me.\r\n-I accept Bitcoin ,WU (western union) , WMZ (webmoney) or MoneyGram...\r\n\r\nContact me\r\nSupport manager shop (English)\r\nYahoo: carder007 .ru\r\nICQ : 674586348\r\nEmail : carder007.ru@yahoo.com\r\nWebsite : http://Carder007s.com\r\n          http://Carder007.surf\r\n          http://Carder007.info\r\n          http://Carder007u.us\r\n          http://carder0077.tv\r\n\r\n\r\ncarder007 register\r\ncarder007 login\r\ncarder007 cc\r\nbuy cvv\r\nbuy cc\r\nbuy bank logins\r\nbuy bank logs\r\nbuy dumps \r\nbuy dumps with pin"
## [1] "for(i in 1:nflocks){\r\n  rddays <- ddays + days(i) - days(1)\r\n  a <- print(rddays)\r\n}"
## [1] "crearsimplex<-function(M){\r\n  tam<-dim(M)\r\n  v <- c()\r\n  v2 <- c()\r\n  my.lp <- make.lp(tam[1],tam[2])\r\n  for(i in 1:tam[2]){\r\n    set.column(my.lp, i, M[,i])\r\n    v[i] <- 1\r\n  }\r\n  for(i in 1:tam[1]){\r\n    v2[i] <- 1\r\n  }\r\n  set.objfn(my.lp,v)\r\n  set.constr.type(my.lp, rep(\">=\",tam[1]))\r\n  set.rhs(my.lp, v2)\r\n  my.lp\r\n  x<-solve(my.lp)\r\n  y<-get.objective(my.lp)\r\n  z<-get.variables(my.lp)\r\n  salida <- c(x,y,z)\r\n  return(salida)\r\n}\r\n\r\naux <- 0\r\nv_ma <- c(1,1,1,0,0,0,\r\n          1,1,0,1,0,0,\r\n          1,0,1,1,1,0,\r\n          0,1,1,1,0,1,\r\n          0,0,1,0,1,1,\r\n          0,0,0,1,1,1)\r\nM <- matrix(v_ma,nrow=6+aux,ncol=6,byrow = TRUE)\r\ntam <- dim(M)\r\nsalida <- crearsimplex(M)\r\nverificador <- 1\r\n\r\nif(salida[1]==0){\r\n  mayor <- 0\r\n  posant<- pos\r\n  pos <- 0\r\n  \r\n  for(i in 3:length(salida)){\r\n    if(salida[i]!=0 & salida[i]!=1){\r\n      verificador <- verificador * 0\r\n    }\r\n  }\r\n  \r\n  if(verificador == 1){\r\n    for(i in 3:length(salida)){\r\n      if(salida[i]>mayor){\r\n        mayor<-salida[i]\r\n        pos<- i\r\n      }\r\n    }\r\n  }\r\n  \r\n  if(agregar==TRUE){\r\n    n_res<-rep(0, tam(2))\r\n    n_res[pos-2]<-1\r\n    M <- rbind(M,n_res)\r\n  }else{\r\n    M <- M[-\"n_res\",]\r\n  }\r\n  \r\n\r\n  salida <- crearsimplex(M)\r\n  \r\n}else{\r\n  print(\"No tiene solución factible\")\r\n}"
## [1] "setwd(\"/Users/gemenenarcis/Documents/MATLAB/Football-data-challenge/R/\")\r\nlibrary(gbm)\r\ntraincsv <- read.csv(\"../trainSet/train.csv\",header = TRUE,sep=\",\")\r\ntestcsv <- read.csv(\"../testSet/test.csv\",header = TRUE,sep=\",\")\r\ndates <- as.Date(traincsv$Date, \"%Y-%m-%d\")\r\nyears <- as.numeric(format(dates, \"%Y\"))\r\nmonths <- format(dates, \"%d\")\r\nuniqueYears <- sort.int(unique(years))\r\nindexes <- matrix(0,2,length(uniqueYears) - 1)\r\nfor (i in 1:(length(uniqueYears) - 1))\r\n{\r\n  year <- uniqueYears[i]\r\n  nextYear <- uniqueYears[i+1]\r\n  indx <- as.numeric(format(dates, \"%Y\")) == year & as.numeric(format(dates, \"%m\")) >= 8\r\n  indx <- indx | (as.numeric(format(dates, \"%Y\")) == nextYear & as.numeric(format(dates, \"%m\")) <= 6)\r\n  indx <- which(indx == TRUE)\r\n  \r\n  #attention!!the dates in train have to be sorted\r\n  if(length(indx) > 0)\r\n  {\r\n    indexes[1,i] <- min(indx);\r\n    indexes[2,i] <- max(indx);\r\n    stopifnot(length(indx)  == indexes[2,i] - indexes[1,i] + 1)\r\n  }\r\n}\r\nmatches <- matrix(0, length(traincsv$ID), 2);\r\nwinners <- matrix(0, length(traincsv$ID), 1);\r\n\r\nfor (i in 1:length(traincsv$ID))\r\n{\r\n  array <- unlist(train[i,], use.names = FALSE)\r\n  array <- array[!is.na(array)]\r\n  matches[i,] <- array[3:4]\r\n  winners[i] <- array[5]\r\n  if(winners[i] == 3)\r\n    winners[i] <- 1\r\n  else if(winners[i] == 1)\r\n    winners[i] <- 3\r\n}\r\n#data.frame(\"Actual\" = train$HomeTeam, \r\n #          \"PredictedProbability\" = train$AwayTeam)\r\n\r\nLogLossBinary = function(actual, predicted, eps = 1e-15) {  \r\n  predicted = pmin(pmax(predicted, eps), 1-eps)  \r\n  - (sum(actual * log(predicted) + (1 - actual) * log(1 - predicted))) / length(actual)\r\n}\r\n\r\nfor (i in 1:1)#ncol(indexes))\r\n{\r\n  dataSubsetProportion = .2;\r\n  rows = indexes[1,i]:indexes[2,i]\r\n  trainingNonHoldoutSet = traincsv[!(1:nrow(traincsv) %in% rows), 3:4];#to train\r\n  print(nrow(trainingHoldoutSet))\r\n  print(nrow(trainingNonHoldoutSet))\r\n  \r\n    \r\n  gbmWithCrossValidation = gbm(formula = traincsv$FTR[!(1:nrow(traincsv) %in% rows)] ~ .,\r\n                               distribution = \"multinomial\",\r\n                               data = trainingNonHoldoutSet,\r\n                               n.trees = 2000,\r\n                               shrinkage = .1,\r\n                               n.minobsinnode = 200, \r\n                               cv.folds = 5,\r\n                               n.cores = 1)\r\n  bestTreeForPrediction = gbm.perf(gbmWithCrossValidation)\r\n  \r\n  gbmHoldoutPredictions = predict(object = gbmWithCrossValidation,\r\n                                  newdata = trainingHoldoutSet,\r\n                                  n.trees = bestTreeForPrediction,\r\n                                  type = \"response\")\r\n  \r\n  gbmNonHoldoutPredictions = predict(object = gbmWithCrossValidation,\r\n                                     newdata = trainingNonHoldoutSet,\r\n                                     n.trees = bestTreeForPrediction,\r\n                                     type = \"response\")\r\n  print(paste(LogLossBinary(train$Response[randomRows], gbmHoldoutPredictions), \r\n              \"Holdout Log Loss\"))\r\n  print(paste(LogLossBinary(train$Response[!(1:nrow(train) %in% randomRows)], gbmNonHoldoutPredictions), \r\n              \"Non-Holdout Log Loss\"))\r\n}\r\n\r\n\r\n#dataSubsetProportion = .2;\r\n#randomRows = sample(1:nrow(train), floor(nrow(train) * dataSubsetProportion));#\r\n#trainingHoldoutSet = train[randomRows, ];#to test\r\n#trainingNonHoldoutSet = train[!(1:nrow(train) %in% randomRows), ];#to train\r\n\r\n#gbmWithCrossValidation = gbm(formula = Response ~ .,\r\n#                             distribution = \"bernoulli\",\r\n#                             data = trainingNonHoldoutSet,\r\n#                             n.trees = 2000,\r\n#                             shrinkage = .1,\r\n#                             n.minobsinnode = 200, \r\n#                             cv.folds = 5,\r\n#                             n.cores = 1)\r\n\r\n#best  TreeForPrediction = gbm.perf(gbmWithCrossValidation)\r\n#\"%y-%d-%d\"\r\n#for(i in 1:length(train$HomeTeam))\r\n#{\r\n  #array = unlist(train[i,], use.names = FALSE);\r\n  #array = array[!is.na(array)];\r\n  #print(array);\r\n#}"
## [1] "obj <- function(x, g, np){\r\n  mean((tapply(g, x, sum) - sum(g) / np)^2)\r\n}\r\n\r\ngg <- sample(1:30, 2e3, TRUE)\r\nnumPack <- 20\r\n\r\nidx <- matrix(NA, numPack, length(gg) / numPack)\r\nfor (i in 1:ncol(idx)) {\r\n  if (i %% 2 == 0) {\r\n    idx[ , i] <- numPack:1\r\n  } else {\r\n    idx[ , i] <- 1:numPack\r\n  }\r\n}\r\n\r\nobj(as.vector(idx), sort(gg), numPack) # 10432.6\r\n\r\ntapply(sort(gg), as.vector(idx), sum)\r\n#    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20 \r\n# 1532 1532 1533 1533 1532 1535 1536 1533 1533 1534 1536 1535 1535 1532 1532 1532 1532 1531 1531 1531 \r\nsum(gg) / numPack # 1533"
## [1] "obj <- function(x, g, np){\r\n  mean((tapply(g, x, sum) - sum(g) / np)^2)\r\n}\r\n\r\ngg <- sample(1:30, 2e3, TRUE)\r\nnumPack <- 20\r\n\r\nidx <- matrix(NA, numPack, length(gg) / numPack)\r\nfor (i in 1:ncol(idx)) {\r\n  if (i %% 2 == 0) {\r\n    idx[ , i] <- numPack:1\r\n  } else {\r\n    idx[ , i] <- 1:numPack\r\n  }\r\n}\r\n\r\nobj(as.vector(idx), gg, numPack) # 10432.6\r\n\r\ntapply(gg, as.vector(idx), sum)\r\n#    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20 \r\n# 1609 1589 1730 1497 1629 1650 1519 1517 1401 1611 1408 1544 1388 1402 1517 1501 1598 1462 1699 1389 \r\nsum(gg) / numPack # 1533"

Test Results

library(pastebin)
library(testthat)

date()
## [1] "Fri Jul 28 22:02:05 2017"
test_dir("tests/")
## testthat results ========================================================================================================
## OK: 0 SKIPPED: 0 FAILED: 0
## 
## DONE ===================================================================================================================