Uncertainty Estimation in Cancer Survival Prediction

Hrushikesh Loya¹, Pranav Poduval¹, Deepak Anand¹, Neeraj Kumar², Amit Sethi^{1,3}

<u>Survival models</u> predict survival and used in oncology for treatment planning and personalized therapy

Existing models <u>do not capture patient-specific</u> <u>uncertainty</u> in prediction

- They only predict patient-specific survival
- They can estimate only overall model uncertainty
- These are barriers to interpretability and trust
- Model should recognize out-of-distribution samples as highly uncertain predictions

Fig 1: Cancer survival models predict survival probabilities

Fig 2: Survival probability without (L) and with (R) uncertainties

¹ Department of Electrical Engineering, Indian Institute of Technology Bombay ² Department of Biomedical Engineering, Case Western Reserve University ³ Department of Pathology, University of Illinois at Chicago

Background – Setting

Each Patient *i* has:

- Set of covariates x_i (here, expression of PAM50¹ genes and clinical features)
- Time of adverse event since diagnosis (here, death) T_i
- Event indicator E_i (0 means right censoring, i.e. loss to follow-up)

Patient ID	Age	Subtype A	Gene B	T _i (months)	E
A-01	23	1	0	45	1
A-02	52	0	1	23	0
		γ)	()
		Covariates		Time	Event

Table 1: Sample data input to the model

¹Parker, Joel S., et al. "Supervised risk predictor of breast cancer based on intrinsic subtypes." *Journal of clinical oncology* 27.8 (2009): 1160.

Background – Multitask Logistic Regression (MTLR)²

• Divides the time in m+1 bins & fits a logistic regression for survival probability in each bin

 $P_{\theta_i}(T \ge t_i \mid x) = (1 + exp(\vec{\theta_i}.\vec{x} + b_i))^{-1}; 0 \le i \le m$

- The parameters $\vec{\theta_i}$ and b_i depend on the time interval i
- MTLR encoded survival time of patient as binary sequence $y = (y_1, y_2, ..., y_m)$, where y_i is survival status at t_i
- The **joint** likelihood of observing a sequence is then given by:

$$P_{\theta}(Y = (y_1, y_2, y_3 \dots y_m) \mid \vec{x}) = \exp\left[\sum_{k=j}^m y_i(\vec{\theta_i} \cdot \vec{x} + b_i)\right] / \left[\sum_{k=0}^m \exp(f_{\theta}(\vec{x}, k))\right]; \quad f_{\theta}(\vec{x}, k) = \sum_{j=k+1}^m (\vec{\theta_i} \cdot \vec{x} + b_i)$$

²Yu, Chun-Nam, et al. "Learning patient-specific cancer survival distributions as a sequence of dependent regressors." *Advances in Neural Information Processing Systems*. 2011.

Methods – Variational Inference

- Assumes an approximate posterior $q_{\psi}(\theta)$, and fits it to be close to (in KL divergence) the actual posterior p(z|x)
- Equivalent to minimizing the variational free energy^{3,4}, given by:

$$\hat{\mathcal{L}}(\psi) = -\mathbb{E}_{q_{\psi}(\theta)}[\log p(D^{i}|\theta^{i})] + KL(q_{\psi}(\theta)||P(\theta))$$

- $-\mathbb{E}_{q_{\psi}(\theta)}[\log p(D^{i}|\theta^{i})]$ is expectation of negative log-likelihood, which is approximated using unbiased MC samples
- $KL(q_{\psi}(\theta)||P(\theta))$ is the KL divergence between assumed posterior and prior

³Karl Friston, J er emie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny. Variationalfree energy and the laplace approximation.Neuroimage, 34(1):220–234, 2007.

⁴Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty inneural networks.arXiv preprint arXiv:1505.05424, 2015.

4

Methods – Variational Inference

 Data uncertainty: We used standard trick of predicting not only mean but also the variance⁵

 $y_{out} = \hat{y} + \hat{\sigma}.\epsilon; \epsilon \sim N(0, 1)$ where, \hat{y} and $\hat{\sigma}$ are approximated using MC samples

 Model uncertainty: We compute the variance in survival probability curves for multiple forward passes (after sampling from the prior) through the network

Fig 3: "Weight uncertainty in neural networks" Blundell et.al.

⁵Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." *Advances in neural information processing systems*. 2017.

Methods – Spike and slab prior and posterior

- Spike and slab prior
 sparse solutions
- Closed form solutions for ELBO⁶

$$p(\theta) = \prod_{i=1}^{N} (\alpha \mathcal{N}(\theta_i; 0, 1) + (1 - \alpha) \delta(\theta_i))$$
$$q_{\psi}(\theta) = \prod_{i=1}^{N} (\gamma_i \mathcal{N}(\theta_i; \mu_i, \sigma_i^2) + (1 - \gamma_i) \delta(\theta_i))$$

Fig 4: Proposed neural network architecture gives survival probability (solid curve), along with data uncertainty (vertical bars), and model uncertainty (shaded region).

$$\hat{\mathcal{L}}(\psi) = -\log p(D^i|\theta^i) + \frac{1}{M} \sum_{i=1}^N \left(\frac{\gamma_i}{2} (\mu_i^2 + \sigma_i^2 - \log(\sigma_i^2)) + (1 - \gamma_i) \log(\frac{1 - \alpha}{1 - \gamma_i}) + \gamma_i \log(\frac{\alpha}{\gamma_i}) \right)$$

⁶Tonolini, Francesco, Bjorn Sand Jensen, and Roderick Murray-Smith. "Variational Sparse Coding." (2019).

Results – Survival Predictions

• **C-index**: Generalization of the area under the ROC curve (AUC)

C-index =
$$\frac{\sum_{i,j} \mathbbm{1}_{T_j < T_i} \mathbbm{1}_{\eta_j > \eta_i} \delta_j}{\sum_{i,j} \mathbbm{1}_{T_j < T_i} \delta_j} \quad \text{where, } \eta_i \text{ is risk score of patient i}$$

• IBS: Integration of Brier score (weighted MSE) for censored variables defined below

$$BS(t) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{(0 - \hat{S}(t, \vec{x_i}))^2 \mathbb{1}_{T_i \le t, \delta_i = 1}}{\hat{G}(T_i^-)} - \frac{(1 - \hat{S}(t, \vec{x_i}))^2 \mathbb{1}_{T_i > t}}{\hat{G}(t)} \right) \quad \text{(where, } \hat{G}(T) = P(C \ge t) \text{ is prob. of } censoring, calculated using KM curve)}$$

Table 2: Comparison of C-index and IBS across survival models using TCGA-BRCA for training and METABRIC for testing

Method	C-index	IBS
CoxPH ⁷	0.65 ± 0.1	0.2 ± 0.07
MTLR	0.68 ± 0.06	0.21 ± 0.06
Neural MTLR ⁸	0.68 ± 0.02	0.16 ± 0.04
Our method	0.71 ± 0.05	0.12 ± 0.02

⁷D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B(Methodological), 34(2):187–220, 1972. ISSN 00359246. ⁸Stephane Fotso. Deep neural networks for survival analysis based on a multi-task framework, 2018.

Results – Feature Ranking

- Identifying key features from high-dimensional gene expression data
- Most important genetic features:
 - BCL2 Antiapoptotic protein, good prognostic marker for Luminal A breast cancers
 - CDC20 Oncoprotein that promotes the development and progression of breast cancer
 - **RASGRF1** Role in Tumor cell proliferation and and inflammation

Fig2: Importance scores for a truncated list of the features

Results – Out of Distribution Scenario 1 : Age difference

- Trained on older and tested on younger patients
 - Old: Age > 60
 - Young: Age < 60
- Model more uncertain on young patients
 - 110% higher mean uncertainty on young patients (OOD) compared to held-out old patients

Results – Out of Distribution Scenario 2 : Stage difference

- Trained on lower stage and tested on higher stage patients
 - Lower: Stage 1 or 2
 - Higher: Stage 4
- Model more uncertain on higher stage patients
 - 43% higher mean uncertainty on higher stage patients (OOD) compared to held-out lower age patients

