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Fig 2: Survival probability without (L) and with (R) uncertainties
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Background — Setting

Each Patienti has:
« Set of covariates x;(here, expression of PAM50! genes and clinical features)
* Time of adverse event since diagnosis (here, death) T,

* Eventindicator E; (0 means right censoring, i.e. loss to follow-up)

Table 1: Sample data input to the model
batintiD | Age __|subtypeA | GeneB  |Timonths) |
A-01 23 1 0 45 1
A-02 52 0 1 23 0
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parker, Joel S., et al. "Supervised risk predictor of breast cancer based on intrinsic subtypes." Journal of clinical oncology 27.8 (2009): 1160.



Background — Multitask Logistic Regression (MTLR)?

* Divides the time in m+1 bins & fits a logistic regression for survival probability in each bin
Py (T >t; | x) = (1+ exp(fi.Z+b;)) 0 <i<m

 The parameters §; and b; depend on the time interval

 MTLR encoded survival time of patient as binary sequence v = (¥1,92,--.ym), Wwhere Yiis
survival status at ¢;

* The joint likelihood of observing a sequence is then given by:

Py(Y = (y1,Y2,Y3.--Ym) | T) = exp {Zyz (0;.% + ] [ZeXp (fo(Z, k) ] fo(@ k)= (0:.7+b)

2Yu, Chun-Nam, et al. "Learning patient-specific cancer survival distributions as a sequence of dependent regressors." Advances in
Neural Information Processing Systems. 2011.



Methods — Variational Inference

* Assumes an approximate posterior 4¢«(?), and fits it to be close to
(in KL divergence) the actual posterior »(z|z)

* Equivalent to minimizing the variational free energy3#4, given by:

L) = —Eq,0)llogp(D'[6%)] + K L(qu(0)||P(9))

* —E,, o llogp(D'|0")] is expectation of negative log-likelihood, which is approximated
using unbiased MC samples

e KL(qy(0)|P(9)) is the KL divergence between assumed posterior and prior

3Karl Friston, J er emie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny. Variationalfree energy and the laplace
approximation.Neuroimage, 34(1):220-234, 2007.

“Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty inneural networks.arXiv preprintarXiv:1505.05424, 2015. 4



Methods — Variational Inference

* Data uncertainty: We used standard trick of predicting not only
mean but also the variance>

Yout = Y + 0.6, ~ N(0,1) where, Yand 7 are approximated using MC samples

* Model uncertainty: We compute the P
variance in survival probability curves for Y @ OO
multiple forward passes (after sampling NS e
from the prior) through the network \(N)

Fig 3: "Weight uncertaintyin
neural networks" Blundell et.al.

>Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Advances in neural information processing
systems. 2017.



Methods — Spike and slab prior and posterior

e Spike and slab prior = sparse solutions

* Closed form solutions for ELBO®
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Fig 4: Proposed neural network architecture gives survival
probability (solid curve), along with data uncertainty
(vertical bars), and model uncertainty (shaded region).
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®Tonolini, Francesco, Bjorn Sand Jensen, and Roderick Murray-Smith. "Variational Sparse Coding." (2019).



Results — Survival Predictions

e C-index: Generalization of the area under the ROC curve (AUC)

N PO I . : :
C-index — Zz-..r L=timmi=m:73  where, Ti is risk score of patienti
Ei.j ]llf;{l'} 0;

* IBS: Integration of Brier score (weighted MSE) for censored variables defined below

BS(t) — ii (0=S(t,4))*Tr,<es—1  (1=S(t,4))* 1.5 | (where, G(T) = P(C > t) is prob. of
o G(T;) G(t) - -
censoring, calculated using KM curve)

1=1

Table 2: Comparison of C-index and IBS across survival models using TCGA-BRCA for trainingand METABRIC for testing

e ethod T inder 1 ws

CoxPH’ 0.65%0.1 0.2 £0.07
MTLR 0.68 £ 0.06 0.21 £0.06
Neural MTLR® 0.68 £0.02 0.16 £0.04
Our method 0.71 £ 0.05 0.12 + 0.02

’D. R. Cox. Regression models and life-tables.Journal of the Royal Statistical Society. Series B(Methodological), 34(2):187-220, 1972. ISSN 00359246.
8Stephane Fotso. Deep neural networks for survival analysis based on a multi-task framework, 2018.



Results — Feature Ranking

* |dentifying key features from high-dimensional gene expression data

* Most important genetic features:
* BCL2 - Antiapoptotic protein, good prognostic marker for Luminal A breast cancers
* CDC20 - Oncoprotein that promotes the development and progression of breast cancer
* RASGRF1 - Role in Tumor cell proliferation and and inflammation
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Fig2: Importance scores for a truncated list of the features 3



Results — Out of Distribution Scenario 1 : Age difference

* Trained on older and tested on
younger patients
* Old: Age > 60
* Young: Age <60

* Model more uncertain on young
patients

* 110% higher mean uncertainty on
young patients (OOD) compared to
held-out old patients
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Results — Out of Distribution Scenario 2 : Stage difference

* Trained on lower stage and tested on
higher stage patients

* Lower: Stage 1 or 2 Lo

* Higher: Stage 4 = 0.8

'r.; 0.6

* Model more uncertain on higher D—g? 0.4
stage patients 2 0.2
* 43% higher mean uncertaintyon

higher stage patients (OOD)
compared to held-out lower age
patients
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