
Uncertainty Estimation in Cancer Survival Prediction

Survival models predict survival and used in oncology 
for treatment planning and personalized therapy

Existing models do not capture patient-specific 
uncertainty in prediction

• They only predict patient-specific survival

• They can estimate only overall model uncertainty

• These are barriers to interpretability and trust

• Model should recognize out-of-distribution samples as highly 
uncertain predictions

Fig 1: Cancer survival models predict survival probabilities

Fig 2: Survival probability without (L) and with (R) uncertainties
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Background – Setting

Each Patient i has:
• Set of covariates xi (here, expression of PAM501 genes and clinical features)

• Time of adverse event since diagnosis (here, death) Ti

• Event indicator Ei (0 means right censoring, i.e. loss to follow-up)
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Patient ID Age Subtype A Gene B Ti (months) Ei

A-01 23 1 0 45 1

A-02 52 0 1 23 0

Covariates Time Event

Table 1: Sample data input to the model

1Parker, Joel S., et al. "Supervised risk predictor of breast cancer based on intrinsic subtypes." Journal of clinical oncology 27.8 (2009): 1160.



Background – Multitask Logistic Regression (MTLR)2

• Divides the time in m+1 bins & fits a logistic regression for survival probability in each bin

• The parameters and depend on the time interval

• MTLR encoded survival time of patient as binary sequence , where is 
survival status at

• The joint likelihood of observing a sequence is then given by:
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2Yu, Chun-Nam, et al. "Learning patient-specific cancer survival distributions as a sequence of dependent regressors." Advances in 
Neural Information Processing Systems. 2011.



Methods – Variational Inference

• Assumes an approximate posterior , and fits it to be close to 
(in KL divergence) the actual posterior 

• Equivalent to minimizing the variational free energy3,4, given by:

• is expectation of negative log-likelihood, which is approximated 
using unbiased MC samples

• is the KL divergence between assumed posterior and prior

3Karl Friston, J ́er ́emie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny. Variationalfree energy and the laplace 
approximation.Neuroimage, 34(1):220–234, 2007.
4Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty inneural networks.arXiv preprintarXiv:1505.05424, 2015. 4



Methods – Variational Inference

• Data uncertainty: We used standard trick of predicting not only 
mean but also the variance5

5Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Advances in neural information processing 
systems. 2017. 5

where, and are approximated using MC samples

• Model uncertainty: We compute the 
variance in survival probability curves for 
multiple forward passes (after sampling 
from the prior) through the network

Fig 3: "Weight uncertainty in 
neural networks" Blundell et.al.



Methods – Spike and slab prior and posterior

• Spike and slab prior sparse solutions

• Closed form solutions for ELBO6

Fig 4: Proposed neural network architecture gives survival 
probability (solid curve), along with data uncertainty 

(vertical bars), and model uncertainty (shaded region).

6Tonolini, Francesco, Bjorn Sand Jensen, and Roderick Murray-Smith. "Variational Sparse Coding." (2019). 6



Results – Survival Predictions
• C-index: Generalization of the area under the ROC curve (AUC)

• IBS: Integration of Brier score (weighted MSE) for censored variables defined below

Table 2: Comparison of C-index and IBS across survival models using TCGA-BRCA for training and METABRIC for testing
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Method C-index IBS

CoxPH7 0.65 ± 0.1 0.2 ± 0.07

MTLR 0.68 ± 0.06 0.21 ± 0.06

Neural MTLR8 0.68 ± 0.02 0.16 ± 0.04

Our method 0.71 ± 0.05 0.12 ± 0.02

where, is risk score of patient i

(where, is prob. of 
censoring, calculated using KM curve)

7D. R. Cox. Regression models and life-tables.Journal of the Royal Statistical Society. Series B(Methodological), 34(2):187–220, 1972. ISSN 00359246.
8Stephane Fotso. Deep neural networks for survival analysis based on a multi-task framework, 2018.



Results – Feature Ranking

• Identifying key features from high-dimensional gene expression data

• Most important genetic features:
• BCL2 - Antiapoptotic protein, good prognostic marker for Luminal A breast cancers

• CDC20 - Oncoprotein that promotes the development and progression of breast cancer

• RASGRF1 - Role in Tumor cell proliferation and and inflammation

8Fig2: Importance scores for a truncated list of the features



Results – Out of Distribution Scenario 1 : Age difference

• Trained on older and tested on 
younger patients
• Old: Age > 60

• Young: Age < 60

• Model more uncertain on young 
patients
• 110% higher mean uncertainty on 

young patients (OOD) compared to 
held-out old patients
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Results – Out of Distribution Scenario 2 : Stage difference

• Trained on lower stage and tested on 
higher stage patients
• Lower: Stage 1 or 2
• Higher: Stage 4

• Model more uncertain on higher 
stage patients
• 43% higher mean uncertainty on 

higher stage patients (OOD) 
compared to held-out lower age 
patients
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