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NNs in real-life



Problems with Vanilla NNs

• Prone to over-fitting

• Incapable of assessing uncertainty in the data

• A vanilla NN can be easily fooled (AI Safety)

• Relies on big-data heavily



Bayesian Inference

• Input data:
• Output:

• Let's assume a prior on the NN weights:

• And pose this as a posterior estimation problem:



Early Work

• Denker and LeCun, 1991: Propose Laplace method for 
posterior estimation in NNs
• Identify the mode using MLE on NN weights

• Fit a Gaussian to the discovered mode, with the width of the 
Gaussian determined by the Hessian at that mode

• Hinton and Vancamp, 1993: Propose MDL (minimum description 
length) as a regularization for NN weights.
• Analytical loss for 1-hidden layer NN

• Similar loss to the VI objective later



Early Work

• Neal, 1995: Infinite-width NNs
• A single hidden layer NN => stable stochastic processes

• Gaussian Prior => Gaussian Process

• Neal, 1995: Hamiltonian Monte Carlo
• Sampling based approach

• Does not rely on any assumptions about the form of the posterior

• Considered a gold-standard for low-dimension problems



Modern Approximate Inference
• Minimize the KL divergence between approximating posterior and the 

true posterior:

• Hinton and Vancamp, 1993 used a fully-factorized Gaussian posterior 
and prior:

• But, expected log likelihood is intractable for most BNN model structures

• Came up with analytical closed-form solutions for 1 hidden layer BNN



Modern Approximate Inference
• Until 2011, BNNs were:

• Computationally Intensive

• Didn't scale to Big-data

• Only limited to shallow NNs

• Graves, 2011: Used data sub-sampling techniques in a fully factorized
VI objective
• True gradients replaced by noisy estimates from the mini-batch

• Monte-Carlo sampling for approximating expected likelihood

• Adv: Scalable to big-data and any NN structure

• Disadv: Suffers from the high variance of the gradients (not easy to converge)



Weight Uncertainty in NN

• "Backpropagation-compatible algorithm for learning a probability 
distribution on the weights of a neural network"

• Minimizes the variational free energy or maximizes the ELBO:

• ELBO consists of (1) log-likelihood and (2) Regularization term



Unbiased Monte-Carlo gradients:

• Let , where:
• t is a deterministic transform

• is a parameter

• is an easy to sample RV

• Then:

• Applying the above result to approximate ELBO:

For example:

~

Noisy unbiased gradients

Remember 
Robbins-Monro 
conditions for SGD



Algorithm log(1+exp) transform for 
positivity

Derivatives calculated 
through back-prop



Weight Pruning

1. Calculate Signal to Noise for all weights 
(mean/sigma)

2. Remove weights with low SNR (hard 
thresholding)

Regression
1. After training the NN with 1000 inputs in 

[0, 0.5]
2. Perform multiple forward passes to 

assess mean and uncertainty in 
predictions from test set in [-0.2, 1.2]

Fig 1: Model uncertainty increases as data 
is OOD



Problems with BBB

• Mean-field assumption limits the flexibility of approximate posterior

• Requires twice the number of parameters – memory cost

• Uninformative prior don't serve meaningful information to NN training

• Training anamolies: "In-between" Uncertainty (Foong 2019)

• Hyperparameter sensitivity and robust initilization schemes unknown



Going Ahead
• Until recently, mean-field approximation was considered limiting

• Farquhar, 2020 showed deep mean-field NNs can capture all weight 
correlations if more than 2 hidden layers (with RELU/ELU kind of activations)

• Vladimirova, 2019 showed deep mean-field Gaussian NNs produce sub-
Weibull posterior tails – hence promoting sparsity

• Matthews, 2018 shows under Infinte-width mean-field Gaussian BNN 
behave like GPs (NNGP)



Dropout as a Bayesian Approximation

• Gal and Ghahramani, 2015 show training with Bernoulli dropout is 
equivalent to training a deep Gaussian process

• Kingma and Welling, 2015 show Gaussian dropouts imposes a 
Gaussian posterior on model weights.

• Training: Similar to dropout training

• Testing: Perform multiple forward passes with random dropouts



Concrete Dropouts
• The ELBO estimated using MC samples:

• Assuming the approximate posterior factorizes over layers:

• Assuming a tunable-dropout parameter:

• The KL divergence can be calculated in closed form:

• Concrete/Gumbel-Softmax trick: to sample from Bernoulli



Stochastic Gradient Langevin Dynamics (SGLD)

• Welling and Teh, 2011: Show adding the right amount of noise to a 
standard SGD will converge to the true posterior distribution

• Disadvantage: Often leads to mode collapse, and only explores one-mode

• Recent advances try to reduce variance of the gradient estimator, and tries 
to make SGD capture multi-modality.



Many more interesting approaches..
• SWAG: Maddox, 2019 builds on stochastic weight averaging by fitting a 

low-rank + diagonal to the posterior covariance

• Deep Kernel Learning: Wilson, 2016 provide a scalable way to learn deep 
representations of spectral mixture kernels

• Functional Space VI: Sun, 2019 perform VI on the outputs of the NN (rather 
than weights)

• Bayesian/non-Bayesian Ensembling: Lakshminarayan, 2017 propose deep 
ensemble

• Many more: Bayesian Boosting, Neural-net GPs, NF, etc.



Thank You!!


