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NNs in real-life

Automatically find names

of people, places, products,
and organizations in text

across many languages.
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Problems with Vanilla NNs

* Prone to over-fitting

* Incapable of assessing uncertainty in the data “pig” , “airliner”
p. g . y v 3

* A vanilla NN can be easily fooled (Al Safety)
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* Relies on big-data heavily
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Neural Network model definition



Bayesian Inference

Input data: X = {xy,...,xn}
Output: 'Y ={y1,...,yn}

Let's assume a prior on the NN weights: p(w)

And pose this as a posterior estimation problem:

plylx,w) m— p(wX,Y) =

p(Y|X, w)p(w)
p(Y|X)




Early Work

* Denker and LeCun, 1991: Propose Laplace method for
posterior estimation in NNs
* |dentify the mode using MLE on NN weights

* Fit a Gaussian to the discovered mode, with the width of the
Gaussian determined by the Hessian at that mode

* Hinton and Vancamp, 1993: Propose MDL (minimum descrlptlon
length) as a regularization for NN weights. e
* Analytical loss for 1-hidden layer NN
* Similar loss to the VI objective later




Early Work

* Neal, 1995: Infinite-width NNs

* A single hidden layer NN => stable stochastic processes
* Gaussian Prior => Gaussian Process

* Neal, 1995: Hamiltonian Monte Carlo
* Sampling based approach
* Does not rely on any assumptions about the form of the posterior
* Considered a gold-standard for low-dimension problems



Modern Approximate Inference

* Minimize the KL divergence between approximating posterior and the
true posterior:
KL (qg( ) p(w]|X, Y)) /q.g( )log p(Y|X, w)dw + KL(gs(w)||p(w))

= — Z/qg w) log p(y;|f¥(x;))dw + KL(gg(w)||p(w))

* Hinton and Vancamp, 1993 used a fully-factorized Gaussian posterior
and prior:
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* But, expected log likelihood is intractable for most BNN model structures
 Came up with analytical closed-form solutions for 1 hidden layer BNN



Modern Approximate Inference
e Until 2011, BNNs were:

* Computationally Intensive
* Didn't scale to Big-data
* Only limited to shallow NNs

* Graves, 2011: Used data sub-sampling techniques in a fully factorized
VI objective
* True gradients replaced by noisy estimates from the mini-batch
* Monte-Carlo sampling for approximating expected likelihood
e Adv: Scalable to big-data and any NN structure
e Disadv: Suffers from the high variance of the gradients (not easy to converge)



Weight Uncertainty in NN

» "Backpropagation-compatible algorithm for learning a probability
distribution on the weights of a neural network"

* Minimizes the variational free energy or maximizes the ELBO:

0* = arg min KL[q(w|0)|| P(w|D)]
)

= argngn/q(wwnog P(wzgzlg|w)
= arg IIEH KL [g(w|0) || P(W)] — Eq(w|o) [log P(D|w)] .

dw

e ELBO consists of (1) log-likelihood and (2) Regularization term

F(D.,0) =KL [g(w|0) || P(W)] — Eg(we) [log P(D|w)].



Remember
Robbins-Monro
conditions for SGD

Unbiased Monte-Carlo gradients:

* Llet w = t(f,¢), where: For example:
* tis a deterministic transform t(n,0€) =p+oQ@e
0 is a parameter e ~ N(0,1)
* € is an easy to sample RV Noisy unbiased gradients

 Then:
9,
o0

df (w,0) Ow
ow 06

N df(w,0)]

]Eq(w|9) [f(wu 9)] — ]Eq[e) o0

* Applying the above result to approximate ELBO:

F(D,0) ~ Y loggq(w®|9) —log P(w(?)) — log P(D|w) w(@) o q(w®)0)
1=1



Algorithm

M NS

Sample € ~ N (0, I). /

Letw = p + log(1 + exp(p)) o e.

Let 0 = (u, p).

Let f(w,0) =logq(wl|f) — log P(w)P(D|w).
Calculate the gradient with respect to the mean

_Of(w.0) | Of(w.0)

B = ow o )

log(1+exp) transform for
positivity

Calculate the gradient with respect to the standard de-
viation parameter p

Derivativescalculated
through back-prop

_ Of(w.0) ’ L Of(w.)

A . @

g ow 1+ exp(—p) dp )
Update the variational parameters:

[4— o — A, (5)

P p—al,. (6)



Weight Pruning

Table 2. Classification Errors after Weight pruning

Proportion removed | # Weights | Test Error

, , _ 0% 2.4m 1.24%

1. Calculate Signal to Noise for all weights 50% 1 2m 1.94%

(mean/sigma) 75% 600k 1.24%

. . 95% 120k 1.29%

2. Remove weights with low SNR (hard 93% ARk 1.39%

thresholding)

Regression
1. After training the NN with 1000 inputs in - 0'8'
[O’ 0.5] 0.4- 0.4-
2. Perform multiple forward passes to W o

assess mean and uncertainty in

predictions from testsetin [-0.2, 1.2] 00 04 08 12 00 04 o8 12
Fig 1: Model uncertainty increases as data

isOOD



Problems with BBB

* Mean-field assumption limits the flexibility of approximate posterior

* Requires twice the number of parameters — memory cost

* Uninformative prior don't serve meaningful information to NN training
* Training anamolies: "In-between" Uncertainty (Foong 2019)

* Hyperparameter sensitivity and robust initilization schemes unknown

Exact Posterior MFVI

Mean-field Approximation




Going Ahead

* Until recently, mean-field approximation was considered limiting

e Farqguhar, 2020 showed deep mean-field NNs can capture all weight
correlations if more than 2 hidden layers (with RELU/ELU kind of activations)

* Vladimirova, 2019 showed deep mean-field Gaussian NNs produce sub-
Weibull posterior tails — hence promoting sparsity

 Matthews, 2018 shows under Infinte-width mean-field Gaussian BNN

behave like GPs (NNGP) e s
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Dropout as a Bayesian Approximation

* Gal and Ghahramani, 2015 show training with Bernoulli dropout is
equivalent to training a deep Gaussian process

* Kingma and Welling, 2015 show Gaussian dropouts imposes a
Gaussian posterior on model weights.

B=(A®E)W, with &ni ~ p(€) Emi ~ N (L,a= £)

{“Ji_'}' — 93363’] = HU(]' | \/EFU) ~ N(u"ij IQU, (_};912-})
E'ij ~ N(U, 1)

* Training: Similar to dropout training
* Testing: Perform multiple forward passes with random dropouts



Concrete Dropouts

* The ELBO estimated using MC samples:  Zuc(®) = —- 3" logp(yilf(x) + 1-KL(go(w)][p(w))

€S

* Assuming the approximate posterior factorizes over layers: go(w) =[], am, (W)
 Assuming a tunable-dropout parameter: om,(Wi) = M, -diag[Bernoulli(1—p;)™]

* The KL divergence can be calculated in closed form:

L

KL (go(w)l|p(w)) = Z KL(gm, (W1)|[p(W7))
=1

I*(1—p)
2

KL(gm(W)[|[p(W)) [M[* — EH(p)

* Concrete/Gumbel-Softmax trick: to sample from Bernoulli

: (1
7= 31gm01d(— - (logp —log(1 — p) +logu — log(1 — u)))
t (a) Relation between z ~ Concrete(p) and
u ~ Uniform|[0, 1], given by a sigmoid func-
tion.



Stochastic Gradient Langevin Dynamics (SGLD)

* Welling and Teh, 2011: Show adding the right amount of noise to a
standard SGD will converge to the true posterior distribution

6 N ; j
Ay = ;(Vlogp(t?t) +— ;Vlogp(mlf?t)> + 1t AN : \

ne ~ N(On Et)

7

Figure 1. True and estimated posterior distribution.

e Disadvantage: Often leads to mode collapse, and only explores one-mode

e Recent advances try to reduce variance of the gradient estimator, and tries
to make SGD capture multi-modality.



Many more interesting approaches..

 SWAG: Maddox, 2019 builds on stochastic weight averaging by fitting a
low-rank + diagonal to the posterior covariance

* Deep Kernel Learning: Wilson, 2016 provide a scalable way to learn deep
representations of spectral mixture kernels

* Functional Space VI: Sun, 2019 perform VI on the outputs of the NN (rather
than weights)

* Bayesian/non-Bayesian Ensembling: Lakshminarayan, 2017 propose deep
ensemble

 Many more: Bayesian Boosting, Neural-net GPs, NF, etc.
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(a) Confident Prediction (b) High data uncertainty  (c¢) Out-of-distribution

Figure 2: Desired behaviors of a distribution over distributions



Thank You!!



