Query analysis pipeline framework
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
analysis
combinator
eval
learning
output
pipeline
preprocess
query
stats
.gitignore
LICENSE
README.md
doc.go
gopher.png
pipeline.go
pipeline_test.go

README.md

gopher

groove

GoDoc Go Report Card gocover

Query analysis pipeline framework

groove is a library for pipeline construction for query analysis. The groove pipeline comprises a query source (the format of the queries), a statistic source (a source for computing information retrieval statistics), preprocessing steps, any measurements to make, and any output formats.

The groove library is primarily used in boogie which is a front-end DSL for groove. If using groove as a Go library, refer to the simple example below which loads Medline queries and analyses them using Elasticsearch and finally outputs the result into a JSON file.

API Usage

In the below example, we would like to use Elasticsearch to measure some query performance predictors on some Medline queries. For the experiment, we would like to pre-process the queries by making each one only contain alpha-numeric characters, and in lowercase. Finally, we would like to output the results of the measures into a JSON file.

// Construct the pipeline.
pipelineChannel := make(chan groove.Result)
p := pipeline.NewGroovePipeline(
	query.NewTransmuteQuerySource(query.MedlineTransmutePipeline),
	stats.NewElasticsearchStatisticsSource(stats.ElasticsearchHosts("http://localhost:9200"),
		stats.ElasticsearchIndex("medline"),
		stats.ElasticsearchField("abstract"),
		stats.ElasticsearchScroll(true),
		stats.ElasticsearchSearchOptions(stats.SearchOptions{
			Size:    10000,
			RunName: "qpp",
		})),
	pipeline.Measurement(preqpp.AvgICTF, preqpp.SumIDF, preqpp.AvgIDF, preqpp.MaxIDF, preqpp.StdDevIDF, postqpp.ClarityScore),
	pipeline.Evaluation(eval.PrecisionEvaluator, eval.RecallEvaluator),
	pipeline.MeasurementOutput(output.JsonMeasurementFormatter),
	pipeline.EvaluationOutput("medline.qrels", output.JsonEvaluationFormatter),
	pipeline.TrecOutput("medline_qpp.results"))

// Execute it on a directory of queries. A pipeline executes queries in parallel.
go p.Execute("./medline", pipelineChannel)

for {
	// Continue until completed.
	result := <-pipelineChannel
	if result.Type == groove.Done {
		break
	}
	switch result.Type {
	case groove.Measurement:
		// Process the measurement outputs.
		err := ioutil.WriteFile("medline_qpp.json", bytes.NewBufferString(result.Measurements[0]).Bytes(), 0644)
		if err != nil {
			log.Fatal(err)
		}
	case groove.Evaluation:
		// Process the evaluation outputs.
		err := ioutil.WriteFile("medline_qpp_eval.json", bytes.NewBufferString(result.Evaluations[0]).Bytes(), 0644)
		if err != nil {
			log.Fatal(err)
		}
	}
}

Citing

If you use this work for scientific publication, please reference

@inproceedings{scells2018framework,
 author = {Scells, Harrisen and Locke, Daniel and Zuccon, Guido},
 title = {An Information Retrieval Experiment Framework for Domain Specific Applications},
 booktitle = {The 41st International ACM SIGIR Conference on Research \&\#38; Development in Information Retrieval},
 series = {SIGIR '18},
 year = {2018},
} 

Logo

The Go gopher was created by Renee French, licensed under Creative Commons 3.0 Attributions license.