Microeconomics I National Taiwan University Fall 2020 Instructor: Prof. Tsung-Sheng Tsai Hsien-Chen Chu

> Midterm Cheat Sheet Last Edited: [2020.11.09]

Hsien-Chen Chu (T09303304)

1 Preference

- **a** Check [SM] is satisfied: $\forall x_1, x_2 > 0$, $MU_1 > 0$, $MU_2 > 0$. Check [SC] is satisfied: $\frac{\partial |MRS|}{\partial x_1} < 0$ (diminishing in x_1) or $\frac{\partial |MRS|}{\partial x_2} > 0$ (increasing in x_2).
- **b** After checking [SM]&[SC], while both holding, we can link these features to our optimal choice problem.

2 Choices: Find x_1^m, x_2^m

- **a** The maximization problem is: $\max_{x_1, x_2} u(x_1, x_2)$, s.t. $p_1 x_1 + p_2 x_2 = I$. Suppose the utility function $u(x_1, x_2)$ holds [SM]&[SC]: The Lagrange is: $\max_{x_1, x_2} \mathcal{L} = u(x_1, x_2) + \lambda(I - p_1 x_1 - p_2 x_2)$. By F.O.C, we obtain $\frac{\partial \mathcal{L}/\partial x_1}{\partial \mathcal{L}/\partial x_2} = |MRS| = \frac{p_1}{p_2}$. And then plug this relation back in given Budget Constraint: $x_1^* = x_1(p_1, p_2, I) = x_1^m; x_2^* = x_2(p_1, p_2, I) = x_2^m$.
- **b** Whether satisfies "Law of Demand": check $\varepsilon_1 < 0 \Leftrightarrow \frac{\partial x_1}{\partial p_1} < 0$.

3 Elasticity

- **a** $\varepsilon_1 = \frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1}$, if $\varepsilon_1 < 0$: Ordinary good \Leftrightarrow satisfies L.O.D. Otherwise, Giffen good.
- **b** $\varepsilon_{ij} = \frac{\partial x_i}{\partial p_j} \frac{p_j}{x_i}$. Suppose x_i, x_j are ordinary goods: If $\varepsilon_{ij} > 0 \Leftrightarrow$ Substitutes. Otherwise, Complements.
- **c** $\varepsilon_{iI} = \frac{\partial x_i}{\partial I} \frac{I}{x_i}$, if $\varepsilon_{iI} > 0 \Leftrightarrow$ Normal good. Otherwise, Inferior good.

4 Derive SE & IE: Find x_1^h, x_2^h

- **a** Original Choice: $e^* = (x_1^*, x_2^*) \rightarrow p_i$ changes: New Choice: $e' = (x_1', x_2')$ Derivation (Slutsky equation by Hicksian's Methods): $e'' = (x_1'', x_2') = (x_1^h, x_2^h)$
- **b** The minimization problem is: $\min_{x_1,x_2} p_1 x_1 + p_2 x_2$, s.t. $\bar{u}(x_1^*, x_2^*)$. Obtain: $x_1'' = x_1(x_1, x_2, \bar{u}) = x_1^h$

$$\begin{aligned} x_1' &= x_1(p_1, p_2, u) = x_1'' \\ x_2'' &= x_2(p_1, p_2, \bar{u}) = x_2^h \end{aligned}$$

c Substitution Effect(SE): $x_1'' - x_1^* = x_1^h - x_1^*$ Income Effect(IE): $x_1' - x_1'' = x_1' - x_1^h$ Total Effect = SE + IE

5 Intertemporal Consumption

- **a** The maximization problem is: $\max_{c_1, c_2} u(c_1, c_2), s.t. c_1 + \frac{c_2}{1+r} = I_1 + \frac{I_2}{1+r}.$
- $\begin{array}{ll} \mathbf{b} & \mbox{Directly use Lagrange: obtain } (c_1^*,c_2^*) \\ & \mbox{Check: $\#$saver: $c_1^* < I_1$ or $\#$borrower: $c_1^* > I_1$ \\ & \mbox{Basic Assumption: Both c_1,c_2 are normal goods.} \\ & \mbox{Discussion: SE \& IE in terms of c_1 } \end{array}$

c Comparative Static Analysis: r changes

Suppose a borrower in Period 1

 $r \uparrow_{small}$ (remain a borrower): SE < 0 (Oppor.Cost of c_1 increases \Rightarrow less c_1). IE < 0 (for a borrower: r \uparrow means real I \downarrow) **Results:** [1] $(c_1 \downarrow, c_2$?), [2]remain a borrower, [3]utility \downarrow

 $r \uparrow_{large}$ (become a saver): <u>STRONG</u> SE < 0 (Oppor.Cost of c_1 increases \Rightarrow less c_1). IE > 0 (already become a saver: $r \uparrow$ means real $I \uparrow$) **Results:** $[1](c_1 \downarrow, c_2 \uparrow)$, [2] become a saver, [3] utility \uparrow

Suppose a saver in Period 1

 $r \uparrow$: SE < 0 (Oppor.Cost of c_1 increases \Rightarrow less c_1) IE > 0 (for a saver: $r \uparrow$ means real I \uparrow) **Results:** [1] $(c_1?, but < I_1, c_2 \uparrow)$, [2]remain a saver, [3]utility \uparrow

d Comparative Static Analysis: I changes

Suppose a saver in Period 1

 $I_1 \uparrow : IE > 0$ (both normal goods). Results: $[1](c_1 \uparrow, c_2 \uparrow), [2]$ remain a saver, [3] utility \uparrow

 $I_2 \uparrow : IE > 0$ (both normal goods). Results: $[1](c_1 \uparrow, c_2 \uparrow)$, [2]remain a saver or become a borrower, [3]utility \uparrow

6 Affect

a Check "variable α 's influence" on the target function $v(x_1, x_2)$

b Method: take partial $\frac{\partial v(x_1, x_2)}{\partial \alpha}$ and verify their relationship.