Zhiyu Hu, Dongbo Zhang, Shuai Li, Hong Qin
Our method is tested in Python 2.7 and TensorFlow 1.4.0 on a workstation with an Intel Core i7-4790 CPU (3.60GHz, 16GB memory) and a GeForce GTX 1070 GPU (8GB memory, CUDA 8.0).
- Download S3DIS Dataset. Version 1.2 (v1.2_Aligned_Version) of the dataset is used in this work.
python collect_indoor3d_data.py
python gen_h5.py
cd data && python generate_input_list.py
cd ..
- Create Conda Environment
conda create -n ARCM python=2.7
source activate ARCM
- Clone the Repository
git clone https://github.com/hu-zhiyu/ARCM && cd ARCM
- Install Required Dependencies
pip install -r requirements.txt
- Compile TF Operators
cd tf_ops
sh tf_compile_all.sh
Make sure no errors generated at this step and refer to PointNet++ when encountering any problems.
- Test with Pre-trained Model
cd models/
python test.py --gpu 0 --log_dir log5_test --model_path log5/epoch_99.ckpt --input_list meta/area5_data_label.txt --verbose
python eval_iou_accuracy.py
OA | mAcc | mIoU | ceiling | floor | wall | beam | column | window | door | table | chair | sofa | bookcase | board | clutter |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
88.50 | 66.09 | 59.66 | 93.38 | 98.45 | 81.50 | 0.00 | 7.00 | 55.14 | 48.61 | 77.16 | 87.81 | 50.68 | 65.54 | 57.76 | 52.57 |
This code largely benefits from following repositories: