
Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Option 1: empirical network analysis – Analysing Software Quality

with a Graph
Task: find data, analyze data (and visualize it), then interpret.

Author: Peter Huber,

Coursera-Profile https://www.coursera.org/user/i/bcbe876fe37a9cd5e3df7b10d971364b

Linkedin: http://de.linkedin.com/in/huberpeter/

DON’T PANIC – This file is only this big because I have included my lengthy input file in the Appendix!

Abstract: One importand measure for Softwarequality is often found in the area of Coupling of the

different Building-Blocks of the Software, such Building Blocks are in Java so called Packages which

contain Classes. So Java software is actually a network of so called Classes from different packages

working together in some way. So you can say some Java classes that use different other Java classes

depend on these Classes. Such usage/dependence relations can span multiple Java Packages.

If I refer to Classes or Packages in the following text this actually means the Java constructs.

If you look on such networks then you can find certain defects, one kind of defect is Dependency

Cycles, that is when the Dependency Graph goes like: Class A uses B uses … finally come back to Class

A and the Cycle spans multiple packages.

Figure 1: Trivial Cycle of 3 Packages

Why is this bad?

1.) It’s a rather tight coupling of all the packages on the cycle, which is an indicator for bad

software architecture – because SW-Engineers actually use packages to group Classes of a

certain abstraction level. The “uses” / “depends” relation is most often also a dependency of

“higher level of abstraction uses lower level of abstraction”. In a cycle you must come to the

point where this is turned upside down.

Package A Package B

Package C

https://www.coursera.org/user/i/bcbe876fe37a9cd5e3df7b10d971364b
http://de.linkedin.com/in/huberpeter/

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

2.) If you start to refactor (i.e. change) Class A it might lead to a change in Class C which might

lead to a change in B […] and finally it may require a 2nd change in Class A which leads to

another change in class C…I guess you got it. BTW - The change-cycle is reverse order,

because if you look at Figure 1: Trivial Cycle of 3 Packages then C depends on A)

3.) Cycles often hide: In medium size to large software projects you may end up with a multitude

of cycles which are not easily found because they are more complex in structure than the

one found depicted in Figure 1: Trivial Cycle of 3 Packages

And though there are a lot of software tools that are actually able to find such cycles and visualize

them, it’s mostly not done with capable “network” tools like gephi is, such that you can try to find

more network properties like Clustering, Betweenness, etc.

And so this is my Project: Visualize and investigate the Dependency Cycles in the popular open source

software “JUnit”

Obtaining data
1. Get the Code: I obtained the data, which is actually the source code of JUnit from

https://github.com/junit-team/junit

Figure 2 Junit Source Code opened in eclipse IDE

2. Then I used a rather old, but nevertheless very good Open source Tool to find the cycles in

the Source Code with the name JDepend -

http://www.clarkware.com/software/JDepend.html

With this tool I performed a static source code analysis on the JUnit Source Code and ended

up with a XML file that contains information about all java packages, inter package

dependencies and cycles.

https://github.com/junit-team/junit
http://www.clarkware.com/software/JDepend.html

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 3 JDepend Analysis result: No Visualization

3. Then I run a Python script in Gephi (s. “Python-File for Gephi Python Scripting”) to build

nodes and edges. I have included a copy of the script in Chapter “Python-File for Gephi

Python Scripting”: What the Script does:

a. For each Java Package found in the JDepend XML it creates a node. Nodes are sized

by their degree.

b. For each DependsUpon definition in JDepend XML it creates a directed edge from

the current Package to the Package it uses.

c. For each Cycle

i. Mark Nodes within a cycle with a Cycle-Tag – find it in Gephis Data

laboratory and Attribute “javaCycles”. Each Package-Cycle is represented by

its number as ordered in the JDepend XML-File and a Cycle Tag looks like

“<1>” for the 1st cycle. If you locate node “org.junit” you find it having this

value in javaCycles. “<1><3><5><7><9>[…]<107>”.

Also Attribute javaCyclesNumber is used to record the number of Cycles and

for easy access. Also edge weight is adjusted: For each cycle an edge

participates in the edge weight is increased by 0.1.

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 4 Data laboratory with resulting Nodes

So the process summarized as Process-Workflow with Inputs and Outputs

Junit

Java Source Code

JDepend

JDepend

XML

Python Script

Gephi Nodes &

Edges

Gephi Tools

Fancy

Visualisations

Input/Output of

Process-Step

Process Step

Legend

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Data analysis
After the Preprocessing step the Graph looks like this – not to satisfying, but already we can see

bigger nodes which hints on their “importance” (remember size was set due to indegree)

My goal was now to find important nodes or sort of not to obvious structures.

Modularity

Question: Is it possible to find a Graph-based modularity which in some sense reflects the modularity

of the Software?

I computed edge weight with a +0.1 for each cycle an edge participates

1.) I went to compute Modularity with the following settings – Remember I set edge weights

according to the number of cycles they participate in

2.) Also applying Force-Atlas 2 layout and…

3.) Partitioned the graph by “Modularity Class” which results in

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 5 Partitions by Modularity Class

You can see there are 4 Modularity Classes – and mostly you have one big package representing this

Module. Only exception is the “red” Module which has two almost same size “biggest” nodes.

Let’s look what the big nodes are. I show labels and highlight the big node with its dependencies

Figure 6 Partitions by Modularity Class – Highlight “org.junit”

It’s not surprising that the main Package “org.junit” is the biggest node as it is actually the central

package of JUnit. And you can see that all other “Modules” and even the big nodes of the modules

are connected

Let’s compare this to a highlight view of “org.junit.runner”

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 7 Partitions by Modularity Class – Highlight “org.junit.runner”

It’s almost the same number of nodes and almost the same nodes either. Also not to surprising,

because the JUnit is a Test-Framework where org.Junit let’s say is responsible for “test definition”

and “org.juinit.runner” is responsible for running those tests.

The red and cyan big-nodes have far fewer connections

Cyan “org.hamcrest”

Figure 8 Partition by Modularity Class – Highlight “org.hamcrest”

Red “org.junit.runner”

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 9 Partition by Modularity Class – Highlight “org.junit.runners”

Findings:

1.) A bit striking is that “org.junit.runner” (purple) and “org.junit.runners” (red) form different

Graph-Modules. One might expect that those Java-packages stick close together because

they seem to share similar purpose, i.e. running JUnit-tests.

2.) Overall the structure is awesome complicated and it seems that almost every package is

somehow connected to each other package.

Modularity with different edge weights

I computed edge weight with a +0.25 for each cycle an edge participates

Interesting to see that we now have 5 Modularity Classes

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 10 Partitions by Modularity Class with MORE Weights

We see that “org.junit” with only some satellites forms now a Modularity Class of its own.

The big “red” triangles come from the high edge weights, pointing us to those packages which

actually participate in a lot of package cycles.

Looking at betweenness

1.) Next I computed Betweeness (Run “Network Diameter” in Gephi).

2.) Afterwards I’ve applied ranking based on “Betweenness Centrality”

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 11 Betweenness Ranking

Finding:

1.) Though one might have expected that the highest betweenenss should be found in the

central JUnit Package “org.junit” it is actually found in the package “org.junit.runner”

2.) I as a software architect would say this is sort of a problem that needs a closer look.

3.) You can also see that “betweenness” value somehow corresponds to the package cycles

which are shown in red/bigger edges. Nodes with are special in their betweenness are

connected to the biggest red edges which shows that they participate in many package cycles

(see thick edge going in and coming out from “junit.org.runner”, the black node)

Connected Components

Next was to find out whether there are strongly connected components

Finding: No, there was just one! From what I have seen before this is again not surprising, as there

are many package cycles and a big number of package dependencies overall. This means that actually

all of joint is what software architects may call a “big ball of mud”.

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Figure 12 strongly connected Components

How close is the JUnit Graph to a random graph?

This chapter compares the graph metric values as computed by gephi .

Random Graph has the following Values

Figure 13 Metric Values of random graph

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Now let’s compare to the values of JUnit Package-Graph

Figure 14 Metric Values of JUnit-Graph

Finding: We see slightly differing values. But if you say “Software architecture is a controlled process

to plan, execute and enforce a sound software structure” I would have expected the values to be

more different – for instance I would have expected a higher modularity (random = 0,195, joint =

0,233).

Interpretation
Most of the Interpretations you can find in the “Findings” sections of chapter “Data analysis”.

These interpretations are only based on looking at just the Open source Project “JUnit”. To be able to

truly assess software by this graph metrics based approach, it would be necessary to build a data

base of different software projects and have them assessed this way. Then you might

a.) Really find relevant metrics

b.) Be able to fine tune the parameters, like for instance my +0.1 for edged weight for each cycle

it participates. This was selected purely by random ;-)

c.) Be able to find ranges for relevant metrics to classify software as bad, average or good in

terms of architectural structure.

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

Appendix

Python-File for Gephi Python Scripting

This file turns a JDepend-File into Gephi Nodes and Edges.

For each Packages/Package-Element A in the JDepend-File it creates a Gephi Node.

For each DependsUpon-Element in the JDepend-File B it creates a directed Edge, which represents

“The Java Package under inspection A depends upon the package B”

Here’s a short excerpt of the JDepend-File

<?xml version="1.0"?>
<JDepend>
 <Packages>

 <Package name="junit.extensions">

 <DependsUpon>
 <Package>junit.framework</Package>
 </DependsUpon>

This example will result in a new node created “junit.extensions” and an edge from it to the other

node which represents Java-package “junit.framework”. These “junit.”-Names are names of the Java-

Packages used in JUnit.

Python file to be used in gephi. It reads in JDepend XML Files and creates Nodes and Edges from it
(c) 2013 - Peter Huber, MUC

You can use this script as is or modify it and redistribute. Redistributing original or
changed version is only allowed with giveing reference to the original author

START WITH: execfile("[yourpath]/jdepend-xml-to-nodes_and_edges.py")

Read about Python, german only: http://openbook.galileocomputing.de/python/python_kapitel_08_003.htm#mjfb4d02fccab9edcdc5ad084f35eaeaa6

import xml.dom.minidom as dom

 #
 # PASS 4: Handle Cycles
 # let's see how we can get the cycles information into it
 #
def checkOrAddCycle(gephiNode, cycleNumber):
 packageTag = ("<%d>" % (cycleNumber))
 currentCycles = gephiNode.javaCylces
 if currentCycles.find(packageTag) == -1:
 gephiNode.javaCylces=currentCycles+packageTag
 gephiNode.javaCyclesNumber = gephiNode.javaCyclesNumber+1
 print gephiNode.javaCylces

def fctPass4HandleCycles(cyclesXMLElem, gephiNodesByPackageLabel):
#first prepare all "cycles"
 for node in gephiNodesByPackageLabel.values():
 node.javaCylces = ""
 node.javaCyclesNumber = 0

 i = 0;
 for xmlElem in cyclesXMLElem.childNodes:
 if xmlElem.nodeType==dom.Node.ELEMENT_NODE and xmlElem.nodeName=="Package":
 currentGephiNodeName = xmlElem.getAttribute("Name")
 currentPackageGephiNode = gephiNodesByPackageLabel[currentGephiNodeName]
 checkOrAddCycle(currentPackageGephiNode,i)
 cycleMembersXMLElems = xmlElem.getElementsByTagName("Package")
 if(len(cycleMembersXMLElems) != 0):
 for memberXMLElem in cycleMembersXMLElems:
 memberPackageName = memberXMLElem.childNodes.item(0).data
 memberPackageGephiNode = gephiNodesByPackageLabel[memberPackageName]
 print "Cycle %d, member: %s" % (i, memberPackageName)
 checkOrAddCycle(memberPackageGephiNode,i)
 #now treat the corresponding edge
 edges = currentPackageGephiNode -> memberPackageGephiNode
 #be aware that the special "->" edge selector returns a set!
 #in our case with just one member
 edge = edges.pop()

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

 edge.color=red
 edge.weight = edge.weight+0.05
 #don't forget we are in a lop here, the next edge starts
 #from out current end
 currentPackageGephiNode = memberPackageGephiNode
 i = i+1
 #
 # PASS 3: Go over all Package-Gephi-Nodes and resizes them according to their
 # indegree
 #
def fctPass3ResizeNodesByIndegree(gephiNodesByPackageLabel):
 for node in gephiNodesByPackageLabel.values():
 node.size = 5.0 + (node.indegree / 4)

 #
 # PASS 2: Go over all Package-Elements and read their "DependsUpon"
 # We need this for later wiring dependencies thru edges
 #
def fctPass2ReadDependsOnCreateEdges(packagesXMLElem, gephiNodesByPackageLabel):
 for xmlElem in packagesXMLElem.childNodes:
 if xmlElem.nodeType==dom.Node.ELEMENT_NODE and xmlElem.nodeName=="Package":
 thisGephiNodeName = xmlElem.getAttribute("name")
 thisPackageGephiNode = gephiNodesByPackageLabel[thisGephiNodeName]
 ###getElementsByTagName works here because there's ONLY one single DependsUpon
 ###per Package elem, whereas there are Package Elems wrapped in Packaeg Elems...;-(
 theSingleDependsUponXMLElem = xmlElem.getElementsByTagName("DependsUpon")
 #could be that packagees don't have DependsUpon-Section
 if(len(theSingleDependsUponXMLElem) != 0):
 theDepPackages= theSingleDependsUponXMLElem.item(0).getElementsByTagName("Package")
 for depPackageXMLElem in theDepPackages:
 #oh, wow, this DOM-API is really some kind of dep nested ;-)
 otherGephiNodeName = depPackageXMLElem.childNodes.item(0).data
 otherPackageGephiNode = gephiNodesByPackageLabel[otherGephiNodeName]
 print "Edge: %s -> %s" % (thisPackageGephiNode, otherPackageGephiNode)
 nuEdge = g.addDirectedEdge(thisPackageGephiNode, otherPackageGephiNode)
 nuEdge.label="Source-DependsUpon-Target"

 #
 # PASS 1: Go over all Package-Elements and create a gephi Node for them
 # We need this for later wiring dependencies thru edges
 #
def fctPass1ReadPackageCreateNodes(packagesXMLElem):
 gephiNodesByLabel = {}
 ##print packagesElem
 ##print packagesElem.childNodes
 for xmlElem in packagesXMLElem.childNodes:
 if xmlElem.nodeType==dom.Node.ELEMENT_NODE and xmlElem.nodeName=="Package":
 gephiNodeName = xmlElem.getAttribute("name")
 print "%d, %s = %s" % (xmlElem.nodeType, xmlElem.nodeName, gephiNodeName)
 nuGephiNode = g.addNode(label=gephiNodeName,color=blue, size=5.0)
 gephiNodesByLabel[gephiNodeName] = nuGephiNode
 return gephiNodesByLabel

def main():

 #now parse the xml
 jdependDOM = dom.parse("[yourpath]/jdepend-on-gephi-visualization_plugin.xml")

 # NODES AND EDGES
 #
 #Create Nodes which represent a Java-Package each
 #get access to the package element in the xml
 packageElement = jdependDOM.childNodes.item(0).childNodes.item(1)
 gephiNodesByPackageLabel = fctPass1ReadPackageCreateNodes(packageElement)

 #now wire the packages, i.e. we have to go over the xml again :-(
 fctPass2ReadDependsOnCreateEdges(packageElement, gephiNodesByPackageLabel)

 #resize by indegree
 fctPass3ResizeNodesByIndegree(gephiNodesByPackageLabel)

 # CYCLES
 #
 cyclesElement = jdependDOM.childNodes.item(0).childNodes.item(3)
 fctPass4HandleCycles(cyclesElement, gephiNodesByPackageLabel)

main()

JDepend XML-Output for JUnit Source Code

This is a shortened version of the JDepend XML-Output on JUnit. It’s purpose is to show you the

structure of the file. Please note, that there is even more to analyse as each Java Packages also has

some metrics like Ce, Ca, A, I, D which are currently not used.

<?xml version="1.0"?>
<JDepend>
 <Packages>

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

 <Package name="junit.extensions">
 <Stats>
 <TotalClasses>7</TotalClasses>
 <ConcreteClasses>6</ConcreteClasses>
 <AbstractClasses>1</AbstractClasses>
 <Ca>2</Ca>
 <Ce>1</Ce>
 <A>0.14
 <I>0.33</I>
 <D>0.52</D>
 <V>1</V>
 </Stats>

 <AbstractClasses>
 <Class sourceFile="package-info.java">
 junit.extensions.package-info
 </Class>
 </AbstractClasses>

 <ConcreteClasses>
 <Class sourceFile="ActiveTestSuite.java">
 junit.extensions.ActiveTestSuite
 </Class>
 <Class sourceFile="ActiveTestSuite.java">
 junit.extensions.ActiveTestSuite$1
 </Class>
 […]
 <Class sourceFile="TestSetup.java">
 junit.extensions.TestSetup$1
 </Class>
 </ConcreteClasses>

 <DependsUpon>
 <Package>junit.framework</Package>
 </DependsUpon>

 <UsedBy>
 <Package>org.junit.internal.runners</Package>
 <Package>org.junit.tests.junit3compatibility</Package>
 </UsedBy>
 </Package>

 <Package name="junit.framework">
 <Stats>
 <TotalClasses>18</TotalClasses>
 <ConcreteClasses>13</ConcreteClasses>
 <AbstractClasses>5</AbstractClasses>
 <Ca>17</Ca>
 <Ce>5</Ce>
 <A>0.28
 <I>0.23</I>
 <D>0.49</D>
 <V>1</V>
 </Stats>

 <AbstractClasses>
 <Class sourceFile="Protectable.java">
 junit.framework.Protectable
 </Class>
 […]
 </AbstractClasses>

 <ConcreteClasses>
 […]

 </ConcreteClasses>

 <DependsUpon>
 <Package>org.junit</Package>
 <Package>org.junit.internal</Package>
 <Package>org.junit.runner</Package>
 <Package>org.junit.runner.manipulation</Package>
 <Package>org.junit.runner.notification</Package>
 </DependsUpon>

 <UsedBy>
 <Package>junit.extensions</Package>
 <Package>junit.runner</Package>
 <Package>junit.textui</Package>
 <Package>org.junit.experimental.max</Package>
 <Package>org.junit.internal.builders</Package>
 <Package>org.junit.internal.runners</Package>
 <Package>org.junit.runner</Package>
 <Package>org.junit.samples</Package>
 <Package>org.junit.samples.money</Package>
 <Package>org.junit.tests</Package>
 <Package>org.junit.tests.experimental.max</Package>
 <Package>org.junit.tests.experimental.rules</Package>
 <Package>org.junit.tests.junit3compatibility</Package>
 <Package>org.junit.tests.listening</Package>
 <Package>org.junit.tests.manipulation</Package>
 <Package>org.junit.tests.running.classes</Package>
 <Package>org.junit.tests.running.methods</Package>
 </UsedBy>
 </Package>

 […many more package sections follow…]
 </Packages>

Analysis of JUnit Java Package Dependencies with a Graph-based Tool

 <Cycles>
 <Package Name="junit.extensions">
 <Package>junit.framework</Package>
 <Package>org.junit.runner.manipulation</Package>
 <Package>org.junit.runner</Package>
 <Package>org.junit.runners.model</Package>
 <Package>org.junit.internal.runners.model</Package>
 <Package>org.junit.internal</Package>
 <Package>org.junit</Package>
 <Package>org.junit.internal</Package>
 </Package>

 <Package Name="junit.framework">
 <Package>org.junit.runner.manipulation</Package>
 <Package>org.junit.runner</Package>
 <Package>org.junit.runners.model</Package>
 <Package>org.junit.internal.runners.model</Package>
 <Package>org.junit.internal</Package>
 <Package>org.junit</Package>
 <Package>org.junit.internal</Package>
 </Package>

 […many more cycles follow…]
 </Cycles>
</JDepend>

