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Figure 2. Vasculature Common Coordinate Framework, from [2].

The vasculature forms an uninterrupted path across scales in the human body, making it an ideal choice for 
creating a Common Coordinate Framework of the human body. The resulting Vasculature Common Coordinate 
Framework (VCCF) can localize cells of different types by using the nearest blood vessel that supplies it with 
oxygen. As part of the Human BioMolecular Atlas Program (HuBMAP), several tools have been built for spatially 
registering tissue samples and connecting them with expert ontologies via ASCT+B Tables in the Human 
Reference Atlas (HRA) framework. Interactive data visualizations show the distributions of distances between 
different cell types and their closest vasculature across organs and using different technologies. Here, we present 
Vitessce-based visualizations of 6 organs (skin, colon, esophagus, tonsil, spleen, and lung) and three technologies 
(CODEX, Cell DIVE, CyCIF) from five different data providers. All datasets were RUI-registered (or are in the 
process of) and can be explored within the context of the 3D human body in the Exploration User Interface. We 
conclude with a discussion of planned extensions of the analysis and visualization workflows to cover disease 
(e.g., tumor cells) and hierarchical cell neighborhoods.

The spatial size, location, and rotation of tissue specimen are manually registered using the Registration User 
Interface (https://humanatlas.io/registration-user-interface) in coordination with data providers. All RUI-registered 
tissue blocks can be explored in the Exploration User Interface (EUI, https://apps.humanatlas.io/eui, Fig. 1) [1].

Figure 1. Exploration User Interface screenshots showing skin (Fig. 3) and colon plus spleen tissue registrations (Fig. 4).
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Going forward, we plan to extend these analyses to additional tissue types and 
technologies. If you are interested to collaborate, please share a table with 2D 
or 3D coordinates (cell centroids) and assigned type of each cell (see Table 1). 
We are in the process of mapping cell types to ASCT+B tables and CL.
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A Vasculature Common Coordinate Framework has been proposed to map all 37 trillion cells in the human body in 
a way that addresses its multiscale nature [2]. The vasculature seamlessly connects the macro-, meso-, and 
micro-scales of the body and hence provides an ideal pathway to assign “zip codes” to these cells in order to 
localize them, see Fig. 2. Ghose S., Ju Y., et al. [3] looked at the distance distributions between different immune 
cell types and the closest endothelial cells in 3D reconstructed tissue samples from adult human skin tissue using 
Cell DIVE, see Fig. 3. This enabled an in-depth analysis of different distance distributions focussed on the effects of 
UV sun exposure and aging in three dimensions.

Figure 3. 3D VCCF Visualizations of skin Cell DIVE data, from [3].

The visualization workflow has been generalized to cover more tissue types and assay type technologies from different data providers. Furthermore, the open-source visualization tool Vitessce [4,5] can now be used to explore 2D VCCF 
visualizations within the HRA Portal. Fig. 4 shows first results on colon (CODEX [6]) dataset from Stanford University, spleen (CODEX [7,8]) datasets from University of Florida and Johns Hopkins University, tonsil (CODEX [9]) and esophagus 
(CODEX [9]) from Stanford University, lung (CODEX) from University of Rochester Medical Center, and colon (CyCIF [10]) from Harvard Medical School (HTAN). Additional datasets using imaging technologies such as Xenium, MIBI-TOF and 
confocal microscopy have been visualized but are not shown here as primary data is not yet published.
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Figure 4. VCCF Visualizations of seven datasets across organs and imaging technologies. 

In close collaboration with different HuBMAP and HTAN tissue data providers, 
we will enhance the visualization workflows based on user needs, e.g., to support more in-depth analyses of the 
vascular system in correlation to different cell types across organs; making it possible to pick “anchor” cell types to 
visualize distance to cell types other than endothelial cells; adding scale bars, legends, and distance distribution 
histograms within the Vitessce viewer; visualizing 3D data in Vitessce as shown in Fig. 3 and analyzing distances 
for a selected cell, cell type, or cell neighborhood (e.g., FTU); to add imaging data and turn specific image 
channels on/off; and compute quantifications of cell-type colocalization as a function of the z-plane in 3D datasets.
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