Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

图分析,图计算或者图推理的方法 #267

mengquanrun opened this issue Dec 10, 2018 · 3 comments


Copy link

@mengquanrun mengquanrun commented Dec 10, 2018

Expected behavior 期望表现

{type something here...}
@javeme 想请教百度在图分析和图推理方向上会采用什么方法呢?在项目介绍中说应用场景在反欺诈,打击黑产等方向,请问贵团队在实际应用场景中会如何利用hugegraph这个工具呢?

Actual behavior 实际表现

{type something here...}

Steps to reproduce the problem 复现步骤

  1. {step 1}
  2. {step 2}
  3. {step 3}

Status of loaded data 数据状态

Vertex/Edge summary 数据量

  • loaded vertices amount: {like 10 million}
  • loaded edges amount: {like 20 million}
  • loaded time: {like 200s}

Vertex/Edge example 数据示例

{type something here...}

Schema(VertexLabel, EdgeLabel, IndexLabel) 元数据结构

{type something here...}

Specifications of environment 环境信息

  • hugegraph version: {like v0.7.4}
  • operating system: {like centos 7.4, 32 CPUs, 64G RAM}
  • hugegraph backend: {like cassandra 3.10, cluster with 20 nodes, 3 x 1TB HDD disk each node}

This comment has been minimized.

Copy link

@fisherinbox fisherinbox commented Dec 10, 2018



This comment has been minimized.

Copy link

@javeme javeme commented Dec 10, 2018

@mengquanrun @fisherinbox 反欺诈这个业务场景大体涉及如下典型方法:

  1. 关系特征检测
    • 高聚合度关系检测(比如大量用户使用同一个设备)
    • 自相矛盾关系检测
    • 关系环路检测(比如循环担保)
      比如环路检测可使用Rings API
  2. 关联度检测
    • 检测多层关系网络中是否包含高风险节点
    • 通过PersonalRank、PageRank等算法计算关系网络中节点的风险评分
      比如3度关联是否触黑,可使用K-neighbor API
  3. 欺诈团伙检测

This comment has been minimized.

Copy link

@mengquanrun mengquanrun commented Dec 12, 2018

感谢,我学习下~ @javeme

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
None yet
3 participants
You can’t perform that action at this time.