-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Closed
Labels
staleIssues that haven't received updatesIssues that haven't received updates
Description
| if scale != 1.0: |
hi
When I use lora + ip-adapter, lora_weight ! = 1.0 will print a lot of warning logs, can anyone tell me why?
os:
diffusers==0.26.0.dev0
this is my code:
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPVisionModelWithProjection
model_path = 'C:\\work\\pythonProject\\aidazuo\\models\\Stable-diffusion\\stable-diffusion-v1-5'
ip_adapter_path = 'C:\\work\\pythonProject\\aidazuo\\models\\IP-Adapter'
ip_img_path = 'C:\\work\\pythonProject\\aidazuo\\jupyter-script\\test-img\\vermeer.png'
lora_path = 'C:\\work\\pythonProject\\aidazuo\\models\\Lora\\figma.safetensors'
image_encoder = CLIPVisionModelWithProjection.from_pretrained(ip_adapter_path,
subfolder='models/image_encoder',
torch_dtype=torch.float16).to('cuda')
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
safety_checker=None,
variant="fp16",
torch_dtype=torch.float16,
image_encoder=image_encoder).to("cuda")
pipe.load_ip_adapter(ip_adapter_path, subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.set_ip_adapter_scale(0.6)
pipe.load_lora_weights(lora_path)
ip_adapter_img = Image.open(ip_img_path)
images = pipe(
prompt='a beautiful girl',
ip_adapter_image=ip_adapter_img,
negative_prompt="",
num_inference_steps=30,
num_images_per_prompt=1,
width=512,
height=512,
cross_attention_kwargs={"scale": 0.5}
).images
pipe.unload_lora_weights()
pipe.unload_ip_adapter()
for img in images:
print(img)
Metadata
Metadata
Assignees
Labels
staleIssues that haven't received updatesIssues that haven't received updates
