From 795ab493d40c3d8bd413a29890ff74ef4f66ed49 Mon Sep 17 00:00:00 2001 From: Pratim Dasude Date: Thu, 13 Nov 2025 13:33:44 +0530 Subject: [PATCH 1/5] new flux fill controlnet inpaint pipline --- .../pipline_flux_fill_controlnet_Inpaint.py | 1320 +++++++++++++++++ 1 file changed, 1320 insertions(+) create mode 100644 src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py diff --git a/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py b/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py new file mode 100644 index 000000000000..694c670ff975 --- /dev/null +++ b/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py @@ -0,0 +1,1320 @@ +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL +import torch +from transformers import ( + CLIPTextModel, + CLIPTokenizer, + T5EncoderModel, + T5TokenizerFast, +) + +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin +from diffusers.models.autoencoders import AutoencoderKL +from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel +from diffusers.models.transformers import FluxTransformer2DModel +from diffusers.schedulers import FlowMatchEulerDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + +logger = logging.get_logger(__name__) + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import FluxControlNetInpaintPipeline + >>> from diffusers.models import FluxControlNetModel + >>> from diffusers.utils import load_image + + >>> controlnet = FluxControlNetModel.from_pretrained( + ... "InstantX/FLUX.1-dev-controlnet-canny", torch_dtype=torch.float16 + ... ) + >>> pipe = FluxControlNetInpaintPipeline.from_pretrained( + ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16 + ... ) + >>> pipe.to("cuda") + + >>> control_image = load_image( + ... "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" + ... ) + >>> init_image = load_image( + ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" + ... ) + >>> mask_image = load_image( + ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" + ... ) + + >>> prompt = "A girl holding a sign that says InstantX" + >>> image = pipe( + ... prompt, + ... image=init_image, + ... mask_image=mask_image, + ... control_image=control_image, + ... control_guidance_start=0.2, + ... control_guidance_end=0.8, + ... controlnet_conditioning_scale=0.7, + ... strength=0.7, + ... num_inference_steps=28, + ... guidance_scale=3.5, + ... ).images[0] + >>> image.save("flux_controlnet_inpaint.png") + ``` +""" + + +# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.15, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + +def retrieve_latents_fill( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + r""" + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class FluxControlNetFillInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + r""" + The Flux controlnet pipeline for inpainting. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`FluxTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds", "control_image", "mask", "masked_image_latents"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + text_encoder_2: T5EncoderModel, + tokenizer_2: T5TokenizerFast, + transformer: FluxTransformer2DModel, + controlnet: Union[ + FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel + ], + ): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = FluxMultiControlNetModel(controlnet) + + self.register_modules( + scheduler=scheduler, + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + text_encoder_2=text_encoder_2, + tokenizer_2=tokenizer_2, + transformer=transformer, + controlnet=controlnet, + ) + + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 + # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible + # by the patch size. So the vae scale factor is multiplied by the patch size to account for this + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) + latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 + self.mask_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor * 2, + vae_latent_channels=latent_channels, + do_normalize=False, + do_binarize=True, + do_convert_grayscale=True, + ) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 128 + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) + + text_inputs = self.tokenizer_2( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds + def _get_clip_prompt_embeds( + self, + prompt: Union[str, List[str]], + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + ): + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer_max_length, + truncation=True, + return_overflowing_tokens=False, + return_length=False, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer_max_length} tokens: {removed_text}" + ) + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + + # Use pooled output of CLIPTextModel + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + + return prompt_embeds + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in all text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + # We only use the pooled prompt output from the CLIPTextModel + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt_2, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder_2, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + return prompt_embeds, pooled_prompt_embeds, text_ids + + # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(image.shape[0]) + ] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + return image_latents + + # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(num_inference_steps * strength, num_inference_steps) + + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + + def check_inputs( + self, + prompt, + prompt_2, + image, + mask_image, + strength, + height, + width, + output_type, + prompt_embeds=None, + pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + padding_mask_crop=None, + max_sequence_length=None, + ): + if strength < 0 or strength > 1: + raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + + if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: + logger.warning( + f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError( + f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}." + ) + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError( + f"The mask image should be a PIL image when inpainting mask crop, but is of type" + f" {type(mask_image)}." + ) + if output_type != "pil": + raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.") + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height, width, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (vae_scale_factor * 2)) + width = 2 * (int(width) // (vae_scale_factor * 2)) + + latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height, width) + + return latents + + def prepare_latents( + self, + image, + timestep, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + shape = (batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + # expand init_latents for batch_size + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." + ) + else: + image_latents = torch.cat([image_latents], dim=0) + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.scale_noise(image_latents, timestep, noise) + else: + noise = latents.to(device) + latents = noise + + noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width) + image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + return latents, noise, image_latents, latent_image_ids + + def prepare_mask_latents( + self, + mask, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + dtype, + device, + generator, + ): + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate(mask, size=(height, width)) + mask = mask.to(device=device, dtype=dtype) + + batch_size = batch_size * num_images_per_prompt + + masked_image = masked_image.to(device=device, dtype=dtype) + + if masked_image.shape[1] == 16: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) + + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + # aligning device to prevent device errors when concating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + masked_image_latents = self._pack_latents( + masked_image_latents, + batch_size, + num_channels_latents, + height, + width, + ) + + mask = self._pack_latents( + mask.repeat(1, num_channels_latents, 1, 1), + batch_size, + num_channels_latents, + height, + width, + ) + return mask, masked_image_latents + + # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + def prepare_mask_latents_fill( + self, + mask, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + dtype, + device, + generator, + ): + # 1. calculate the height and width of the latents + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + + # 2. encode the masked image + if masked_image.shape[1] == num_channels_latents: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents_fill(self.vae.encode(masked_image), generator=generator) + + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + + # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + batch_size = batch_size * num_images_per_prompt + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + # 4. pack the masked_image_latents + # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4 + masked_image_latents = self._pack_latents( + masked_image_latents, + batch_size, + num_channels_latents, + height, + width, + ) + + # 5.resize mask to latents shape we we concatenate the mask to the latents + mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed) + mask = mask.view( + batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor + ) # batch_size, height, 8, width, 8 + mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width + mask = mask.reshape( + batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width + ) # batch_size, 8*8, height, width + + # 6. pack the mask: + # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2 + mask = self._pack_latents( + mask, + batch_size, + self.vae_scale_factor * self.vae_scale_factor, + height, + width, + ) + mask = mask.to(device=device, dtype=dtype) + + return mask, masked_image_latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + image: PipelineImageInput = None, + mask_image: PipelineImageInput = None, + masked_image_latents: PipelineImageInput = None, + control_image: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 0.6, + padding_mask_crop: Optional[int] = None, + sigmas: Optional[List[float]] = None, + num_inference_steps: int = 28, + guidance_scale: float = 7.0, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + control_mode: Optional[Union[int, List[int]]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. + image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The image(s) to inpaint. + mask_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The mask image(s) to use for inpainting. White pixels in the mask will be repainted, while black pixels + will be preserved. + masked_image_latents (`torch.FloatTensor`, *optional*): + Pre-generated masked image latents. + control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The ControlNet input condition. Image to control the generation. + height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 0.6): + Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. + padding_mask_crop (`int`, *optional*): + The size of the padding to use when cropping the mask. + num_inference_steps (`int`, *optional*, defaults to 28): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + control_mode (`int` or `List[int]`, *optional*): + The mode for the ControlNet. If multiple ControlNets are used, this should be a list. + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original transformer. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to + make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + Additional keyword arguments to be passed to the joint attention mechanism. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising step during the inference. + callback_on_step_end_tensor_inputs (`List[str]`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. + max_sequence_length (`int`, *optional*, defaults to 512): + The maximum length of the sequence to be generated. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + global_height = height + global_width = width + + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs + self.check_inputs( + prompt, + prompt_2, + image, + mask_image, + strength, + height, + width, + output_type=output_type, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + padding_mask_crop=padding_mask_crop, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + dtype = self.transformer.dtype + + # 3. Encode input prompt + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Preprocess mask and image + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region( + mask_image, global_width, global_height, pad=padding_mask_crop + ) + resize_mode = "fill" + else: + crops_coords = None + resize_mode = "default" + + original_image = image + init_image = self.image_processor.preprocess( + image, height=global_height, width=global_width, crops_coords=crops_coords, resize_mode=resize_mode + ) + init_image = init_image.to(dtype=torch.float32) + + # 5. Prepare control image + # num_channels_latents = self.transformer.config.in_channels // 4 + num_channels_latents = self.vae.config.latent_channels + + + if isinstance(self.controlnet, FluxControlNetModel): + control_image = self.prepare_image( + image=control_image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=self.vae.dtype, + ) + height, width = control_image.shape[-2:] + + # xlab controlnet has a input_hint_block and instantx controlnet does not + controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True + if self.controlnet.input_hint_block is None: + # vae encode + control_image = retrieve_latents(self.vae.encode(control_image), generator=generator) + control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # pack + height_control_image, width_control_image = control_image.shape[2:] + control_image = self._pack_latents( + control_image, + batch_size * num_images_per_prompt, + num_channels_latents, + height_control_image, + width_control_image, + ) + + # set control mode + if control_mode is not None: + control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + elif isinstance(self.controlnet, FluxMultiControlNetModel): + control_images = [] + + # xlab controlnet has a input_hint_block and instantx controlnet does not + controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True + for i, control_image_ in enumerate(control_image): + control_image_ = self.prepare_image( + image=control_image_, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=self.vae.dtype, + ) + height, width = control_image_.shape[-2:] + + if self.controlnet.nets[0].input_hint_block is None: + # vae encode + control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator) + control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # pack + height_control_image, width_control_image = control_image_.shape[2:] + control_image_ = self._pack_latents( + control_image_, + batch_size * num_images_per_prompt, + num_channels_latents, + height_control_image, + width_control_image, + ) + + control_images.append(control_image_) + + control_image = control_images + + # set control mode + control_mode_ = [] + if isinstance(control_mode, list): + for cmode in control_mode: + if cmode is None: + control_mode_.append(-1) + else: + control_mode_.append(cmode) + control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + # 6. Prepare timesteps + + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas + image_seq_len = (int(global_height) // self.vae_scale_factor // 2) * ( + int(global_width) // self.vae_scale_factor // 2 + ) + mu = calculate_shift( + image_seq_len, + self.scheduler.config.get("base_image_seq_len", 256), + self.scheduler.config.get("max_image_seq_len", 4096), + self.scheduler.config.get("base_shift", 0.5), + self.scheduler.config.get("max_shift", 1.15), + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + sigmas=sigmas, + mu=mu, + ) + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) + + if num_inference_steps < 1: + raise ValueError( + f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" + f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." + ) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + + # 7. Prepare latent variables + + latents, noise, image_latents, latent_image_ids = self.prepare_latents( + init_image, + latent_timestep, + batch_size * num_images_per_prompt, + num_channels_latents, + global_height, + global_width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 8. Prepare mask latents + mask_condition = self.mask_processor.preprocess( + mask_image, height=global_height, width=global_width, resize_mode=resize_mode, crops_coords=crops_coords + ) + if masked_image_latents is None: + masked_image = init_image * (mask_condition < 0.5) + else: + masked_image = masked_image_latents + + mask, masked_image_latents = self.prepare_mask_latents( + mask_condition, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + global_height, + global_width, + prompt_embeds.dtype, + device, + generator, + ) + + mask_imagee = self.mask_processor.preprocess(mask_image, height=height, width=width) + masked_imagee = init_image * (1 - mask_imagee) + masked_imagee = masked_imagee.to(dtype=self.vae.dtype, device=device) + maskkk, masked_image_latentsss = self.prepare_mask_latents_fill( + mask_imagee, + masked_imagee, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + prompt_embeds.dtype, + device, + generator, + ) + + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps) + + # 9. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + # predict the noise residual + if isinstance(self.controlnet, FluxMultiControlNetModel): + use_guidance = self.controlnet.nets[0].config.guidance_embeds + else: + use_guidance = self.controlnet.config.guidance_embeds + if use_guidance: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + controlnet_block_samples, controlnet_single_block_samples = self.controlnet( + hidden_states=latents, + controlnet_cond=control_image, + controlnet_mode=control_mode, + conditioning_scale=cond_scale, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + ) + + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + masked_image_latents_fill = torch.cat((masked_image_latentsss, maskkk), dim=-1) + latent_model_input = torch.cat([latents,masked_image_latents_fill], dim=2) + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + controlnet_block_samples=controlnet_block_samples, + controlnet_single_block_samples=controlnet_single_block_samples, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + controlnet_blocks_repeat=controlnet_blocks_repeat, + )[0] + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + # For inpainting, we need to apply the mask and add the masked image latents + init_latents_proper = image_latents + init_mask = mask + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.scale_noise( + init_latents_proper, torch.tensor([noise_timestep]), noise + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + # call the callback, if provided + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + control_image = callback_outputs.pop("control_image", control_image) + mask = callback_outputs.pop("mask", mask) + masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) + + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + # Post-processing + if output_type == "latent": + image = latents + else: + latents = self._unpack_latents(latents, global_height, global_width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) \ No newline at end of file From 73a7d34889b15138f45c6fa265ad8251f861e681 Mon Sep 17 00:00:00 2001 From: Pratim Dasude Date: Wed, 19 Nov 2025 21:17:05 +0530 Subject: [PATCH 2/5] Delete src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py deleting from main flux pipeline --- .../pipline_flux_fill_controlnet_Inpaint.py | 1320 ----------------- 1 file changed, 1320 deletions(-) delete mode 100644 src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py diff --git a/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py b/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py deleted file mode 100644 index 694c670ff975..000000000000 --- a/src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py +++ /dev/null @@ -1,1320 +0,0 @@ -import inspect -from typing import Any, Callable, Dict, List, Optional, Tuple, Union - -import numpy as np -import PIL -import torch -from transformers import ( - CLIPTextModel, - CLIPTokenizer, - T5EncoderModel, - T5TokenizerFast, -) - -from diffusers.image_processor import PipelineImageInput, VaeImageProcessor -from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin -from diffusers.models.autoencoders import AutoencoderKL -from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel -from diffusers.models.transformers import FluxTransformer2DModel -from diffusers.schedulers import FlowMatchEulerDiscreteScheduler -from diffusers.utils import ( - USE_PEFT_BACKEND, - is_torch_xla_available, - logging, - replace_example_docstring, - scale_lora_layers, - unscale_lora_layers, -) -from diffusers.utils.torch_utils import randn_tensor -from diffusers.pipelines.pipeline_utils import DiffusionPipeline -from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput - - -if is_torch_xla_available(): - import torch_xla.core.xla_model as xm - - XLA_AVAILABLE = True -else: - XLA_AVAILABLE = False - -logger = logging.get_logger(__name__) - -EXAMPLE_DOC_STRING = """ - Examples: - ```py - >>> import torch - >>> from diffusers import FluxControlNetInpaintPipeline - >>> from diffusers.models import FluxControlNetModel - >>> from diffusers.utils import load_image - - >>> controlnet = FluxControlNetModel.from_pretrained( - ... "InstantX/FLUX.1-dev-controlnet-canny", torch_dtype=torch.float16 - ... ) - >>> pipe = FluxControlNetInpaintPipeline.from_pretrained( - ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16 - ... ) - >>> pipe.to("cuda") - - >>> control_image = load_image( - ... "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" - ... ) - >>> init_image = load_image( - ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" - ... ) - >>> mask_image = load_image( - ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" - ... ) - - >>> prompt = "A girl holding a sign that says InstantX" - >>> image = pipe( - ... prompt, - ... image=init_image, - ... mask_image=mask_image, - ... control_image=control_image, - ... control_guidance_start=0.2, - ... control_guidance_end=0.8, - ... controlnet_conditioning_scale=0.7, - ... strength=0.7, - ... num_inference_steps=28, - ... guidance_scale=3.5, - ... ).images[0] - >>> image.save("flux_controlnet_inpaint.png") - ``` -""" - - -# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift -def calculate_shift( - image_seq_len, - base_seq_len: int = 256, - max_seq_len: int = 4096, - base_shift: float = 0.5, - max_shift: float = 1.15, -): - m = (max_shift - base_shift) / (max_seq_len - base_seq_len) - b = base_shift - m * base_seq_len - mu = image_seq_len * m + b - return mu - - -# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents -def retrieve_latents( - encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" -): - if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": - return encoder_output.latent_dist.sample(generator) - elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": - return encoder_output.latent_dist.mode() - elif hasattr(encoder_output, "latents"): - return encoder_output.latents - else: - raise AttributeError("Could not access latents of provided encoder_output") - -def retrieve_latents_fill( - encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" -): - if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": - return encoder_output.latent_dist.sample(generator) - elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": - return encoder_output.latent_dist.mode() - elif hasattr(encoder_output, "latents"): - return encoder_output.latents - else: - raise AttributeError("Could not access latents of provided encoder_output") - - -# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps -def retrieve_timesteps( - scheduler, - num_inference_steps: Optional[int] = None, - device: Optional[Union[str, torch.device]] = None, - timesteps: Optional[List[int]] = None, - sigmas: Optional[List[float]] = None, - **kwargs, -): - r""" - Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles - custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. - - Args: - scheduler (`SchedulerMixin`): - The scheduler to get timesteps from. - num_inference_steps (`int`): - The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` - must be `None`. - device (`str` or `torch.device`, *optional*): - The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. - timesteps (`List[int]`, *optional*): - Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, - `num_inference_steps` and `sigmas` must be `None`. - sigmas (`List[float]`, *optional*): - Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, - `num_inference_steps` and `timesteps` must be `None`. - - Returns: - `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the - second element is the number of inference steps. - """ - if timesteps is not None and sigmas is not None: - raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") - if timesteps is not None: - accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) - if not accepts_timesteps: - raise ValueError( - f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" - f" timestep schedules. Please check whether you are using the correct scheduler." - ) - scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) - timesteps = scheduler.timesteps - num_inference_steps = len(timesteps) - elif sigmas is not None: - accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) - if not accept_sigmas: - raise ValueError( - f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" - f" sigmas schedules. Please check whether you are using the correct scheduler." - ) - scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) - timesteps = scheduler.timesteps - num_inference_steps = len(timesteps) - else: - scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) - timesteps = scheduler.timesteps - return timesteps, num_inference_steps - - -class FluxControlNetFillInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): - r""" - The Flux controlnet pipeline for inpainting. - - Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ - - Args: - transformer ([`FluxTransformer2DModel`]): - Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. - scheduler ([`FlowMatchEulerDiscreteScheduler`]): - A scheduler to be used in combination with `transformer` to denoise the encoded image latents. - vae ([`AutoencoderKL`]): - Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. - text_encoder ([`CLIPTextModel`]): - [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically - the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. - text_encoder_2 ([`T5EncoderModel`]): - [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically - the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. - tokenizer (`CLIPTokenizer`): - Tokenizer of class - [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). - tokenizer_2 (`T5TokenizerFast`): - Second Tokenizer of class - [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). - """ - - model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" - _optional_components = [] - _callback_tensor_inputs = ["latents", "prompt_embeds", "control_image", "mask", "masked_image_latents"] - - def __init__( - self, - scheduler: FlowMatchEulerDiscreteScheduler, - vae: AutoencoderKL, - text_encoder: CLIPTextModel, - tokenizer: CLIPTokenizer, - text_encoder_2: T5EncoderModel, - tokenizer_2: T5TokenizerFast, - transformer: FluxTransformer2DModel, - controlnet: Union[ - FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel - ], - ): - super().__init__() - if isinstance(controlnet, (list, tuple)): - controlnet = FluxMultiControlNetModel(controlnet) - - self.register_modules( - scheduler=scheduler, - vae=vae, - text_encoder=text_encoder, - tokenizer=tokenizer, - text_encoder_2=text_encoder_2, - tokenizer_2=tokenizer_2, - transformer=transformer, - controlnet=controlnet, - ) - - self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 - # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible - # by the patch size. So the vae scale factor is multiplied by the patch size to account for this - self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) - latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 - self.mask_processor = VaeImageProcessor( - vae_scale_factor=self.vae_scale_factor * 2, - vae_latent_channels=latent_channels, - do_normalize=False, - do_binarize=True, - do_convert_grayscale=True, - ) - self.tokenizer_max_length = ( - self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 - ) - self.default_sample_size = 128 - - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds - def _get_t5_prompt_embeds( - self, - prompt: Union[str, List[str]] = None, - num_images_per_prompt: int = 1, - max_sequence_length: int = 512, - device: Optional[torch.device] = None, - dtype: Optional[torch.dtype] = None, - ): - device = device or self._execution_device - dtype = dtype or self.text_encoder.dtype - - prompt = [prompt] if isinstance(prompt, str) else prompt - batch_size = len(prompt) - - if isinstance(self, TextualInversionLoaderMixin): - prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) - - text_inputs = self.tokenizer_2( - prompt, - padding="max_length", - max_length=max_sequence_length, - truncation=True, - return_length=False, - return_overflowing_tokens=False, - return_tensors="pt", - ) - text_input_ids = text_inputs.input_ids - untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids - - if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): - removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) - logger.warning( - "The following part of your input was truncated because `max_sequence_length` is set to " - f" {max_sequence_length} tokens: {removed_text}" - ) - - prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] - - dtype = self.text_encoder_2.dtype - prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) - - _, seq_len, _ = prompt_embeds.shape - - # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method - prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) - prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) - - return prompt_embeds - - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds - def _get_clip_prompt_embeds( - self, - prompt: Union[str, List[str]], - num_images_per_prompt: int = 1, - device: Optional[torch.device] = None, - ): - device = device or self._execution_device - - prompt = [prompt] if isinstance(prompt, str) else prompt - batch_size = len(prompt) - - if isinstance(self, TextualInversionLoaderMixin): - prompt = self.maybe_convert_prompt(prompt, self.tokenizer) - - text_inputs = self.tokenizer( - prompt, - padding="max_length", - max_length=self.tokenizer_max_length, - truncation=True, - return_overflowing_tokens=False, - return_length=False, - return_tensors="pt", - ) - - text_input_ids = text_inputs.input_ids - untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids - if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): - removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) - logger.warning( - "The following part of your input was truncated because CLIP can only handle sequences up to" - f" {self.tokenizer_max_length} tokens: {removed_text}" - ) - prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) - - # Use pooled output of CLIPTextModel - prompt_embeds = prompt_embeds.pooler_output - prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) - - # duplicate text embeddings for each generation per prompt, using mps friendly method - prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) - prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) - - return prompt_embeds - - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt - def encode_prompt( - self, - prompt: Union[str, List[str]], - prompt_2: Union[str, List[str]], - device: Optional[torch.device] = None, - num_images_per_prompt: int = 1, - prompt_embeds: Optional[torch.FloatTensor] = None, - pooled_prompt_embeds: Optional[torch.FloatTensor] = None, - max_sequence_length: int = 512, - lora_scale: Optional[float] = None, - ): - r""" - - Args: - prompt (`str` or `List[str]`, *optional*): - prompt to be encoded - prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is - used in all text-encoders - device: (`torch.device`): - torch device - num_images_per_prompt (`int`): - number of images that should be generated per prompt - prompt_embeds (`torch.FloatTensor`, *optional*): - Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not - provided, text embeddings will be generated from `prompt` input argument. - pooled_prompt_embeds (`torch.FloatTensor`, *optional*): - Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. - If not provided, pooled text embeddings will be generated from `prompt` input argument. - lora_scale (`float`, *optional*): - A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - """ - device = device or self._execution_device - - # set lora scale so that monkey patched LoRA - # function of text encoder can correctly access it - if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): - self._lora_scale = lora_scale - - # dynamically adjust the LoRA scale - if self.text_encoder is not None and USE_PEFT_BACKEND: - scale_lora_layers(self.text_encoder, lora_scale) - if self.text_encoder_2 is not None and USE_PEFT_BACKEND: - scale_lora_layers(self.text_encoder_2, lora_scale) - - prompt = [prompt] if isinstance(prompt, str) else prompt - - if prompt_embeds is None: - prompt_2 = prompt_2 or prompt - prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 - - # We only use the pooled prompt output from the CLIPTextModel - pooled_prompt_embeds = self._get_clip_prompt_embeds( - prompt=prompt, - device=device, - num_images_per_prompt=num_images_per_prompt, - ) - prompt_embeds = self._get_t5_prompt_embeds( - prompt=prompt_2, - num_images_per_prompt=num_images_per_prompt, - max_sequence_length=max_sequence_length, - device=device, - ) - - if self.text_encoder is not None: - if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder, lora_scale) - - if self.text_encoder_2 is not None: - if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder_2, lora_scale) - - dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype - text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) - - return prompt_embeds, pooled_prompt_embeds, text_ids - - # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image - def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): - if isinstance(generator, list): - image_latents = [ - retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) - for i in range(image.shape[0]) - ] - image_latents = torch.cat(image_latents, dim=0) - else: - image_latents = retrieve_latents(self.vae.encode(image), generator=generator) - - image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor - - return image_latents - - # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps - def get_timesteps(self, num_inference_steps, strength, device): - # get the original timestep using init_timestep - init_timestep = min(num_inference_steps * strength, num_inference_steps) - - t_start = int(max(num_inference_steps - init_timestep, 0)) - timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] - if hasattr(self.scheduler, "set_begin_index"): - self.scheduler.set_begin_index(t_start * self.scheduler.order) - - return timesteps, num_inference_steps - t_start - - def check_inputs( - self, - prompt, - prompt_2, - image, - mask_image, - strength, - height, - width, - output_type, - prompt_embeds=None, - pooled_prompt_embeds=None, - callback_on_step_end_tensor_inputs=None, - padding_mask_crop=None, - max_sequence_length=None, - ): - if strength < 0 or strength > 1: - raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") - - if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: - logger.warning( - f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" - ) - - if callback_on_step_end_tensor_inputs is not None and not all( - k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs - ): - raise ValueError( - f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" - ) - - if prompt is not None and prompt_embeds is not None: - raise ValueError( - f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" - " only forward one of the two." - ) - elif prompt_2 is not None and prompt_embeds is not None: - raise ValueError( - f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" - " only forward one of the two." - ) - elif prompt is None and prompt_embeds is None: - raise ValueError( - "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." - ) - elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): - raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") - elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): - raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") - - if prompt_embeds is not None and pooled_prompt_embeds is None: - raise ValueError( - "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." - ) - - if padding_mask_crop is not None: - if not isinstance(image, PIL.Image.Image): - raise ValueError( - f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}." - ) - if not isinstance(mask_image, PIL.Image.Image): - raise ValueError( - f"The mask image should be a PIL image when inpainting mask crop, but is of type" - f" {type(mask_image)}." - ) - if output_type != "pil": - raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.") - - if max_sequence_length is not None and max_sequence_length > 512: - raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") - - @staticmethod - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids - def _prepare_latent_image_ids(batch_size, height, width, device, dtype): - latent_image_ids = torch.zeros(height, width, 3) - latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] - latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] - - latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape - - latent_image_ids = latent_image_ids.reshape( - latent_image_id_height * latent_image_id_width, latent_image_id_channels - ) - - return latent_image_ids.to(device=device, dtype=dtype) - - @staticmethod - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents - def _pack_latents(latents, batch_size, num_channels_latents, height, width): - - latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) - latents = latents.permute(0, 2, 4, 1, 3, 5) - latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) - - return latents - - @staticmethod - # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents - def _unpack_latents(latents, height, width, vae_scale_factor): - batch_size, num_patches, channels = latents.shape - - # VAE applies 8x compression on images but we must also account for packing which requires - # latent height and width to be divisible by 2. - height = 2 * (int(height) // (vae_scale_factor * 2)) - width = 2 * (int(width) // (vae_scale_factor * 2)) - - latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) - latents = latents.permute(0, 3, 1, 4, 2, 5) - - latents = latents.reshape(batch_size, channels // (2 * 2), height, width) - - return latents - - def prepare_latents( - self, - image, - timestep, - batch_size, - num_channels_latents, - height, - width, - dtype, - device, - generator, - latents=None, - ): - if isinstance(generator, list) and len(generator) != batch_size: - raise ValueError( - f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" - f" size of {batch_size}. Make sure the batch size matches the length of the generators." - ) - - # VAE applies 8x compression on images but we must also account for packing which requires - # latent height and width to be divisible by 2. - height = 2 * (int(height) // (self.vae_scale_factor * 2)) - width = 2 * (int(width) // (self.vae_scale_factor * 2)) - shape = (batch_size, num_channels_latents, height, width) - latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) - - image = image.to(device=device, dtype=dtype) - image_latents = self._encode_vae_image(image=image, generator=generator) - - if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: - # expand init_latents for batch_size - additional_image_per_prompt = batch_size // image_latents.shape[0] - image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) - elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: - raise ValueError( - f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." - ) - else: - image_latents = torch.cat([image_latents], dim=0) - - if latents is None: - noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) - latents = self.scheduler.scale_noise(image_latents, timestep, noise) - else: - noise = latents.to(device) - latents = noise - - noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width) - image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width) - latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) - - return latents, noise, image_latents, latent_image_ids - - def prepare_mask_latents( - self, - mask, - masked_image, - batch_size, - num_channels_latents, - num_images_per_prompt, - height, - width, - dtype, - device, - generator, - ): - # VAE applies 8x compression on images but we must also account for packing which requires - # latent height and width to be divisible by 2. - height = 2 * (int(height) // (self.vae_scale_factor * 2)) - width = 2 * (int(width) // (self.vae_scale_factor * 2)) - # resize the mask to latents shape as we concatenate the mask to the latents - # we do that before converting to dtype to avoid breaking in case we're using cpu_offload - # and half precision - mask = torch.nn.functional.interpolate(mask, size=(height, width)) - mask = mask.to(device=device, dtype=dtype) - - batch_size = batch_size * num_images_per_prompt - - masked_image = masked_image.to(device=device, dtype=dtype) - - if masked_image.shape[1] == 16: - masked_image_latents = masked_image - else: - masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) - - masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor - - # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method - if mask.shape[0] < batch_size: - if not batch_size % mask.shape[0] == 0: - raise ValueError( - "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" - f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" - " of masks that you pass is divisible by the total requested batch size." - ) - mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) - if masked_image_latents.shape[0] < batch_size: - if not batch_size % masked_image_latents.shape[0] == 0: - raise ValueError( - "The passed images and the required batch size don't match. Images are supposed to be duplicated" - f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." - " Make sure the number of images that you pass is divisible by the total requested batch size." - ) - masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) - - # aligning device to prevent device errors when concating it with the latent model input - masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) - masked_image_latents = self._pack_latents( - masked_image_latents, - batch_size, - num_channels_latents, - height, - width, - ) - - mask = self._pack_latents( - mask.repeat(1, num_channels_latents, 1, 1), - batch_size, - num_channels_latents, - height, - width, - ) - return mask, masked_image_latents - - # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image - def prepare_image( - self, - image, - width, - height, - batch_size, - num_images_per_prompt, - device, - dtype, - do_classifier_free_guidance=False, - guess_mode=False, - ): - if isinstance(image, torch.Tensor): - pass - else: - image = self.image_processor.preprocess(image, height=height, width=width) - - image_batch_size = image.shape[0] - - if image_batch_size == 1: - repeat_by = batch_size - else: - # image batch size is the same as prompt batch size - repeat_by = num_images_per_prompt - - image = image.repeat_interleave(repeat_by, dim=0) - - image = image.to(device=device, dtype=dtype) - - if do_classifier_free_guidance and not guess_mode: - image = torch.cat([image] * 2) - - return image - - def prepare_mask_latents_fill( - self, - mask, - masked_image, - batch_size, - num_channels_latents, - num_images_per_prompt, - height, - width, - dtype, - device, - generator, - ): - # 1. calculate the height and width of the latents - # VAE applies 8x compression on images but we must also account for packing which requires - # latent height and width to be divisible by 2. - height = 2 * (int(height) // (self.vae_scale_factor * 2)) - width = 2 * (int(width) // (self.vae_scale_factor * 2)) - - # 2. encode the masked image - if masked_image.shape[1] == num_channels_latents: - masked_image_latents = masked_image - else: - masked_image_latents = retrieve_latents_fill(self.vae.encode(masked_image), generator=generator) - - masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor - masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) - - # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method - batch_size = batch_size * num_images_per_prompt - if mask.shape[0] < batch_size: - if not batch_size % mask.shape[0] == 0: - raise ValueError( - "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" - f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" - " of masks that you pass is divisible by the total requested batch size." - ) - mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) - if masked_image_latents.shape[0] < batch_size: - if not batch_size % masked_image_latents.shape[0] == 0: - raise ValueError( - "The passed images and the required batch size don't match. Images are supposed to be duplicated" - f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." - " Make sure the number of images that you pass is divisible by the total requested batch size." - ) - masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) - - # 4. pack the masked_image_latents - # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4 - masked_image_latents = self._pack_latents( - masked_image_latents, - batch_size, - num_channels_latents, - height, - width, - ) - - # 5.resize mask to latents shape we we concatenate the mask to the latents - mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed) - mask = mask.view( - batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor - ) # batch_size, height, 8, width, 8 - mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width - mask = mask.reshape( - batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width - ) # batch_size, 8*8, height, width - - # 6. pack the mask: - # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2 - mask = self._pack_latents( - mask, - batch_size, - self.vae_scale_factor * self.vae_scale_factor, - height, - width, - ) - mask = mask.to(device=device, dtype=dtype) - - return mask, masked_image_latents - - @property - def guidance_scale(self): - return self._guidance_scale - - @property - def joint_attention_kwargs(self): - return self._joint_attention_kwargs - - @property - def num_timesteps(self): - return self._num_timesteps - - @property - def interrupt(self): - return self._interrupt - - @torch.no_grad() - @replace_example_docstring(EXAMPLE_DOC_STRING) - def __call__( - self, - prompt: Union[str, List[str]] = None, - prompt_2: Optional[Union[str, List[str]]] = None, - image: PipelineImageInput = None, - mask_image: PipelineImageInput = None, - masked_image_latents: PipelineImageInput = None, - control_image: PipelineImageInput = None, - height: Optional[int] = None, - width: Optional[int] = None, - strength: float = 0.6, - padding_mask_crop: Optional[int] = None, - sigmas: Optional[List[float]] = None, - num_inference_steps: int = 28, - guidance_scale: float = 7.0, - control_guidance_start: Union[float, List[float]] = 0.0, - control_guidance_end: Union[float, List[float]] = 1.0, - control_mode: Optional[Union[int, List[int]]] = None, - controlnet_conditioning_scale: Union[float, List[float]] = 1.0, - num_images_per_prompt: Optional[int] = 1, - generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, - latents: Optional[torch.FloatTensor] = None, - prompt_embeds: Optional[torch.FloatTensor] = None, - pooled_prompt_embeds: Optional[torch.FloatTensor] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - joint_attention_kwargs: Optional[Dict[str, Any]] = None, - callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, - callback_on_step_end_tensor_inputs: List[str] = ["latents"], - max_sequence_length: int = 512, - ): - """ - Function invoked when calling the pipeline for generation. - - Args: - prompt (`str` or `List[str]`, *optional*): - The prompt or prompts to guide the image generation. - prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. - image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): - The image(s) to inpaint. - mask_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): - The mask image(s) to use for inpainting. White pixels in the mask will be repainted, while black pixels - will be preserved. - masked_image_latents (`torch.FloatTensor`, *optional*): - Pre-generated masked image latents. - control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): - The ControlNet input condition. Image to control the generation. - height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): - The height in pixels of the generated image. - width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): - The width in pixels of the generated image. - strength (`float`, *optional*, defaults to 0.6): - Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. - padding_mask_crop (`int`, *optional*): - The size of the padding to use when cropping the mask. - num_inference_steps (`int`, *optional*, defaults to 28): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - sigmas (`List[float]`, *optional*): - Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in - their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed - will be used. - guidance_scale (`float`, *optional*, defaults to 7.0): - Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). - control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): - The percentage of total steps at which the ControlNet starts applying. - control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): - The percentage of total steps at which the ControlNet stops applying. - control_mode (`int` or `List[int]`, *optional*): - The mode for the ControlNet. If multiple ControlNets are used, this should be a list. - controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): - The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added - to the residual in the original transformer. - num_images_per_prompt (`int`, *optional*, defaults to 1): - The number of images to generate per prompt. - generator (`torch.Generator` or `List[torch.Generator]`, *optional*): - One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to - make generation deterministic. - latents (`torch.FloatTensor`, *optional*): - Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image - generation. Can be used to tweak the same generation with different prompts. - prompt_embeds (`torch.FloatTensor`, *optional*): - Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. - pooled_prompt_embeds (`torch.FloatTensor`, *optional*): - Pre-generated pooled text embeddings. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between `PIL.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. - joint_attention_kwargs (`dict`, *optional*): - Additional keyword arguments to be passed to the joint attention mechanism. - callback_on_step_end (`Callable`, *optional*): - A function that calls at the end of each denoising step during the inference. - callback_on_step_end_tensor_inputs (`List[str]`, *optional*): - The list of tensor inputs for the `callback_on_step_end` function. - max_sequence_length (`int`, *optional*, defaults to 512): - The maximum length of the sequence to be generated. - - Examples: - - Returns: - [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` - is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated - images. - """ - height = height or self.default_sample_size * self.vae_scale_factor - width = width or self.default_sample_size * self.vae_scale_factor - - global_height = height - global_width = width - - if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): - control_guidance_start = len(control_guidance_end) * [control_guidance_start] - elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): - control_guidance_end = len(control_guidance_start) * [control_guidance_end] - elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): - mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1 - control_guidance_start, control_guidance_end = ( - mult * [control_guidance_start], - mult * [control_guidance_end], - ) - - # 1. Check inputs - self.check_inputs( - prompt, - prompt_2, - image, - mask_image, - strength, - height, - width, - output_type=output_type, - prompt_embeds=prompt_embeds, - pooled_prompt_embeds=pooled_prompt_embeds, - callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, - padding_mask_crop=padding_mask_crop, - max_sequence_length=max_sequence_length, - ) - - self._guidance_scale = guidance_scale - self._joint_attention_kwargs = joint_attention_kwargs - self._interrupt = False - - # 2. Define call parameters - if prompt is not None and isinstance(prompt, str): - batch_size = 1 - elif prompt is not None and isinstance(prompt, list): - batch_size = len(prompt) - else: - batch_size = prompt_embeds.shape[0] - - device = self._execution_device - dtype = self.transformer.dtype - - # 3. Encode input prompt - lora_scale = ( - self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None - ) - prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( - prompt=prompt, - prompt_2=prompt_2, - prompt_embeds=prompt_embeds, - pooled_prompt_embeds=pooled_prompt_embeds, - device=device, - num_images_per_prompt=num_images_per_prompt, - max_sequence_length=max_sequence_length, - lora_scale=lora_scale, - ) - - # 4. Preprocess mask and image - if padding_mask_crop is not None: - crops_coords = self.mask_processor.get_crop_region( - mask_image, global_width, global_height, pad=padding_mask_crop - ) - resize_mode = "fill" - else: - crops_coords = None - resize_mode = "default" - - original_image = image - init_image = self.image_processor.preprocess( - image, height=global_height, width=global_width, crops_coords=crops_coords, resize_mode=resize_mode - ) - init_image = init_image.to(dtype=torch.float32) - - # 5. Prepare control image - # num_channels_latents = self.transformer.config.in_channels // 4 - num_channels_latents = self.vae.config.latent_channels - - - if isinstance(self.controlnet, FluxControlNetModel): - control_image = self.prepare_image( - image=control_image, - width=width, - height=height, - batch_size=batch_size * num_images_per_prompt, - num_images_per_prompt=num_images_per_prompt, - device=device, - dtype=self.vae.dtype, - ) - height, width = control_image.shape[-2:] - - # xlab controlnet has a input_hint_block and instantx controlnet does not - controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True - if self.controlnet.input_hint_block is None: - # vae encode - control_image = retrieve_latents(self.vae.encode(control_image), generator=generator) - control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor - - # pack - height_control_image, width_control_image = control_image.shape[2:] - control_image = self._pack_latents( - control_image, - batch_size * num_images_per_prompt, - num_channels_latents, - height_control_image, - width_control_image, - ) - - # set control mode - if control_mode is not None: - control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) - control_mode = control_mode.reshape([-1, 1]) - - elif isinstance(self.controlnet, FluxMultiControlNetModel): - control_images = [] - - # xlab controlnet has a input_hint_block and instantx controlnet does not - controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True - for i, control_image_ in enumerate(control_image): - control_image_ = self.prepare_image( - image=control_image_, - width=width, - height=height, - batch_size=batch_size * num_images_per_prompt, - num_images_per_prompt=num_images_per_prompt, - device=device, - dtype=self.vae.dtype, - ) - height, width = control_image_.shape[-2:] - - if self.controlnet.nets[0].input_hint_block is None: - # vae encode - control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator) - control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor - - # pack - height_control_image, width_control_image = control_image_.shape[2:] - control_image_ = self._pack_latents( - control_image_, - batch_size * num_images_per_prompt, - num_channels_latents, - height_control_image, - width_control_image, - ) - - control_images.append(control_image_) - - control_image = control_images - - # set control mode - control_mode_ = [] - if isinstance(control_mode, list): - for cmode in control_mode: - if cmode is None: - control_mode_.append(-1) - else: - control_mode_.append(cmode) - control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) - control_mode = control_mode.reshape([-1, 1]) - - # 6. Prepare timesteps - - sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas - image_seq_len = (int(global_height) // self.vae_scale_factor // 2) * ( - int(global_width) // self.vae_scale_factor // 2 - ) - mu = calculate_shift( - image_seq_len, - self.scheduler.config.get("base_image_seq_len", 256), - self.scheduler.config.get("max_image_seq_len", 4096), - self.scheduler.config.get("base_shift", 0.5), - self.scheduler.config.get("max_shift", 1.15), - ) - timesteps, num_inference_steps = retrieve_timesteps( - self.scheduler, - num_inference_steps, - device, - sigmas=sigmas, - mu=mu, - ) - timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) - - if num_inference_steps < 1: - raise ValueError( - f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" - f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." - ) - latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) - - # 7. Prepare latent variables - - latents, noise, image_latents, latent_image_ids = self.prepare_latents( - init_image, - latent_timestep, - batch_size * num_images_per_prompt, - num_channels_latents, - global_height, - global_width, - prompt_embeds.dtype, - device, - generator, - latents, - ) - - # 8. Prepare mask latents - mask_condition = self.mask_processor.preprocess( - mask_image, height=global_height, width=global_width, resize_mode=resize_mode, crops_coords=crops_coords - ) - if masked_image_latents is None: - masked_image = init_image * (mask_condition < 0.5) - else: - masked_image = masked_image_latents - - mask, masked_image_latents = self.prepare_mask_latents( - mask_condition, - masked_image, - batch_size, - num_channels_latents, - num_images_per_prompt, - global_height, - global_width, - prompt_embeds.dtype, - device, - generator, - ) - - mask_imagee = self.mask_processor.preprocess(mask_image, height=height, width=width) - masked_imagee = init_image * (1 - mask_imagee) - masked_imagee = masked_imagee.to(dtype=self.vae.dtype, device=device) - maskkk, masked_image_latentsss = self.prepare_mask_latents_fill( - mask_imagee, - masked_imagee, - batch_size, - num_channels_latents, - num_images_per_prompt, - height, - width, - prompt_embeds.dtype, - device, - generator, - ) - - controlnet_keep = [] - for i in range(len(timesteps)): - keeps = [ - 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) - for s, e in zip(control_guidance_start, control_guidance_end) - ] - controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps) - - # 9. Denoising loop - num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) - self._num_timesteps = len(timesteps) - - with self.progress_bar(total=num_inference_steps) as progress_bar: - for i, t in enumerate(timesteps): - if self.interrupt: - continue - - timestep = t.expand(latents.shape[0]).to(latents.dtype) - - # predict the noise residual - if isinstance(self.controlnet, FluxMultiControlNetModel): - use_guidance = self.controlnet.nets[0].config.guidance_embeds - else: - use_guidance = self.controlnet.config.guidance_embeds - if use_guidance: - guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) - guidance = guidance.expand(latents.shape[0]) - else: - guidance = None - - if isinstance(controlnet_keep[i], list): - cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] - else: - controlnet_cond_scale = controlnet_conditioning_scale - if isinstance(controlnet_cond_scale, list): - controlnet_cond_scale = controlnet_cond_scale[0] - cond_scale = controlnet_cond_scale * controlnet_keep[i] - - controlnet_block_samples, controlnet_single_block_samples = self.controlnet( - hidden_states=latents, - controlnet_cond=control_image, - controlnet_mode=control_mode, - conditioning_scale=cond_scale, - timestep=timestep / 1000, - guidance=guidance, - pooled_projections=pooled_prompt_embeds, - encoder_hidden_states=prompt_embeds, - txt_ids=text_ids, - img_ids=latent_image_ids, - joint_attention_kwargs=self.joint_attention_kwargs, - return_dict=False, - ) - - if self.transformer.config.guidance_embeds: - guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) - guidance = guidance.expand(latents.shape[0]) - else: - guidance = None - - masked_image_latents_fill = torch.cat((masked_image_latentsss, maskkk), dim=-1) - latent_model_input = torch.cat([latents,masked_image_latents_fill], dim=2) - - noise_pred = self.transformer( - hidden_states=latent_model_input, - timestep=timestep / 1000, - guidance=guidance, - pooled_projections=pooled_prompt_embeds, - encoder_hidden_states=prompt_embeds, - controlnet_block_samples=controlnet_block_samples, - controlnet_single_block_samples=controlnet_single_block_samples, - txt_ids=text_ids, - img_ids=latent_image_ids, - joint_attention_kwargs=self.joint_attention_kwargs, - return_dict=False, - controlnet_blocks_repeat=controlnet_blocks_repeat, - )[0] - - # compute the previous noisy sample x_t -> x_t-1 - latents_dtype = latents.dtype - latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] - - # For inpainting, we need to apply the mask and add the masked image latents - init_latents_proper = image_latents - init_mask = mask - - if i < len(timesteps) - 1: - noise_timestep = timesteps[i + 1] - init_latents_proper = self.scheduler.scale_noise( - init_latents_proper, torch.tensor([noise_timestep]), noise - ) - - latents = (1 - init_mask) * init_latents_proper + init_mask * latents - - if latents.dtype != latents_dtype: - if torch.backends.mps.is_available(): - # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 - latents = latents.to(latents_dtype) - - # call the callback, if provided - if callback_on_step_end is not None: - callback_kwargs = {} - for k in callback_on_step_end_tensor_inputs: - callback_kwargs[k] = locals()[k] - callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) - - latents = callback_outputs.pop("latents", latents) - prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) - control_image = callback_outputs.pop("control_image", control_image) - mask = callback_outputs.pop("mask", mask) - masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) - - if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): - progress_bar.update() - - if XLA_AVAILABLE: - xm.mark_step() - - # Post-processing - if output_type == "latent": - image = latents - else: - latents = self._unpack_latents(latents, global_height, global_width, self.vae_scale_factor) - latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor - image = self.vae.decode(latents, return_dict=False)[0] - image = self.image_processor.postprocess(image, output_type=output_type) - - # Offload all models - self.maybe_free_model_hooks() - - if not return_dict: - return (image,) - - return FluxPipelineOutput(images=image) \ No newline at end of file From 3cc0a4192431dc79448abfd86b0a33a1b44ffde8 Mon Sep 17 00:00:00 2001 From: Pratim Dasude Date: Wed, 19 Nov 2025 21:18:39 +0530 Subject: [PATCH 3/5] Fluc_fill_controlnet community pipline --- .../pipline_flux_fill_controlnet_Inpaint.py | 1320 +++++++++++++++++ 1 file changed, 1320 insertions(+) create mode 100644 examples/community/pipline_flux_fill_controlnet_Inpaint.py diff --git a/examples/community/pipline_flux_fill_controlnet_Inpaint.py b/examples/community/pipline_flux_fill_controlnet_Inpaint.py new file mode 100644 index 000000000000..694c670ff975 --- /dev/null +++ b/examples/community/pipline_flux_fill_controlnet_Inpaint.py @@ -0,0 +1,1320 @@ +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL +import torch +from transformers import ( + CLIPTextModel, + CLIPTokenizer, + T5EncoderModel, + T5TokenizerFast, +) + +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin +from diffusers.models.autoencoders import AutoencoderKL +from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel +from diffusers.models.transformers import FluxTransformer2DModel +from diffusers.schedulers import FlowMatchEulerDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + +logger = logging.get_logger(__name__) + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import FluxControlNetInpaintPipeline + >>> from diffusers.models import FluxControlNetModel + >>> from diffusers.utils import load_image + + >>> controlnet = FluxControlNetModel.from_pretrained( + ... "InstantX/FLUX.1-dev-controlnet-canny", torch_dtype=torch.float16 + ... ) + >>> pipe = FluxControlNetInpaintPipeline.from_pretrained( + ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16 + ... ) + >>> pipe.to("cuda") + + >>> control_image = load_image( + ... "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" + ... ) + >>> init_image = load_image( + ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" + ... ) + >>> mask_image = load_image( + ... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" + ... ) + + >>> prompt = "A girl holding a sign that says InstantX" + >>> image = pipe( + ... prompt, + ... image=init_image, + ... mask_image=mask_image, + ... control_image=control_image, + ... control_guidance_start=0.2, + ... control_guidance_end=0.8, + ... controlnet_conditioning_scale=0.7, + ... strength=0.7, + ... num_inference_steps=28, + ... guidance_scale=3.5, + ... ).images[0] + >>> image.save("flux_controlnet_inpaint.png") + ``` +""" + + +# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.15, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + +def retrieve_latents_fill( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + r""" + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class FluxControlNetFillInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + r""" + The Flux controlnet pipeline for inpainting. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`FluxTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds", "control_image", "mask", "masked_image_latents"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + text_encoder_2: T5EncoderModel, + tokenizer_2: T5TokenizerFast, + transformer: FluxTransformer2DModel, + controlnet: Union[ + FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel + ], + ): + super().__init__() + if isinstance(controlnet, (list, tuple)): + controlnet = FluxMultiControlNetModel(controlnet) + + self.register_modules( + scheduler=scheduler, + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + text_encoder_2=text_encoder_2, + tokenizer_2=tokenizer_2, + transformer=transformer, + controlnet=controlnet, + ) + + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 + # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible + # by the patch size. So the vae scale factor is multiplied by the patch size to account for this + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) + latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 + self.mask_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor * 2, + vae_latent_channels=latent_channels, + do_normalize=False, + do_binarize=True, + do_convert_grayscale=True, + ) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 128 + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) + + text_inputs = self.tokenizer_2( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + return prompt_embeds + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds + def _get_clip_prompt_embeds( + self, + prompt: Union[str, List[str]], + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + ): + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer_max_length, + truncation=True, + return_overflowing_tokens=False, + return_length=False, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer_max_length} tokens: {removed_text}" + ) + prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + + # Use pooled output of CLIPTextModel + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + + return prompt_embeds + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + r""" + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in all text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + # We only use the pooled prompt output from the CLIPTextModel + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt_2, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder_2, lora_scale) + + dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype + text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + return prompt_embeds, pooled_prompt_embeds, text_ids + + # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + if isinstance(generator, list): + image_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(image.shape[0]) + ] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) + + image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + return image_latents + + # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(num_inference_steps * strength, num_inference_steps) + + t_start = int(max(num_inference_steps - init_timestep, 0)) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + + def check_inputs( + self, + prompt, + prompt_2, + image, + mask_image, + strength, + height, + width, + output_type, + prompt_embeds=None, + pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + padding_mask_crop=None, + max_sequence_length=None, + ): + if strength < 0 or strength > 1: + raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + + if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: + logger.warning( + f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if padding_mask_crop is not None: + if not isinstance(image, PIL.Image.Image): + raise ValueError( + f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}." + ) + if not isinstance(mask_image, PIL.Image.Image): + raise ValueError( + f"The mask image should be a PIL image when inpainting mask crop, but is of type" + f" {type(mask_image)}." + ) + if output_type != "pil": + raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.") + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height, width, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape + + latent_image_ids = latent_image_ids.reshape( + latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (vae_scale_factor * 2)) + width = 2 * (int(width) // (vae_scale_factor * 2)) + + latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height, width) + + return latents + + def prepare_latents( + self, + image, + timestep, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + shape = (batch_size, num_channels_latents, height, width) + latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) + + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + + if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: + # expand init_latents for batch_size + additional_image_per_prompt = batch_size // image_latents.shape[0] + image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) + elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." + ) + else: + image_latents = torch.cat([image_latents], dim=0) + + if latents is None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self.scheduler.scale_noise(image_latents, timestep, noise) + else: + noise = latents.to(device) + latents = noise + + noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width) + image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + return latents, noise, image_latents, latent_image_ids + + def prepare_mask_latents( + self, + mask, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + dtype, + device, + generator, + ): + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate(mask, size=(height, width)) + mask = mask.to(device=device, dtype=dtype) + + batch_size = batch_size * num_images_per_prompt + + masked_image = masked_image.to(device=device, dtype=dtype) + + if masked_image.shape[1] == 16: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) + + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + # aligning device to prevent device errors when concating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + masked_image_latents = self._pack_latents( + masked_image_latents, + batch_size, + num_channels_latents, + height, + width, + ) + + mask = self._pack_latents( + mask.repeat(1, num_channels_latents, 1, 1), + batch_size, + num_channels_latents, + height, + width, + ) + return mask, masked_image_latents + + # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + def prepare_mask_latents_fill( + self, + mask, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + dtype, + device, + generator, + ): + # 1. calculate the height and width of the latents + # VAE applies 8x compression on images but we must also account for packing which requires + # latent height and width to be divisible by 2. + height = 2 * (int(height) // (self.vae_scale_factor * 2)) + width = 2 * (int(width) // (self.vae_scale_factor * 2)) + + # 2. encode the masked image + if masked_image.shape[1] == num_channels_latents: + masked_image_latents = masked_image + else: + masked_image_latents = retrieve_latents_fill(self.vae.encode(masked_image), generator=generator) + + masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) + + # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + batch_size = batch_size * num_images_per_prompt + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) + + # 4. pack the masked_image_latents + # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4 + masked_image_latents = self._pack_latents( + masked_image_latents, + batch_size, + num_channels_latents, + height, + width, + ) + + # 5.resize mask to latents shape we we concatenate the mask to the latents + mask = mask[:, 0, :, :] # batch_size, 8 * height, 8 * width (mask has not been 8x compressed) + mask = mask.view( + batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor + ) # batch_size, height, 8, width, 8 + mask = mask.permute(0, 2, 4, 1, 3) # batch_size, 8, 8, height, width + mask = mask.reshape( + batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width + ) # batch_size, 8*8, height, width + + # 6. pack the mask: + # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2 + mask = self._pack_latents( + mask, + batch_size, + self.vae_scale_factor * self.vae_scale_factor, + height, + width, + ) + mask = mask.to(device=device, dtype=dtype) + + return mask, masked_image_latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + image: PipelineImageInput = None, + mask_image: PipelineImageInput = None, + masked_image_latents: PipelineImageInput = None, + control_image: PipelineImageInput = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 0.6, + padding_mask_crop: Optional[int] = None, + sigmas: Optional[List[float]] = None, + num_inference_steps: int = 28, + guidance_scale: float = 7.0, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + control_mode: Optional[Union[int, List[int]]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + ): + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. + image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The image(s) to inpaint. + mask_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The mask image(s) to use for inpainting. White pixels in the mask will be repainted, while black pixels + will be preserved. + masked_image_latents (`torch.FloatTensor`, *optional*): + Pre-generated masked image latents. + control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The ControlNet input condition. Image to control the generation. + height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 0.6): + Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. + padding_mask_crop (`int`, *optional*): + The size of the padding to use when cropping the mask. + num_inference_steps (`int`, *optional*, defaults to 28): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + control_mode (`int` or `List[int]`, *optional*): + The mode for the ControlNet. If multiple ControlNets are used, this should be a list. + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original transformer. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to + make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + Additional keyword arguments to be passed to the joint attention mechanism. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising step during the inference. + callback_on_step_end_tensor_inputs (`List[str]`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. + max_sequence_length (`int`, *optional*, defaults to 512): + The maximum length of the sequence to be generated. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + global_height = height + global_width = width + + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs + self.check_inputs( + prompt, + prompt_2, + image, + mask_image, + strength, + height, + width, + output_type=output_type, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + padding_mask_crop=padding_mask_crop, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + dtype = self.transformer.dtype + + # 3. Encode input prompt + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # 4. Preprocess mask and image + if padding_mask_crop is not None: + crops_coords = self.mask_processor.get_crop_region( + mask_image, global_width, global_height, pad=padding_mask_crop + ) + resize_mode = "fill" + else: + crops_coords = None + resize_mode = "default" + + original_image = image + init_image = self.image_processor.preprocess( + image, height=global_height, width=global_width, crops_coords=crops_coords, resize_mode=resize_mode + ) + init_image = init_image.to(dtype=torch.float32) + + # 5. Prepare control image + # num_channels_latents = self.transformer.config.in_channels // 4 + num_channels_latents = self.vae.config.latent_channels + + + if isinstance(self.controlnet, FluxControlNetModel): + control_image = self.prepare_image( + image=control_image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=self.vae.dtype, + ) + height, width = control_image.shape[-2:] + + # xlab controlnet has a input_hint_block and instantx controlnet does not + controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True + if self.controlnet.input_hint_block is None: + # vae encode + control_image = retrieve_latents(self.vae.encode(control_image), generator=generator) + control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # pack + height_control_image, width_control_image = control_image.shape[2:] + control_image = self._pack_latents( + control_image, + batch_size * num_images_per_prompt, + num_channels_latents, + height_control_image, + width_control_image, + ) + + # set control mode + if control_mode is not None: + control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + elif isinstance(self.controlnet, FluxMultiControlNetModel): + control_images = [] + + # xlab controlnet has a input_hint_block and instantx controlnet does not + controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True + for i, control_image_ in enumerate(control_image): + control_image_ = self.prepare_image( + image=control_image_, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=self.vae.dtype, + ) + height, width = control_image_.shape[-2:] + + if self.controlnet.nets[0].input_hint_block is None: + # vae encode + control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator) + control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor + + # pack + height_control_image, width_control_image = control_image_.shape[2:] + control_image_ = self._pack_latents( + control_image_, + batch_size * num_images_per_prompt, + num_channels_latents, + height_control_image, + width_control_image, + ) + + control_images.append(control_image_) + + control_image = control_images + + # set control mode + control_mode_ = [] + if isinstance(control_mode, list): + for cmode in control_mode: + if cmode is None: + control_mode_.append(-1) + else: + control_mode_.append(cmode) + control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + # 6. Prepare timesteps + + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas + image_seq_len = (int(global_height) // self.vae_scale_factor // 2) * ( + int(global_width) // self.vae_scale_factor // 2 + ) + mu = calculate_shift( + image_seq_len, + self.scheduler.config.get("base_image_seq_len", 256), + self.scheduler.config.get("max_image_seq_len", 4096), + self.scheduler.config.get("base_shift", 0.5), + self.scheduler.config.get("max_shift", 1.15), + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + sigmas=sigmas, + mu=mu, + ) + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) + + if num_inference_steps < 1: + raise ValueError( + f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" + f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." + ) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + + # 7. Prepare latent variables + + latents, noise, image_latents, latent_image_ids = self.prepare_latents( + init_image, + latent_timestep, + batch_size * num_images_per_prompt, + num_channels_latents, + global_height, + global_width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 8. Prepare mask latents + mask_condition = self.mask_processor.preprocess( + mask_image, height=global_height, width=global_width, resize_mode=resize_mode, crops_coords=crops_coords + ) + if masked_image_latents is None: + masked_image = init_image * (mask_condition < 0.5) + else: + masked_image = masked_image_latents + + mask, masked_image_latents = self.prepare_mask_latents( + mask_condition, + masked_image, + batch_size, + num_channels_latents, + num_images_per_prompt, + global_height, + global_width, + prompt_embeds.dtype, + device, + generator, + ) + + mask_imagee = self.mask_processor.preprocess(mask_image, height=height, width=width) + masked_imagee = init_image * (1 - mask_imagee) + masked_imagee = masked_imagee.to(dtype=self.vae.dtype, device=device) + maskkk, masked_image_latentsss = self.prepare_mask_latents_fill( + mask_imagee, + masked_imagee, + batch_size, + num_channels_latents, + num_images_per_prompt, + height, + width, + prompt_embeds.dtype, + device, + generator, + ) + + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps) + + # 9. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + timestep = t.expand(latents.shape[0]).to(latents.dtype) + + # predict the noise residual + if isinstance(self.controlnet, FluxMultiControlNetModel): + use_guidance = self.controlnet.nets[0].config.guidance_embeds + else: + use_guidance = self.controlnet.config.guidance_embeds + if use_guidance: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + controlnet_block_samples, controlnet_single_block_samples = self.controlnet( + hidden_states=latents, + controlnet_cond=control_image, + controlnet_mode=control_mode, + conditioning_scale=cond_scale, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + ) + + if self.transformer.config.guidance_embeds: + guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) + guidance = guidance.expand(latents.shape[0]) + else: + guidance = None + + masked_image_latents_fill = torch.cat((masked_image_latentsss, maskkk), dim=-1) + latent_model_input = torch.cat([latents,masked_image_latents_fill], dim=2) + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=timestep / 1000, + guidance=guidance, + pooled_projections=pooled_prompt_embeds, + encoder_hidden_states=prompt_embeds, + controlnet_block_samples=controlnet_block_samples, + controlnet_single_block_samples=controlnet_single_block_samples, + txt_ids=text_ids, + img_ids=latent_image_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False, + controlnet_blocks_repeat=controlnet_blocks_repeat, + )[0] + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + # For inpainting, we need to apply the mask and add the masked image latents + init_latents_proper = image_latents + init_mask = mask + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.scale_noise( + init_latents_proper, torch.tensor([noise_timestep]), noise + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + # call the callback, if provided + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + control_image = callback_outputs.pop("control_image", control_image) + mask = callback_outputs.pop("mask", mask) + masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) + + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + # Post-processing + if output_type == "latent": + image = latents + else: + latents = self._unpack_latents(latents, global_height, global_width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) \ No newline at end of file From 11964970a2c06247f17b8403e7850d8800fcdd42 Mon Sep 17 00:00:00 2001 From: Pratim Dasude Date: Wed, 19 Nov 2025 21:40:41 +0530 Subject: [PATCH 4/5] Update README.md --- examples/community/README.md | 105 ++++++++++++++++++++++++++++++++++- 1 file changed, 104 insertions(+), 1 deletion(-) diff --git a/examples/community/README.md b/examples/community/README.md index 69e9c7576103..4ff9c4d77704 100644 --- a/examples/community/README.md +++ b/examples/community/README.md @@ -88,7 +88,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar | FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://huggingface.co/papers/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) | | Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)| | Flux Kontext multiple images | A modified version of the `FluxKontextPipeline` that supports calling Flux Kontext with multiple reference images.| [Flux Kontext multiple input Pipeline](#flux-kontext-multiple-images) | - | [Net-Mist](https://github.com/Net-Mist) | - +| Flux Fill ControlNet Pipeline | A modified version of the `FluxFillPipeline` and `FluxControlNetInpaintPipeline` that supports Controlnet with Flux Fill model.| [Flux Fill ControlNet Pipeline](#Flux-Fill-ControlNet-Pipeline) | - | [pratim4dasude](https://github.com/pratim4dasude) | To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly. @@ -5527,3 +5527,106 @@ images = pipe( ).images images[0].save("pizzeria.png") ``` + +# Flux Fill ControlNet Pipeline + +This implementation of Flux Fill + ControlNet Inpaint combines the fill-style masked editing of FLUX.1-Fill-dev with full ControlNet conditioning. The base image is processed through the Fill model while the ControlNet receives the corresponding conditioning input (depth, canny, pose, etc.), and both outputs are fused during denoising to guide structure and composition. + +While FLUX.1-Fill-dev is designed for mask-based edits, it was not originally trained to operate jointly with ControlNet. In practice, this combined setup works well for structured inpainting tasks, though results may vary depending on the conditioning strength and the alignment between the mask and the control input. + +## Example Usage + + +```python +import torch +from diffusers import ( + FluxControlNetModel, + FluxPriorReduxPipeline, +) +from diffusers.utils import load_image + +# NEW PIPELINE (updated name) +from pipline_flux_fill_controlnet_Inpaint import FluxControlNetFillInpaintPipeline + +device = "cuda" if torch.cuda.is_available() else "cpu" +dtype = torch.bfloat16 + +# Models +base_model = "black-forest-labs/FLUX.1-Fill-dev" +controlnet_model = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro-2.0" +prior_model = "black-forest-labs/FLUX.1-Redux-dev" + +# Load ControlNet +controlnet = FluxControlNetModel.from_pretrained( + controlnet_model, + torch_dtype=dtype, +) + +# Load Fill + ControlNet Pipeline +fill_pipe = FluxControlNetFillInpaintPipeline.from_pretrained( + base_model, + controlnet=controlnet, + torch_dtype=dtype, +).to(device) + +# OPTIONAL FP8 +# fill_pipe.transformer.enable_layerwise_casting( +# storage_dtype=torch.float8_e4m3fn, +# compute_dtype=torch.bfloat16 +# ) + +# OPTIONAL Prior Redux +#pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained( +# prior_model, +# torch_dtype=dtype, +#).to(device) + +# Inputs + +# combined_image = load_image("person_input.png") + + +# 1. Prior conditioning +#prior_out = pipe_prior_redux( +# image=cloth_image, +# prompt=cloth_prompt, +#) + +# 2. Fill Inpaint with ControlNet + +# canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6). + +img = load_image(r"imgs/background.jpg") +mask = load_image(r"imgs/mask.png") + +control_image_depth = load_image(r"imgs/dog_depth _2.png") + +result = fill_pipe( + prompt="a dog on a bench", + image=img, + mask_image=mask, + + control_image=control_image_depth, + control_mode=[2], # union mode + control_guidance_start=0.0, + control_guidance_end=0.8, + controlnet_conditioning_scale=0.9, + + height=1024, + width=1024, + + strength=1.0, + guidance_scale=50.0, + num_inference_steps=60, + max_sequence_length=512, + +# **prior_out, +) + +# result.images[0].save("flux_fill_controlnet_inpaint.png") + +from datetime import datetime +timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") +result.images[0].save(f"flux_fill_controlnet_inpaint_depth{timestamp}.jpg") +``` + From 3a1b448f6911a192b047cce2e62af5c712be0247 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" Date: Wed, 19 Nov 2025 16:59:28 +0000 Subject: [PATCH 5/5] Apply style fixes --- .../community/pipline_flux_fill_controlnet_Inpaint.py | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/examples/community/pipline_flux_fill_controlnet_Inpaint.py b/examples/community/pipline_flux_fill_controlnet_Inpaint.py index 694c670ff975..6b1c204df03b 100644 --- a/examples/community/pipline_flux_fill_controlnet_Inpaint.py +++ b/examples/community/pipline_flux_fill_controlnet_Inpaint.py @@ -16,6 +16,8 @@ from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel from diffusers.models.transformers import FluxTransformer2DModel +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput +from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import ( USE_PEFT_BACKEND, @@ -26,8 +28,6 @@ unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor -from diffusers.pipelines.pipeline_utils import DiffusionPipeline -from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput if is_torch_xla_available(): @@ -110,6 +110,7 @@ def retrieve_latents( else: raise AttributeError("Could not access latents of provided encoder_output") + def retrieve_latents_fill( encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" ): @@ -550,7 +551,6 @@ def _prepare_latent_image_ids(batch_size, height, width, device, dtype): @staticmethod # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents def _pack_latents(latents, batch_size, num_channels_latents, height, width): - latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) @@ -1021,7 +1021,6 @@ def __call__( # num_channels_latents = self.transformer.config.in_channels // 4 num_channels_latents = self.vae.config.latent_channels - if isinstance(self.controlnet, FluxControlNetModel): control_image = self.prepare_image( image=control_image, @@ -1245,7 +1244,7 @@ def __call__( guidance = None masked_image_latents_fill = torch.cat((masked_image_latentsss, maskkk), dim=-1) - latent_model_input = torch.cat([latents,masked_image_latents_fill], dim=2) + latent_model_input = torch.cat([latents, masked_image_latents_fill], dim=2) noise_pred = self.transformer( hidden_states=latent_model_input, @@ -1317,4 +1316,4 @@ def __call__( if not return_dict: return (image,) - return FluxPipelineOutput(images=image) \ No newline at end of file + return FluxPipelineOutput(images=image)