diff --git a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py index 65c7526e3aa2..cebd860a4379 100644 --- a/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py +++ b/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl.py @@ -51,7 +51,7 @@ class StableDiffusionXLPipelineFastTests(PipelineLatentTesterMixin, PipelineTest def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( - block_out_channels=(32, 64), + block_out_channels=(2, 4), layers_per_block=2, sample_size=32, in_channels=4, @@ -66,6 +66,7 @@ def get_dummy_components(self): transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, + norm_num_groups=1, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, @@ -144,7 +145,7 @@ def test_stable_diffusion_xl_euler(self): image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) - expected_slice = np.array([0.5873, 0.6128, 0.4797, 0.5122, 0.5674, 0.4639, 0.5227, 0.5149, 0.4747]) + expected_slice = np.array([0.5552, 0.5569, 0.4725, 0.4348, 0.4994, 0.4632, 0.5142, 0.5012, 0.47]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2