diff --git a/src/diffusers/schedulers/scheduling_deis_multistep.py b/src/diffusers/schedulers/scheduling_deis_multistep.py index a6afe744bd88..39763191bce1 100644 --- a/src/diffusers/schedulers/scheduling_deis_multistep.py +++ b/src/diffusers/schedulers/scheduling_deis_multistep.py @@ -293,7 +293,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py b/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py index 6b1a43630fa6..f841eeccbeac 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py @@ -313,7 +313,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py index fa8f362bd3b5..d9b414ff7adb 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py @@ -323,7 +323,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_sde.py b/src/diffusers/schedulers/scheduling_dpmsolver_sde.py index d39efbe724fb..60c6341a945b 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_sde.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_sde.py @@ -373,7 +373,7 @@ def t_fn(_sigma): # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py b/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py index bb7dc21e6fdb..befc79c2f21c 100644 --- a/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py +++ b/src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py @@ -327,7 +327,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_euler_discrete.py b/src/diffusers/schedulers/scheduling_euler_discrete.py index 0875e1af3325..bc703a8f072c 100644 --- a/src/diffusers/schedulers/scheduling_euler_discrete.py +++ b/src/diffusers/schedulers/scheduling_euler_discrete.py @@ -278,7 +278,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_heun_discrete.py b/src/diffusers/schedulers/scheduling_heun_discrete.py index a5827bbc8610..db5797f7d238 100644 --- a/src/diffusers/schedulers/scheduling_heun_discrete.py +++ b/src/diffusers/schedulers/scheduling_heun_discrete.py @@ -280,7 +280,7 @@ def set_timesteps( # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py b/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py index a0137b83fda1..115436c8e360 100644 --- a/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +++ b/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py @@ -301,7 +301,7 @@ def set_timesteps( # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py b/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py index ddea57e8c167..1c25738af274 100644 --- a/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py +++ b/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py @@ -312,7 +312,7 @@ def _init_step_index(self, timestep): # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_lms_discrete.py b/src/diffusers/schedulers/scheduling_lms_discrete.py index 9bee37d59ee1..05126377763e 100644 --- a/src/diffusers/schedulers/scheduling_lms_discrete.py +++ b/src/diffusers/schedulers/scheduling_lms_discrete.py @@ -305,7 +305,7 @@ def _init_step_index(self, timestep): # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] diff --git a/src/diffusers/schedulers/scheduling_unipc_multistep.py b/src/diffusers/schedulers/scheduling_unipc_multistep.py index 741b03b6d3a2..3bd7d2931764 100644 --- a/src/diffusers/schedulers/scheduling_unipc_multistep.py +++ b/src/diffusers/schedulers/scheduling_unipc_multistep.py @@ -307,7 +307,7 @@ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma - log_sigma = np.log(sigma) + log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis]