diff --git a/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py b/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py index 2121e9b81509..dfeddab6dced 100644 --- a/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +++ b/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py @@ -23,6 +23,7 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import FusedAttnProcessor2_0 from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -655,6 +656,65 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 diff --git a/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py b/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py index 401e6aef82b1..d87a9eaa1e8d 100644 --- a/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +++ b/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py @@ -25,6 +25,7 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import FusedAttnProcessor2_0 from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -715,6 +716,65 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py index f7f4a16f0aa4..2ad90f049922 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py @@ -23,6 +23,7 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import FusedAttnProcessor2_0 from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -650,6 +651,67 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py index c80178152a6e..d7e0952b2aa4 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py @@ -25,6 +25,7 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import FusedAttnProcessor2_0 from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -718,6 +719,67 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py index 820c2eecb864..a321bb41a7eb 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py @@ -25,6 +25,7 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel +from ...models.attention_processor import FusedAttnProcessor2_0 from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers @@ -844,6 +845,67 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py index 23d8f97ffb52..97f99386acef 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py @@ -35,6 +35,7 @@ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel from ...models.attention_processor import ( AttnProcessor2_0, + FusedAttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, @@ -864,6 +865,67 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py index b714bfa4bd12..812f5499f8e6 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py @@ -36,6 +36,7 @@ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel from ...models.attention_processor import ( AttnProcessor2_0, + FusedAttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, @@ -1084,6 +1085,67 @@ def disable_freeu(self): """Disables the FreeU mechanism if enabled.""" self.unet.disable_freeu() + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ diff --git a/tests/pipelines/stable_diffusion/test_stable_diffusion.py b/tests/pipelines/stable_diffusion/test_stable_diffusion.py index 28d0d07e6948..ac105d22fa82 100644 --- a/tests/pipelines/stable_diffusion/test_stable_diffusion.py +++ b/tests/pipelines/stable_diffusion/test_stable_diffusion.py @@ -661,6 +661,37 @@ def test_freeu_disabled(self): output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1] ), "Disabling of FreeU should lead to results similar to the default pipeline results." + def test_fused_qkv_projections(self): + device = "cpu" # ensure determinism for the device-dependent torch.Generator + components = self.get_dummy_components() + sd_pipe = StableDiffusionPipeline(**components) + sd_pipe = sd_pipe.to(device) + sd_pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + image = sd_pipe(**inputs).images + original_image_slice = image[0, -3:, -3:, -1] + + sd_pipe.fuse_qkv_projections() + inputs = self.get_dummy_inputs(device) + image = sd_pipe(**inputs).images + image_slice_fused = image[0, -3:, -3:, -1] + + sd_pipe.unfuse_qkv_projections() + inputs = self.get_dummy_inputs(device) + image = sd_pipe(**inputs).images + image_slice_disabled = image[0, -3:, -3:, -1] + + assert np.allclose( + original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 + ), "Fusion of QKV projections shouldn't affect the outputs." + assert np.allclose( + image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 + ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." + assert np.allclose( + original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 + ), "Original outputs should match when fused QKV projections are disabled." + @slow @require_torch_gpu