Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/diffusers/models/autoencoders/autoencoder_kl.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,8 @@ def __init__(
norm_num_groups: int = 32,
sample_size: int = 32,
scaling_factor: float = 0.18215,
latents_mean: Optional[Tuple[float]] = None,
latents_std: Optional[Tuple[float]] = None,
force_upcast: float = True,
):
super().__init__()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1313,7 +1313,22 @@ def __call__(
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor

image = self.vae.decode(latents, return_dict=False)[0]

# cast back to fp16 if needed
if needs_upcasting:
Expand Down